Relationship between total organic carbon content and sedimentation rate of the Upper Cretaceous source rocks in Well CCSD-SK-I in Songliao Basin
Zha Yuming1, 2, Wu Xinsong1, 2, Yu Da1, 2
1 College of Geosciences,China University of Petroleum(Beijing),Beijing 102249; 2 State Key Laboratory of Petroleum Resources and Prospecting,China University of Petroleum(Beijing),Beijing 102249;
Abstract:Compared with study in marine basins,study on the relationship between total organic carbon (TOC) content and sedimentation rate(SR)in continental lacustrine sediments is still in exploration phase,and the controlling mechanism of sedimentation on TOC especially needs intensive study. In this paper,astronomical cycles of the Upper Cretaceous in the southern borehole of Well CCSD-SK-1 were firstly identified with the cycle stratigraphy method; and then SR and the corresponding TOC of each window was calculated by moving-window spectral analysis method. Taking the Pr/Ph ratio as a redox condition index and δ13C of the ostracod shell as a paleo-productivity index,the relationship of SR and TOC in different environments and different paleo-productivity conditions in detail was discussed. Analyses show that TOC is mainly controlled by palaeo-productivity while the influence of SR is very little; in a high palaeo-productivity environment the TOC value is larger than 1% and less than 1% in contrast. But under the oxidation and low palaeo-productivity conditions,the TOC value tends to increase with SR when SR is less than 11,cm/ka and then decreases in a higher SR background.
Zha Yuming,Wu Xinsong,Yu Da. Relationship between total organic carbon content and sedimentation rate of the Upper Cretaceous source rocks in Well CCSD-SK-I in Songliao Basin[J]. JOPC, 2016, 18(5): 857-864.
[1] 程日辉,王国栋,王璞珺,高有峰,任延广,王成善,张世红,汪清源. 2009. 松科1井南孔白垩系姚家组沉积序列精细描述: 岩石地层、沉积相与旋回地层. 地学前缘,16(2): 272-287. [Cheng R H,Wang G D,Wang P J,Gao Y F,Ren Y G,Wang C S,Zhang S H,Wang Q Y. 2009. Description of Cretaceous sedimentary sequence of the Yaojia Formation recovered by CCSD-SK-Is borehole in Songliao Basin: Lithostratigraphy,sedimentary facies and cyclic stratigraphy. Earth Science Frontiers,16(2): 272-287] [2] 高有峰. 2010. 松辽盆地上白垩统事件沉积与高分辨率层序地层: 以松科1井岩心资料为基础. 吉林大学博士学位论文. [Gao Y F. 2010. Event deposits and high-resolution sequence stratigraphy of the Upper Cretaceous in Songliao Basin: Based on borehole cores of CCSD-SK-I. Doctoral Dissertation of Jilin University] [3] 高有峰,王璞珺,程日辉,王国栋,万晓樵,吴河勇,王树学. 2009. 松科1井南孔白垩系青山口组一段沉积序列精细描述: 岩石地层、沉积相与旋回地层. 地学前缘,16(2): 314-323. [Gao Y F,Wang P J,Cheng R H,Wang G D,Wan X Q,Wu H Y,Wang S X. 2009. Description of Cretaceous sedimentary sequence of the first member of the Qingshankou Formation recovered by CCSD-SK-Is borehole in Songliao Basin: Lithostratigraphy,sedimentary facies and cyclic stratigraphy. Earth Science Frontiers,16(2): 314-323] [4] 高有峰,王璞珺,王成善,任延广,王国栋,刘万洙,程日辉. 2008. 松科1井南孔选址、岩心剖面特征与特殊岩性层的分布义. 地质学报,82(5): 669-675. [Gao Y F,Wang P J,Wang C S,Ren Y G,Wang G D,Liu W Z,Cheng R H. 2008. Well site selecting,core profile characteristics and distribution of the special lithology in CCSD-SK-I. Acta Geologica Sinica,82(5): 669-675] [5] 顾健. 2008. 白垩纪松辽盆地青山口组一段硫记录与古湖泊变化. 中国地质大学(北京)硕士学位论文. [Gu J. 2008. Records of sulfur burial and paleolimnological change in Unit 1 of Qingshankou Formation,Cretaceous Songliao Basin. Master’s Dissertation of China University of Geosciences(Beijing)] [6] 宁维坤,付丽,霍秋立. 2010. 松辽盆地松科1井晚白垩世沉积时期古湖泊生产力. 吉林大学学报(地球科学版),40(5): 1020-1034. [Ning W K,Fu L,Huo Q L. 2010. Productivity of Paleo-Songliao Lake during the Late Cretaceous in Well CCSD-SK-I,Songliao Basin. Journal of Jilin University(Earth Science Edition),40(5): 1020-1034] [7] 田世峰. 2012. 中、新生代旋回地层学研究及其油气地质意义: 以惠州凹陷和煤山剖面为例. 中国石油大学(华东)博士学位论文. [Tian S F. 2012. Cyclostratigraphy of Mesozoic and Cenozoic and implications hydrocarbon exploration,cases study of the Huizhou Depression and Meishan Section. Doctoral Dissertation of China University of Petroleum(East China)] [8] 涂玉洁. 2012. 松辽盆地白垩纪有孔虫化石与海侵证据. 中国地质大学(北京)硕士学位论文. [Tu Y J. 2012. Foraminifera and seawater incursions events of the Late Cretaceous Songliao Basin. Master’s Dissertation of China University of Geosciences(Beijing)] [9] 王璞珺,高有峰,程日辉,王国栋,吴河勇,万晓樵,杨甘生,汪忠兴. 2009. 松科1井南孔白垩系青山口组二、三段沉积序列精细描述: 岩石地层、沉积相与旋回地层. 地学前缘,16(2): 288-313. [Wang P J,Gao Y F,Cheng R H,Wang G D,Wu H Y,Wan X Q,Yang G S,Wang Z X. 2009. Description of Cretaceous sedimentary sequence of the second and third member of the Qingshankou Formation recovered by CCSD-SK-Is borehole in Songliao Basin: Lithostratigraphy,sedimentary facies and cyclic stratigraphy. Earth Science Frontiers,16(2): 288-313] [10] 吴怀春,张世红,冯庆来,方念乔,杨天水,李海燕. 2011. 旋回地层学理论基础、研究进展和展望. 地球科学(中国地质大学学报),36(3): 409-428. [Wu H C,Zhang S H,Feng Q L,Fang N Q,Yang T S,Li H Y. 2011. Theoretical Basis,Research Advancement and Prospects of Cyclostratigraphy. Earth Science(Journal of China University of Geosciences),36(3): 409-428] [11] 吴欣松,郭娟娟,黄永建,付建伟. 2011. 松辽盆地晚白垩世古气候变化的测井替代指标. 古地理学报,13(1): 103-110. [Wu X S,Guo J J,Huang Y J,Fu J W. 2011. Well logging proxy of the Late Cretaceous palaeoclimate change in Songliao Basin. Journal of Palaeogeography(Chinese Edition),13(1): 103-110] [12] Betts J N,Holland H D. 1991. The oxygen content of ocean bottom waters,the burial efficiency of organic carbon,and the regulation of atmospheric oxygen. Palaeogeography,Palaeoclimatology,Palaeoecology,97: 5-18. [13] Chamberlain C P,Wan X Q,Graham S A,Carroll A R,Doebbert A C,Sageman B B,Blisniuk P,Kent-Corson M L,Wang Z,Wang C S. 2013. Stable isotopic evidence for climate and basin evolution of the Late Cretaceous Songliao basin,China. Palaeogeography,Palaeoclimatology,Palaeoecology,385: 106-124. [14] Haven H L T,Leeuw J W D,Rullkotter J,Damste J S S. 1987. Restricted utility of the pristane/phytane ratio as a paleoenvironmental indicator. Nature,330: 641-643. [15] He H Y,Deng C L,Wang P J,Pan Y Q,Zhu R X. 2012. Toward age determination of the termination of the Cretaceous Normal Superchron. Geochemistry,Geophysics,Geosystems,13: 1-20. [16] Ibach J. 1982. Relationship between sedimentation rate and total organic carbon content in ancient marine sediments. AAPG Bulletin,66: 170-188. [17] Laskar J,Fienga A,Gastineau M,Manche H. 2011. La2010: a new orbital solution for the long-term motion of the Earth. Astronomy and Astrophysics,532: 1-17. [18] Muller P J,Suess E. 1979. Productivity,sedimentation rate and sedimentary organic carbon content in the oceans. Deep-Sea Research,26: 1347-1362. [19] Oana S,Deevey E S. 1960. Carbon 13 in lake waters and its possible bearing on paleolimnology. American journal of science,258: 253-272. [20] Schulz M,Mudelsee M. 2002. REDFIT: Estimating red-noise spectra directly from unevenly spaced paleoclimatic time series. Computers and Geosciences,28: 421-426. [21] Stein R. 1990. Organic carbon content/sedimentation rate relationship and its paleoenvironmental significance for marine sediments. Geo-Marine Letters,10: 37-44. [22] Tyson R V. 2001. Sedimentation rate,dilution,preservation and total organic carbon: Some results of a modelling study. Organic Geochemistry,32: 333-339. [23] Wu H C,Zhang S L,Jiang G Q,Hinnov L,Yang T S,Li H Y,Wan X Q,Wang C S. 2013. Astrochronology of the Early Turonian-Early Campanian terrestrial succession in the Songliao Basin,northeastern China and its implication for long-period behavior of the Solar System. Palaeogeography,Palaeoclimatology,Palaeoecology,385: 55-70.