Abstract:Molecular oxygen has played a crucial role in shaping our planetary environment. The emergence of oxygen in the atmosphere and the oceans and its changing concentration through time is strongly linked to major changes on Earth such as tectonic reorganization,climatic perturbations and biological evolution. Two facts are known with certainty that are resulted from the long-term study on the rise of atmosphere oxygen,that are:(1)Earth’s earliest atmosphere was essentially devoid of oxygen,and(2)today’s atmosphere is composed of 21% oxygen. It should be emphasized that most geological indicators of atmospheric oxygen levels in geological time imply only presence or absence,which led to many difficulties on study of the rise of atmosphere oxygen. Even though,a battery of geological indicators suggest that a shift from an anoxic to an oxic atmosphere some time between 2.5 and 2.0 billion years ago,which is known and defined as the Great Oxidation Event(GOE). Further research in resent years demonstrates that several lines of evidence point to a second‘Great Oxidation Event’(GOE~Ⅱ)during the Precambrian-Cambrian transition between about 850 and 540,Ma,which is herewith referred to as the Neoproterozoic Oxygenation Event(NOE). In practice,the considerable variation in atmospheric oxygen levels through Phanerozoic time peaked near 150% PAL in the late Carboniferous,which is herewith defined as the Phanerozoic Oxygenation Event(POE). Because photosynthetic oxygen production by cyanobacteria led to oxygenation of the atmosphere and oceans,in turn provided an elementary condition for the aerobic respiration and the evolution of large,complex and ultimately intelligent organisms,the rise of atmosphere oxygen can be defined as the action product of geobiological process that is genetically related to the geodynamics,which become an important clue for the further understanding of the evolution of palaeogeographical background of the Earth. Furthermore,there are many intrinsically differences with respect to their consequences and merits among these Oxygenation Events,i.e. the GOE,the NOE and the POE,but the concept of themselves and the study on their forming mechanism demonstrate many new ideas and cognitions. Tracing these new ideas and cognitions will be helpful for the further understanding of this particular geobiological process represented by the rise of atmosphere oxygen,which can provide many useful thinking approaches and researching clues for the future research.
Mei Mingxiang. Great Oxidation Event in history of the Earth:An important clue for the further understanding of evolution of palaeogeographical background[J]. JOPC, 2016, 18(3): 315-334.
[1] 冯增昭. 2004. 单因素分析多因素综合作图法: 定量岩相古地理重建. 古地理学报,6(1):3-19. [Feng Z Z. Singer factor analysis and multifacter comprehensive mapping method: Reconstruction of quantitative lithofacies palaeogeography. Journal of Palaeogeography(Chinese Edition),6(1):3-19] [2] 冯增昭. 2013. 中国沉积学(第二版). 北京:石油工业出版社. [Feng Z Z. 2013. Sedimentology of China(Second Edition). Beijing: Petroleum Press] [3] 梅冥相. 2010. 长周期层序形成机制的探索:层序地层学的进展之二. 古地理学报,12(6):711-728. [Mei M X. 2010. Research on formingmechanism of long-term sequences:The second advance in sequence stratigraphy. Journal of Palaeogeography(Chinese Edition),12(6):711-728] [4] 梅冥相. 2011a. 微生物席沉积学:一个年轻的沉积学分支. 地球科学进展,26(6):586-597. [Mei M X. 2011a. Microbial-mat sedimentology:A young branch on Sedimentology. Advances in Earth Sciences,26(6):586-597] [5] 梅冥相. 2011b. 陆源碎屑岩中微生物诱发的沉积构造的成因类型及其分类体系. 地质论评,57(3):419-436. [Mei M X. 2011b. Genetic types and their classification for the microbial induced sedimentary structure within terrigenous clastic rocks. Geological Review,57(3):419-436] [6] 梅冥相. 2012. 从生物矿化作用衍生出的有机矿化作用:地球生物学框架下重要的研究主题. 地质论评,58(5):937-951. [Mei M X. 2012. Organomineralization derived from the biomineralization:An important theme within the framework of geobiology. Geological Review,58(5):937-951] [7] 梅冥相. 2014. 微生物席的特征和属性:微生物席沉积学的理论基础. 古地理学报,16(3):285-304. [Mei M X. 2014. Feature and nature of microbial-mat:Theoretical basis of microbial-mat sedimentology. Journal of Palaeogeography(Chinese Edition),16(3):285-304] [8] 梅冥相,高金汉. 2015. 光合作用的起源:一个引人入胜的重大科学命题. 古地理学报,17(5):577-592. [Mei M X,Gao J H. 2015. The origin of photosynthesis:An enchanting and important scientific theme. Journal of Palaeogeography(Chinese Edition),17(5):577-592] [9] 梅冥相,刘少峰. 2013. 陆生植被对河流沉积作用的影响:生物沉积作用研究的一个重要主题. 古地理学报,15(1):1-10. [Mei M X,Liu S F. 2013. The sedimentological impact of the terrestrial vegetation to fluvial sedimentation:An important theme on studies of biosedimentation. Journal of Palaeogeography(Chinese Edition),15(1):1-10] [10] 梅冥相,孟庆芬. 2015. 太古宙氧气绿洲:地球早期古地理重塑的重要线索. 古地理学报,17(6):719-734. [Mei M X,Meng Q F. 2015. Archean oxygen oases:An important clue of palaogeographical reconstruction in the early Earth. Journal of Palaeogeography(Chinese Edition),17(6):719-734] [11] 梅冥相,孟庆芬. 2016. 大气圈氧气上升的时间进程:一个与地球动力学过程紧密相关的地球生物学过程. 古地理学报,18(1):1-20. [Mei M X,Meng Q F. 2016. The timing for the rise of atmospheric oxygen:A sophisticated geobiological process that is closely and genetically related to the geodynamics. Journal of Palaeogeography(Chinese Edition),18(1):1-20] [12] 梅冥相,孟庆芬,刘智荣. 2007. 微生物形成的原生沉积构造研究进展综述. 古地理学报,9(4):353-364. [Mei M X,Meng Q F,Liu Z R. 2007. Overview of advances in studies of primary sedimentary structures formed by microbes. Journal of Palaeogeography(Chinese Edition),9(4):353-364] [13] 谢树成,殷鸿福,史晓颖. 2011. 地球生物学:生物与地球环境的相互作用与协同演化. 北京:科学出版社. [Xie S C,Ying H F,Shi X Y. 2011. Geobiology:Interaction and Synergetic Evolution between the Earth’s Environment and the Life. Beijing:Science Press] [14] 徐桂荣,王永标,龚淑云,袁伟. 2005. 生物与环境的协同演化. 湖北武汉:中国地质大学出版社. [Xu G R,Wang Y B,Gong S Y,Yuan W. 2005. Synergetic Evolution of Organism and Envirenment. Hubei Wuhan:Press of China University of Geosciences] [15] 殷鸿福,杨逢清,谢树成,王永标,王红梅,彭元桥. 2004. 生物地质学. 湖北武汉:中国地质大学出版社. [Ying H F,Yang F Q,Xie S C,Wang Y B,Wang H M,Peng Y Q. 2004. Biogeology. Hubei Wuhan:Press of China University of Geosciences] [16] Albani A E,Bengtson S,Canfield D E,Bekker A,Macchiarelli R,Mazurier A,Hammarlund E U,Boulvais P,Dupuy J~J,Fontaine C,Fürsich F T,Gauthier~Lafaye F,Janvier P,Javaux E,Ossa F O,Pierson-Wickmann A~C,Riboulleau A,Sardini P,Vachard D,Whitehouse M,Meunier A. 2010. Large colonial organisms with coordinated growth in oxygenated environments 2.1 Gyr ago. Nature,466:100-104. [17] Allègre C J,Manhès G,G?pel C. 1995. The age of the Earth. Geochimica et Cosmochimica Acta,59:1445-1456. [18] Allwood A C,Walter M R,Kamber B S,Marshall C P,Burch I W. 2006. Stromatolite reef from the Early Archaean era of Australia. Nature,441:714-718. [19] Altermann W. 2008. Accretion,trapping and binding of sediment in Archaean stromatolites:Morphological expression of the antiquity of life. Space Sciences Reviews,135:55-79. [20] Amelin Y,Connelly J,Zartman R E,Chen J H,Gopel C,Neymark L A. 2009. Modern U-Pb chronometry of meteorites:Advancing to higher time resolution reveals new problems. Geochimica et Cosmochimica Acta,73:5212-5223. [21] Anbar A D,Duan Y,Lyons T W,Arnold G L,Kendall B,Creaser R A,Kaufman A J,Gordon G W,Scott C,Garvin J,Buick R. 2007. A whiff of oxygen before the Great Oxidation Event?. Science,317:1903-1906. [22] Anders E,Grevesse N. 1989. Abundances of the elements:Meteoritic and solar. Geochimica et Cosmochimica Acta,53:197-214. [23] Arnold G L,Anbar A D,Barling J,Lyons T W. 2004. Molybdenum isotope evidence for widespread anoxia in Mid-Proterozoic oceans. Science,304:87-90. [24] Aspler L B,Chiarenzelli J R. 1998. Two Neoarchean supercontinents?Evidence from the Paleoproterozoic. Sedimentary Geology,120:75-104. [25] Awramik S M. 2006. Respect for stromatolites. Nature,441:700-701. [26] Bao H,Lyons J R,Zhou C. 2008. Triple oxygen isotope evidence for elevated CO2 levels after a Neoproterozoic glaciation. Nature,453:504-506. [27] Barber J. 2008. Photosynthetic generation of oxygen. Philosophical Transaction of the Royal Society(B),363:2665-2674. [28] Barley M E,Bekker A,Krapez B. 2005. Late Archean to early Paleoproterozoic global tectonics,environmental change and the rise of atmospheric oxygen. Earth and Planetary Science Letters,238:156-171. [29] Barrow J D,Tipler F J. 1986. The Anthropic Cosmological Principle. Oxford:Oxford University Press. [30] Bekker A,Holland H D,Wang P L,Rumble D R,Stein H J,Hannah J L,Coetzee L L,Beukes N J. 2004. Dating the rise of atmospheric oxygen. Nature,427:117-120. [31] Berman R G,Sanborne-Barrie M,Rayner N,Carson C,Sandeman H A,Skulski T. 2010. Petrological and in situ SHRIMP geochronological constraints on the tectonometamorphic evolution of the Committee Bay belt,Rae Province,Nunavut. Precambrian Research,181:1-20. [32] Berner R A. 2006. GEOCARBSULF:A combined model for Phanerozoic atmospheric O2 and CO2. Geochimica et Cosmochimica Acta,70:5653-5664. [33] Berner R A,Beerling D J,Dudley R,Robinson J M,Wildman R A. 2003. Phanerozoic atmospheric oxygen. Annual Review of Earth and Planetary Sciences,31:105-134. [34] Bjerrum C J,Canfield D E. 2002. Ocean productivity before about 1.9 Gyr ago limited by phosphorus adsorption onto iron oxides. Nature,417:159-162. [35] Blank C E,S??nchez-Baracaldo P. 2010. Timing of morphological and ecological innovations in the Cyanobacteria:A key to understanding the rise in atmospheric oxygen. Geobiology,8:1-23. [36] Blichert-Toft J,Arndt N T. 1999. Hf isotope compositions of komatiites. Earth and Planetary Science Letters,171:439-451. [37] Bouvier A,Wadhwa M. 2010. The age of the Solar System redefined by the oldest Pb-Pb age of a meteoritic inclusion. Nature Geosciences,3:637-641. [38] Buick R. 2007. Did the Proterozoic‘Canfield Ocean’ cause a laughing gas greenhouse?. Geobiology,5:97-100. [39] Buick R. 2008. When did oxygenic photosynthesis evolve?. Philosophical Transaction of the Royal Society(B),363:2731-2743. [40] Butterfield,N J. 2009. Oxygen,animals and ocean ventilation:An alternate view. Geobiology,7:1-7. [41] Cameron E M. 1982. Sulphate and sulphide reduction in early Precambrian oceans. Nature,296:145-148. [42] Campbell I H,Allen C M. 2008. Formation of supercontinents linked to increases in atmospheric oxygen. Nature Geosciences,1:554-558. [43] Campbell I H,Squire R J. 2010. The mountains that triggered the Late Neoproterozoic increase in oxygen:The second great oxidation event. Geochimica et Cosmochimica Acta,74:4187-4206. [44] Canfield D E. 1998. A new model for Proterozoic ocean chemistry. Nature,396:450-453. [45] Canfield D E. 2004. The evolution of the Earth surface sulphur reservoir. American Journal of Science,304:839-861. [46] Canfield D E. 2005. The early history of atmospheric oxygen:Homage to Robert M. Garrels. Annual Review of Earth and Planetary Science,33:1-36. [47] Canfield D E,Teske A. 1996. Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies. Nature,382:127-132. [48] Canfield D E,Poulton S W,Narbonne G M. 2007. Late-Neoproterozoic Deep-Ocean oxygenation and the rise of animal life. Science,315:92-95. [49] Canfield D F,Habicht K S,Thamdrup B. 2000. The Archean sulphur cycle and the early history of atmospheric oxygen. Science,288:658-661. [50] Catling D,Zahnle K. 2002. Evolution of atmospheric oxygen. In:Holton J,Pyle J,Curry J. Encyclopedia of atmospheric sciences. Amsterdam:Academic Press,754-761. [51] Catling D C,Glein C R,Zahnle K J,McKay C P. 2005. Why O2 is required by complex life on habitable planets and the concept of planetary‘oxygenation time’?. Astrobiology,5:415-438. [52] Catling D C,Zahnle K J,McKay C P. 2001. Biogenic methane,hydrogen escape,and the irreversible oxidation of early Earth. Science,293:839-843. [53] Condie K C,O’Neill C,Aster R C. 2009. Evidence and implications for a widespread magmatic shutdown for 250 My on Earth. Earth and Planetary Science Letters,282:294-298. [54] Crowe S A,D?ssing L N,Beukes N J,Bau M,Kruger S J,Frei R,Canfield D E. 2013. Atmospheric oxygenation three billion years ago. Nature,501:535-539. [55] Davies G F. 1995. Punctuated tectonic evolution of the Earth. Earth and Planetary Science Letters,36:363-380. [56] Delano J W. 2001. Redox history of the Earth’s interior since~3900,Ma:Implications for prebiotic molecules. Origins of Life and Evolution of Biospheres,31:311-341. [57] Eriksson P G,Catuneanu O,Nelson D R,Rigby M J,Bandopadhyay P C,Altermann W. 2010. Events in the Precambrian history of the Earth:Challenges in discriminating their global significance. Marine and Petroleum Geology,30:1-18. [58] Ernst W G. 2009. Archean plate tectonics,rise of Proterozoic supercontinentality and onset of regional episodic stagnant~lid behaviour. Gondwana Research,15:243-253. [59] Erwin D H,Laflamme M,Tweedt S,Sperling E A,Pisani D,Peterson K J. 2011. The Cambrian conundrum:Early divergence and later ecologicalsuccess in the early history of animals. Science,334:1091-1097. [60] Falkowski P G,Godfrey L V. 2008. Electrons,life and the evolution of Earth’s oxygen cycle. Philosophical Transaction of the Royal Society(B),363:2705-2716. [61] Falkowski P G,Isozaki Y. 2008. The Story of O2. Science,322:540-542. [62] Falkowski P G,Katz M E,Milligan A J,Fennel K,Cramer B S,Aubry M-P,Berner R A,Novacek M J,Zapol W M. 2005. The rise of oxygen over the past 205,million years and the evolution of large placental mammals. Science,309:2202-2204. [63] Farquhar J,Bao H,Thiemens,M. 2000. Atmospheric influence of Earth’s earliest sulfur cycle. Science,289:756-758. [64] Farquhar J,Wing B A. 2003. Multiple sulfur isotopes and the evolution of the atmosphere. Earth and Planetary Science Letters,213:1-13. [65] Farquhar J,Peters M,Johnston D T,Strauss H,Masterson A,Wiechert U,Kaufman A J. 2007. Isotopic evidence for Mesoarchaean anoxia and changing sulphur chemistry. Nature,449:706-709. [66] Fike D A,Grotzinger J P,Pratt L M,Summons R E. 2006. Oxidation of the Ediacaran Ocean. Nature,444:744-747. [67] Flament N,Coltice N,Rey P F. 2008. A case for late-Archaean continental emergence from thermal evolution models and hypsometry. Earth and Planetary Science Letters,275:326-336. [68] French J E,Heaman L M. 2010. Precise U-Pb dating of Paleoproterozoic mafic dyke swarms of the Dharwar craton,India:Implications for the existence of the Neoarchean supercraton Sclavia. Precambrian Research,183:416-441. [69] Gaidos E. 2010. The biogeochemical context of animal origins. In:DeSalle R,Schierwater B. Key Transitions in Animal Evolution. Boca Raton of Florida:CRC Press,345-359. [70] Gaidos E,Dubuc T,Dunford M,McAndrew P,Padilla-Gami?o J,Studer B,Weersing K,Stanley S. 2007. The Precambrian emergence of animal life:A geobiological perspective. Geobiology,5:351-373. [71] Goldblatt C,Lenton T M,Watson A J. 2006. Biostability of atmospheric oxygen and the Great Oxidation. Nature, 443:683-686. [72] Grotzinger J P,Fike D A,Fischer W W. 2011. Enigmatic origin of the largest-known carbon isotope excursion in Earth’s history. Nature Geoscience,4:285-292. [73] Halverson G P,Hurtgen M T. 2007. Ediacaran growth of the marine sulfate reservoir. Earth and Planetary Science Letters,263:32-44. [74] Han T-M,Runnegar B. 1992. Megascopic eukaryotic algae from the 2.1~billion~year~old Negaunee Iron-Formation,Michigan. Science,257:232-235. [75] Hayes J M,Waldbauer J R. 2006. The carbon cycle and associated redox processes through time. Philosophical Transaction of the Royal Society(B),361:931-950. [76] Hoashi M,Bevacqua D C,Otake T,Watanabe Y,Hickman A H,Utsunomiya S,Ohmoto H. 2009. Primary haematite formation in an oxygenated sea 3.46 billion years ago. Nature Geosciences,2:301-306. [77] Holland H D. 1984. The Chemical Evolution of the Atmosphere and Oceans. Princeton:Princeton University Press. [78] Holland H D. 2002. Volcanic gases,black smokers,and the great oxidation event. Geochimica et Cosmochimica Acta,66:3811-3826. [79] Holland H D. 2006. The oxygenation of the atmosphere and oceans. Philosophical Transactions of the Royal(B),361:903-915. [80] Holland H D. 2009. Why the atmosphere became oxygenated:A proposal. Geochimica et Cosmochimica Acta,73:5241-5255. [81] Holm N G,Neubeck A. 2009. Reduction of nitrogen compounds in oceanic basement and its implications for HCN formation and abiotic organic synthesis. Geochemical Transactions,10:1-9. [82] Holm N G,Dumont M,Ivarsson M,Konn C. 2006. Alkaline fluid circulation in ultramafic rocks and formation of nucleotide constituents:A hypothesis. Geochemical Transactions,7:1-7. [83] Hurtgen M T,Arthur M A,Halverson G P. 2005. Neoproterozoic sulfur isotopes,the evolution of microbial sulfur species,and the burial efficiency of sulfide as sedimentary sulfide. Geology,33:41-44. [84] Javaux E J,Knoll A H,Walter M R. 2004. TEM evidence for eukaryotic diversity in mid-Proterozoic oceans. Geobiology,2:121-132. [85] Johnson C M,Beard B L,Klein C,Beukes N J,Roden E E. 2008b. Iron isotopes constrain biologic and abiologic processes in banded iron formation genesis. Geochimica et Cosmochimica Acta,72:151-169. [86] Johnson C M,Beard B L,Roden E E. 2008a. The iron isotope fingerprints of redox and biogeochemical cycling in modern and ancient Earth. Annual Reviews of Earth and Planetary Sciences,56:457-493. [87] Johnston D T,Goldberg T,Poulton S W,Sergeev V N,Podkovyrov V,Vorob’eva N G,Bekker A,Knoll A H. 2012. Late Ediacaran redox stability and metazoan evolution. Earth and Planetary Science Letters,335-336:25-35. [88] Kah L C,Bartley J K. 2011. Protracted oxygenation of the Proterozoic biosphere. International Geology Review,53:1424-1442. [89] Karhu J A,Holland H D. 1996. Carbon isotopes and the rise of atmospheric oxygen. Geology,24:867-870. [90] Kasting J F. 1987. Theoretical constraints on oxygen and carbon dioxide concentrations in the Precambrian atmosphere. Precambrian Research,34:205-229. [91] Kasting J F. 1993. Earth’s early atmosphere. Science,259:920-926. [92] Kasting J F. 2005. Methane and climate during the Precambrian era. Precambrian Research,137:119-129. [93] Kaufman A J,Johnston D T,Farquhar J,Masterson A L,Lyons T W,Bates S,Anbar A D. ,Arnold G L,Garvin J,Buick R. 2008. Late Archean biospheric oxygenation and atmospheric evolution. Science,317:1900-1903. [94] Keeling R F,Bender M L,Najjar R G,Tans P P. 1993. What atmospheric oxygen measurements can tell us about the global carbon cycle. Global Biogeochemical Cycles,7:37-67. [95] Kirschvink J L,Gaidos E J,Bertani L E,Beukes N J,Gutzmer J,Maepa L N,Steinberger R E. 2000. Paleoproterozoic snowball Earth:Extreme climatic and geochemical global change and its biological consequences. Proceedings of the National Academy of Sciences,97:1400-1405. [96] Knoll A H. 1992. The early evolution of Eukaryotes. A geological perspective. Science,256:622-625. [97] Knoll A H. 2003. Life on a Young Planet:The First Three Billion Years of Evolution on Earth. Princeton:Princeton University Press,1-277. [98] Knoll A H. 2013. Systems paleobiology. GSA Bulletin,125:3-13. [99] Knoll A H,Carroll S B. 1999. Early animal evolution:Emerging views from comparative biology and geology. Science,284:2129-2137. [100] Konhauser K O,Pecoits E,Lalonde S V,Papineau D,Nisbet E G,Barley M E,Arndt N T,Zahnle K,Kamber B S. 2009. Oceanic nickel depletion and a methanogen famine before the Great Oxidation Event. Nature,458:750-753. [101] Kopp R E,Kirschvink J L,Hilburn I A,Nash C Z. 2005. The Paleoproterozoic snowball Earth:A climate disaster triggered by the evolution of oxygenic photosynthesis. Proceedings of the National Academy of Sciences,102:11131-11136. [102] Kramers J D. 2007. Hierarchical Earth accretion and the Hadean Eon. Journal of the Geological Society,164:3-17. [103] Kump L R. 2008. The rise of atmospheric oxygen. Nature,451:277-278. [104] Kump L R,Barley M E. 2007. Increased subaerial volcanism and the rise of atmospheric oxygen 2.5 billion years ago. Nature,448:1033-1036. [105] Kump L R,Junium C,Arthur M A,Brasier A,Fallick A,Melezhik V,Lepland A,C ne A E,Luo Genming. 2011. Isotopic evidence for massive oxidation of organic matter following the great oxidation event. Science,334:1694-1696. [106] Landuyt W,Bercovici D. 2009. Variations in planetary convection via the effect of climate on damage. Earth and Planetary Science Letters,277:29-37. [107] Lenardic A,Jellinek A M,Moresi L-N. 2008. A climate induced transition in the tectonic style of a terrestrial planet. Earth and Planetary Science Letters,271:34-42. [108] Li C,Love G D,Lyons T W,Fike D A,Sessions A L,Chu X. 2010. A stratified redox modelfor the Edicaran ocean. Science,328:80-83. [109] Li Z X,Bogdanova S V,Collins A S,Davidson A,DeWaele B,Ernst R E,Fitzsimons C W,Fuck R A,Gladkochub D P,Jacons J,Karlstrom K E,Lu S,Natapov L M,Pease V,Pisarevsky S A,Thrane K,Vernikovsky V. 2008. Assembly,configuration and break-up history of Rodinia:A synthesis. Precambrian Research,160:179-210. [110] Li Z X,Evans D A D,Halverson G P. 2013. Neoproterozoic glaciations in a revised global palaeogeography from the breakup of Rodinia to the assembly of Gondwanaland. Sedimentary Geology,294:219-232. [111] Lindsay J F,Brasier M D. 2002. Did global tectonics drive early biosphere evolution?Carbon isotope record from 2.6 to 1.9,Ga carbonates of Western Australian basins. Precambrian Research,114:1-34. [112] Lovley D R. 2004. Potential role of dissimilatory iron reduction in the early evolution of microbial respiration. In:Seckbach J. Origins,Evolution,and Biodiversity of Microbial Life. Amsterdam:Kluwer,301-313. [113] Love G D,Grosjean E,Stalvies C,Fike D A,Grotzinger J P,Bradley A S,Kelly A E,Bhatia M,Meredith W,Snape C E,Bowring S A,Condon D J,Summons R E. 2009. Fossil steroids record the appearance of Demospongiae during the Cryogenian period. Nature,457:718-721. [114] Maloof A C,Rose C V,Beach R,Samuels B M,Calmet C C,Erwin D H,Poirier G R,Yao N,Simons F J. 2010. Possible animalebody fossils in pre-Marinoan limestones from South Australia. Nature Geoscience,3:653-659. [115] Martin W,Russell M J. 2007. On the origin of biochemistry at an alkaline hydrothermal vent. Philosophical Transactions of the Royal Society(Series B),362:1887-1925. [116] Matte P. 2001. The Variscan collage and orogeny(480-290,Ma)and the tectonic definition of the Armorica microplate:A review. Terra Nova,13:122-128. [117] McFadden K A,Huang J,Chu X,Jiang G,Kaufman A J,Zhou C,Yuan X,Shuhai X. 2008. Pulsed oxidation and biological evolution in the Ediacaran Doushantuo Formation. Proceedings of the National Academy of Science,105:3197-3202. [118] Melezhik V A. 2006. Multiple causes of Earth’s earliest global glaciation. Terra Nova,18:130-137. [119] Melezhik V A,Fallick A E,Hanski E J,Kump L R,Lepland A,Prave A R,Srauss H. 2005. Emergence of the aerobic biosphere during the Archean-Proterozoic transition:Challenges of future research. GSA Today,15:4-11. [120] Melezhik V A,Huhma H,Condon D J,Fallick A E,Whitehouse M J. 2007. Temporal constraints on the Paleoproterozoic Lomagundi-Jatuli carbon isotopic event. Geology,35:655-658. [121] Meyer K M,Kump L R. 2008. Oceanic euxinia in Earth history:Causes and consequences. Annual Review of Earth and Planetary Sciences,36:251-288. [122] Narbonne G M. 2005. The Ediacara biota:Neoproterozoic origin of animals and their ecosystems. Annual Reviews of Earth and Planetary Sciences,33:421-442. [123] Narbonne G M,Xiao S,Shields G A. 2012. The Ediacaran Period(Chapter 18). In:Gradstein F M,Ogg J G,Schmitz M D,Ogg G M. The Geologic Time Scale 2012. Amsterdam:Elsevier,413-435. [124] Neuweiler F,Turner E C,Burdige D J. 2009. Early Neoproterozoic origin of the metazoan clade recorded in carbonate rock texture. Geology,37:475-478. [125] Nisbet E G,Grassineau N V,Howe C J,Abell P Ⅰ,Regelous M,Nisbet R. E R. 2007. The age of Rubisco:The evolution of oxygenic photosynthesis. Geobiology,5:311-335. [126] Nyquist L E,Kleine T,Shih C-Y,Reese Y D. 2009. The distribution of short-lived radioisotopes in the early solar system and the chronology of asteroid accretion,differentiation,and secondary mineralization. Geochimica et Cosmochimica Acta,73:5115-5136. [127] O’Neil J,Maurice C,Stevenson R K,Larocque J,Cloquet C,David J,Francis D. 2007. The geology of the 3.8,Ga Nuvvuagittuq(Porpoise Cove)greenstone belt,northeastern Superior Province,Canada. In:Van Kranendonk,M J,Smithies R H,Bennet V. Earth’s Oldest Rocks(Developments in Precambrian Geology,15). Amsterdam:Elsevier,219-250. [128] Och L M,Shields-Zhou G A. 2012. The Neoproterozoic oxygenation event:Environmental perturbations and biogeochemical cycling. Earth-Science Reviews,110:26-57. [129] Ohmoto H, Watanabe Y, Kumazawa K. 2004. Evidence from massive siderite beds for a CO2-rich atmosphere before~1.8 billion years ago. Nature,429:395-399. [130] Olson J M,Blankenship R E. 2004. Thinking about the evolution of photosynthesis. Photosynthesis Research,80:373-386. [131] Olson S L,Kump L R,Kasting J F. 2013. Quantifying the areal extent and dissolvedoxygen concentrations of Archean oxygen oases. Chemistry Geology,362:35-43. [132] Ono S,Beukes N J,Rumble D,Fogel M L. 2006. Early evolution of atmospheric oxygen from multiple-sulfur and carbon isotope records of the 2.9,Ga Mozaan Group of the Pongola Supergroup,Southern Africa. South African Journal of Geology,107:97-108. [133] Parnell J,Boyce A J,Mark D,Bowden S,Spinks S. 2010. Early oxygenation of the terrestrial environment during the Mesoproterozoic. Nature,468:290-293. [134] Pavlov A A,Kasting J F. 2002. Mass-independent fractionation of sulfur isotopes in Archean sediments:Strong evidence for an anoxic Archean atmosphere. Astrobiology,2:27-41. [135] Payne J L,McClain C R,Boyer A G,Brown J H,Finnegan S,Kowalewski M,Krause Jr R A,Lyons S K,McShea D W,Novack-Gottshall P M,Smith F A,Spaeth P,Stempien J A,Wang S C. 2011. The evolutionary consequences of oxygenic photosynthesis:A body size perspective. Photosynthesis Research,107:37-57. [136] Poulton S W,Canfield D E. 2011. Ferruginous Conditions: A dominant feature of the ocean through Earth’s history. Elements,7:107-112. [137] Poulton S W,Fralick P W,Canfield D E. 2010. Spatial variability in oceanic redox structure 1.8 billion years ago. Nature Geoscience,3:486-490. [138] Rasmussen B,Buick R. 1999. Redox state of the Archean atmosphere:Evidence from detrital heavy minerals in ca. 3250-2750,Ma sandstones from the Pilbara Craton,Australia. Geology,27:115-118. [139] Reddy S M,Evans D A D. 2009. Paleoproterozoic supercontinents and global evolution:Correlations from core to atmosphere. In:Reddy S M,Mazumder R,Evans D A D,Collins A S. Paleoproterozoic Supercontinents and Global Evolution. Geological Society Special Publication,323:1-23. [140] Riding R,Fralick P,Liang L Y. 2014. Identification of an Archean marine oxygen oasis. Precambrian Research,251:232-237. [141] Rogers J J W,Santosh M. 2002. Configuration of Columbia,a Mesoproterozoic supercontinent. Gondwana Research,5:5-22. [142] Rosing M T,Bird D K,Sleep N H,Glassley W,Albarede F. 2006. The rise of continents e an essay on the geologic consequences of photosynthesis. Palaeogeography,Palaeoclimatology,Palaeoecology,232:233-265. [143] Rouxel O J,Bekker A,Edwards K J. 2005. Iron isotope constraints on the Archean and Paleoproterozoic ocean redox state. Science,207:1088-1091. [144] Russell M J,Hall A J. 2006. The onset and early evolution of life. In:Kesler S E,Ohmoto H. Evolution of Earth’s Atmosphere,Hydrosphere,and Biosphere: Constraints from Ore Deposits. Geological Socierty of America(Memoir)198:1-32. [145] Russell M J,Hall A J,Martin W. 2010. Serpentinization as a source of energy at the origin of life. Geobiology,8:355-371. [146] Rye R,Holland H D. 1998. Paleosols and the evolution of atmospheric oxygen: A critical review. American Journal of Science,298:621-672. [147] Santosh M,Wilde S A,Li J H. 2007. Timing of Paleoproterozoic ultrahigh-temperature metamorphism in the north China Craton:Evidence from SHRIMP U-Pb zircon geochronology. Precambrian Research,159:178-196. [148] Saul J M. 2009. Did detoxification processes cause complex life to emerge?. Lethaia,42:179-184. [149] Schopf J W. 2011. The paleobiological record of photosynthesis. Photosynthesis Research,107,87-101. [150] Scott A C,Lyons T W,Bekker A,Shen Y,Poulton S W,Chu X,Anbar A D. 2008. Tracing the stepwise oxygenation of the Proterozoic ocean. Nature,452:456-459. [151] Sessions A L,Doughty D M,Welander P V,Summons R E,Newman D K. 2009. The continuing puzzle of the Great Oxidation Event. Current Biology,19:567-574. [152] Shen Y N,Canfield D E,Knoll A H. 2002. Middle Proterozoic ocean chemistry:Evidence from the McArthur basin,northern Australia. American Journal of Science,302:81-109. [153] Shen Yanan,Knoll,A H,Walter,M R. 2003. Evidence for low sulphate and anoxia in a mid-Proterozoic marine basin. Nature,423:632-634. [154] Shields-Zhou G,Och L. 2011. The case for a Neoproterozoic oxygenation event:Geochemical evidence and biological consequences. GSA Today,21:4-11. [155] Shields-Zhou G, Hill A C,Macgabhann B A. 2012. The Cryogenian Period(Chapter 17). In:Gradstein F M,Ogg J G,Schmitz M D,Ogg G M. The Geologic Time Scale 2012. Amsterdam:Elsevier,393-411. [156] Siebert C,Kramers J D,Meisel T,Morel P,N?gler T F. 2005. PGE,Re-Os,and Mo isotope systematics in Archean and early Proterozoic sedimentary systems as proxies for redox conditions of the early Earth. Geochimica et Cosmochimica Acta,69:1787-1801. [157] Slack J F,Cannon WF. 2009. Extraterrestrial demise of banded iron formations 1.85 billion years ago. Geology,37:1011-1014. [158] Sperlinga E A,Frieder C A,Raman A V,Girguis P R,Levin L A,Knoll A H. 2013. Oxygen,ecology,and the Cambrian radiation of animals. Proceedings of the National Academy of Sciences,110:13446-13451. [159] Squire R J,Campbell I H,Allen C M,Wilson C J L. 2006. Did the Transgondwanan supermountain trigger the explosive radiation of animals on Earth?. Earth and Planetary Science Letters,250:116-134. [160] Tzipermana E,Halevyb I,Johnstona D T,Knoll A H,Schraga D P. 2011. Biologically induced initiation of Neoproterozoic snowball-Earth events. Proceedings of the National Academy of Sciences,108:15091-15096. [161] Van Kranendonk M J,Altermann W,Beard B L,Hoffman P F,Johnson C M,Kasting J F,Melezhik V A,Nutman A P,Papineau D,Pirajno F. 2012. A chronostratigraphic division of the Precambrian. In:Gradstein F M,Ogg J G, Schmitz M D,Ogg G M. The Geologic Time Scale 2012. Amsterdam:Elsevier,299-392. [162] Von Brunn V,Gold D J C. 1993. Diamictite in the Archaean Pongola Sequence of southern Africa. Journal of African Earth Sciences,16:367-374. [163] Wang X,Hu S,Gan L,Wiens M,Müller W E G. 2009. Sponges(Porifera)as living metazoan witnesses from the Neoproterozoic:Biomineralization and the concept of their evolutionary success. Terra Nova,22:1-11. [164] Wille M,Kramers J D,N?gler T F,Beukes N J,Schr?der S,Meisel T,Lacassie J P,Voegelin A R. 2007. Evidence for a gradual rise of oxygen between 2.6 and 2.5,Ga from Mo isotopes and Re-PGE signatures in shales. Geochimica et Cosmochimica Acta,71:2417-2435. [165] Williams G E. 2005. Subglacial meltwater channels and glaciofluvial deposits in the Kimberley Basin,Western Australia:1.8,Ga low-latitude glaciation coeval with continental assembly. Journal of the Geological Society of London,162:111-124. [166] Williams G E. 2008. Proterozoic(pre-Ediacaran)glaciation and the high obliquity,low-latitude ice,strong seasonality(HOLIST)hypothesis:Principles and tests. Earth-Science Reviews,87:61-93. [167] Yin L,Zhu M,Knoll A H,Yuan X,Zhang J,Hu J. 2007. Doushantuo embryos preserved inside diapause egg cysts. Nature,446:661-663. [168] Young G M. 2002. Stratigraphic and tectonic settings of Proterozoic glaciogenic rocks and banded iron~formations:Relevance to the snowball Earth debate. Journal of African Earth Sciences,35:451-466. [169] Young G M,von Brunn V,Gold D J C,Minter W E L. 1998. Earth’s oldest reported glaciation:Physical and chemical evidence from the Archean Mozaan Group(~2.9,Ga)of South Africa. Journal of Geology,106:523-538. [170] Yuan X,Chen Z,Xiao S,Zhou C,Hua H. 2011. An early Ediacaran assemblage of macroscopic and morphologically differentiated eukaryotes. Nature,470:390-393. [171] Zahnle K J,Claire M W,Catling D C. 2006. The loss of mass-independent fractionation of sulfur due to a Paleoproterozoic collapse of atmospheric methane. Geobiology,4:271-283. [172] Zhao G C,Cawood P A,Wilde S A,Sun M. 2002. Review of global 2.1-1.8,Ga orogens:Implications for a pre-Rodinia supercontinent. Earth-Science Reviews,59:125-162.