Origin of fine-grained laminated carbonate rocks:A case study of the Lower Ordovician at Houtan section in Xishui County, Guizhou Province
Sun Yongchao1, Liu Jianbo1, 2
1 School of Earth and Space Sciences,Peking University,Beijing 100871; 2 Key Laboratory of Orogenic Belts and Crustal Evolution(Peking University),Ministry of Education,Beijing 100871;
Abstract:Lamination has been viewed as indicative of a low-energy environment,and commonly,relatively deep water.This viewpoint has undergone radical change after recent studies showed that lamination can also be deposited in a high-energy environment. On storm-influenced areas,mud can be transported in bedload as floc aggregate grains,deposition from these turbulent flows produces laminated mud current ripples. Abundant and diverse storm sedimentary structures were found in laminations at Houtan section in Xishui County of Guizhou Province,included storm-erosional structures and gutter casts.Based on the fine sedimentary research both in field and in laboratory,5 laminated types were identified:Thick parallel lamination, unidirectional cross-lamination, thin parallel lamination, thick wavy lamination and thick horizontal lamination. By EDS mapping,three elements of Al, Si and Mg were analyzed in light and dark lamination. These elements are uniformly distributed in light and dark lamination, with a bit more content in dark lamination due to the more clay minerals in it. Kelvin-Helmholtz shear instabilities have been invoked to explain the alternating light-dark lamination.Three types of storm deposit have been recognized. From type Ⅰ to type Ⅲ,storm influence decreased gradually.
Sun Yongchao,Liu Jianbo. Origin of fine-grained laminated carbonate rocks:A case study of the Lower Ordovician at Houtan section in Xishui County, Guizhou Province[J]. JOPC, 2016, 18(5): 743-758.
[1] 冯增昭,彭勇民,金振奎,蒋盘良,鲍志东,罗璋,鞠天吟,田海芹,汪红. 2001. 中国南方早奥陶世岩相古地理. 古地理学报,3(2):14-22. [Feng Z Z,Peng Y M,Jin Z K,Jiang P L,Bao Z D,Luo Z,Ju T Y,Tian H Q,Wang H. 2001. Lithofacies palaeogeography of the Early Ordovician in South China. Journal of Palaeogeography(Chinese Edition),3(2):14-22] [2] 廖瀚卿,刘建波,吴荣昌,孙永超,詹仁斌. 2012. 华南上扬子区下奥陶统红花园组顶界的穿时性. 古生物学报,52(1):18-34. [Liao H Q,Liu J B,Wu R C,Sun Y C,Zhan R B. 2012. Phenomenal diachroneity in the upper boundary of the lower Ordovician Hunghuayuan Formation in the upper Yangtze Region,South China. Acta Palaeontologica Sinica,52(1):18-34] [3] 刘治成,张廷山,完颜祺琪,杨扬,杨巍. 2012. 贵州习水地区奥陶系露头层序地层研究. 西南石油大学学报:自然科学版,34(4):1-12. [Liu Z C,Zhang T S,Wanyan Q Q,Yang Y,Yang W. 2012. Outcrop sequence stratigraphy of the Ordovician in Xishui,Guizhou. Journal of Southwest Petroleum University(Science & Technology Edition),34(4):1-12] [4] 马永生,陈洪德,王国力. 2009. 中国南方层序地层与古地理学. 北京:科学出版社,2-266. [Ma Y S,Chen H D,Wang G L. 2009. Sequence Stratigraphy and Paleogeography in South China. Beijing:Science Press,2-266] [5] 梅冥相. 2007. 上扬子区寒武系娄山关群白云岩层序地层格架及其古地理背景. 古地理学报,9(2):117-132. [Mei M X. 2007. Sequence stratigraphic framework and its palaeogeographic setting for the Loushanguan Group dolostones of Cambrian in Upper Yangtze Region. Journal of Palaeogeography(Chinese Edition),9(2):117-132] [6] 汪啸风,李志明,陈建强,陈孝红,苏文博. 1996. 华南早奥陶世海平面变化及其对比. 华南地质与矿产,(3):1-11. [Wang X F,Li Z M,Chen J Q,Chen X H,Su W B. 1996. Early Ordovician sea level events in South China and its worldwide correlation. Geology and Mineral Resources of South China,(3):1-11] [7] 张元动,王志浩,冯洪真,骆天天,Erdtmann B D. 2005. 中国特马豆克阶笔石地层述评. 地层学杂志,29(3):215-235. [Zhang Y D,Wang Z H,Feng H Z,Luo T T,Erdtmann B D. 2005. Tremadocian(Ordovician)graptolite biostraigraphy of China:A review. Journal of Stratigraphy,29(3):215-235] [8] Baas J H,Best J L. 2008. The dynamics of turbulent,transitional and laminar clay-laden flow over a fixed current ripple. Sedimentology,55(3):635-666. [9] Baas J H,Best J L. 2002. Turbulence modulation in clay-rich sediment-laden flows and some implications for sediment deposition. Journal of Sedimentary Research,72(3):336-340. [10] Baas J H,Best J L,Peakall J,Wang M. 2009. A phase diagram for turbulent,transitional,and laminar clay suspension flows. Journal of Sedimentary Research,79(4):162-183. [11] Bridge J S. 1978. Origin of horizontal lamination under turbulent boundary layers. Sedimentary Geology,20:1-16. [12] Campbell C V. 1967. Lamina,laminaset,bed and bedset. Sedimentology,8(1):7-26. [13] Dumas S,Arnott R W C,Southard J B. 2005. Experiments on oscillatory-flow and combined-flow bed forms:Implications for interpreting parts of the shallow-marine sedimentary record. Journal of Sedimentary Research,75(3):501-513. [14] Emelyanov E M P P. 1974. Geochemistry of sediments in the western central Atlantic,DSDP Leg 39:Initial Reports of the Deep Sea Drilling Project,39:477-492. [15] Fan R,Lu Y Z,Zhang X L,Zhang S B,Deng S H,Li X. 2013. Conodonts from the Cambrian-Ordovician boundary interval in the southeast margin of the Sichuan Basin,China. Journal of Asian Earth Sciences,64:115-124. [16] Flügel E. 2004. Microfacies Analysis of Limestones:Analysis,Interpretation,and Application. Berlin,Springer:976. [17] Grabowski R C,Droppo I G,Wharton G. 2011. Erodibility of cohesive sediment:The importance of sediment properties. Earth-Science Reviews,105(3-4):101-120. [18] Hesse R,Chough S K. 1980. The northwest Atlantic Mid-Ocean Channel of the Labrador Sea:Ⅱ. Deposition of parallel laminated levee-muds from the viscous sublayer of low density turbidity currents. Sedimentology,27(6):697-711. [19] Kranck K,Milligan T. 1980. Macroflocs:Production of marine snow in the laboratory. Marine Ecology,3:19-24. [20] Kemp A E S. 1996. Palaeoclimatology and Palaeoceanography from Laminated Sediments. London:The Geological Society,1-253. [21] Lamb M P,Parsons J D. 2005. High-density suspensions formed under waves. Journal of Sedimentary Research,75(3):386-397. [22] Lowe D. 1988. Suspended-load fallout rate as an independent variable in the analysis of current structures. Sedimentology,35:765-776. [23] Lowe D,Guy M. 2000. Slurry-flow deposits in the Britannia Formation(Lower Cretaceous),North Sea:A new perspectiveon the turbidity current and debris flow problem. Sedimentology,47:31-70. [24] Machhour L,Philip J,Oudin J. 1977. Formation of laminite deposits in anaerobic-dysaerobic marine environments. Marine Geology,117:287-302. [25] Mackay D,Dalrymple R W. 2011. Dynamic mud deposition in a tidal environment:The record of fluid-mud deposition in the Cretaceous Bluesky Formation,Alberta,Canada. Journal of Sedimentary Research,81:901-920. [26] Macquaker J H S,Bentley S J,Bohacs K M. 2010. Wave-enhanced sediment-gravity flows and mud dispersal across continental shelves:Reappraising sediment transport processes operating in ancient mudstone successions. Geology,38(10):947-950. [27] Macquaker J H S,Bohacs K M. 2007. On the accumulation of mud. Science,318(14):1734-1735. [28] Macquaker J H S,Taylor K G. 1996. A sequence-stratigraphic interpretation of a mudstone-dominated succession:The Lower Jurassic Cleveland Ironstone Formation,UK. Journal of the Geological Society,London,153:759-770. [29] Kranck K,Milligan T G. 1980. Macroflocs:Production of marine snow in the laboratory. Marine Ecology Progress Series,3(1):19-24. [30] Nittrouer C A,Sternberg R W. 1981. The formation of sedimentary strata in an allochthonous shelf environment:The Washington Continental Shelf. Marine Geology,42:201-232. [31] Plint A G,Macquaker J H S,Varban B L. 2012. Bedload transport of mud across a wide,storm-influenced ramp:Cenomanian-Turonian Kaskapau Formation,western Canada Foreland Basin. Journal of Sedimentary Research,82(11):801-822. [32] Rine J M,Ginsburg R N. 1985. Depositional facies of a mud shoreface in Suriname,South America:A mud analogue to sandy,shallow-marine deposits. Journal of Sedimentary Petrology,55(5):633-652. [33] Schieber J,Southard J B. 2009. Bedload transport of mud by floccule ripples:Direct observation of ripple migration processes and their implications. Geology,37(6):483-486. [34] Schieber J,Yawar Z. 2009. A new twist on mud deposition:Mud ripples in experiment and rock record.The Sedimentary Record,7(2):4-8. [35] Schieber J,Southard J B,Kissling P,Rossman B,Ginsburg R. 2013. Experimental deposition of carbonate mud from moving suspensions:Importance of flocculation and implications for modern and ancient carbonate mud deposition. Journal of Sedimentary Research,83(11):1025-1031. [36] Schieber J,Southard J,Thaisen K. 2007. Accretion of mudstone beds from migrating floccule ripples. Science,318(5857):1760-1763. [37] Shinn E A,Steinen R P,Dill R F. 1993. Lime-mud layers in high-energy tidal channels:A record of hurricane deposition. Geology,21(7):603-606. [38] Stow D A V,Bowen A J. 1978. Origin of lamination in deep sea,fine-grained sediments. Nature,274:324-328. [39] Stow D A V,Bowen A J. 1980. A physical model for the transport and sorting of fine-grained sediment by turbidity currents. Sedimentology,27:31-46. [40] Wright L D,Friedrichs C T. 2006. Gravity-driven sediment transport on continental shelves:A status report. Continental Shelf Research,26(17):2092-2107.