Soft-sediment deformation structures from the Upper Triassic Taishanmiao Formation of the Nanzhao Basin in Henan Province and their palaeogeographic significances
Yang Wentao Wang Min
Institute of Resources and Environment,Henan Polytechnic University,Jiaozuo 454003,Henan
Abstract:A lot of soft-sediment deformation structures,including synsedimentary faults,liquefied homogeneous layers and water escape veins,diapirs,plastic deformation,cataclasites and large load structures,occurred in the Upper Triassic Taishanmiao Formation of the Nanzhao Basin in Henan Province. They mainly cluster together in the middle part of deep lacustrine deposits,which is the transitional zone between the lower deep water and the upper shallow water. Most of the soft ̄sediment deformation structures are preserved in turbidites,except for the synsedimentary faults in shales. The major trigger mechanism of the soft-sediment deformation structures is the palaeoearthquake,although the depositional process of turbidite may play a role. The liquefied,plastic and brittle deformation structures are considered as the indicater of the high magnitude palaeoearthquake,which record the intense orogenic movements of the Qinling orogen during the Late Triassic. With the thrusting of the Qinling orogen,the Nanzhao Basin was uplifted,whereas the synchronous Jiyuan Basin,adjacent to the north,was subsided. They most likely represent the wedgetop depozone and the foredeep depozone of the foreland basin system respectively.
基金资助:*国家自然科学基金项目(编号: 41440016)、国家自然科学基金青年科学基金(编号: 41502106)、河南理工大学博士基金(编号: B2013-076)联合资助; [Co-funded by the National Natural Science Foundation of China(No.41440016),the Young Scientists Fund of National Natural Science Foundation of China(No.41502106),and the Doctor Foundation of Henan Polytechnic University(No: B2013-076)]
. Soft-sediment deformation structures from the Upper Triassic Taishanmiao Formation of the Nanzhao Basin in Henan Province and their palaeogeographic significances[J]. JOPC, 2017, 19(1): 117-128.
1 曹高社,杨启浩,高立祥,林玉祥,邢娜娜,俎新许,徐光明. 2010. 晚三叠世留山盆地沉积特征与构造环境分析. 地质科学,45(3): 718-733. [Cao G S,Yang Q H,Gao L X,Lin Y X,Xing N N,Zu X X,Xu G M. 2010. Analysis of sedimentary characteristics and tectonic environment for Late Triassic Liushan Basin. Chinese Journal of Geology,45(3): 718-733] 2 陈传诗,苏现波. 1992. 河南省南召盆地充填演变特征. 中国煤炭地质,4(3): 12-14. [Chen C S,Su X B. 1992. The filling evolutions of the Nanzhao Basin in Henan Province. Chinese Coal Geology,4(3): 12-14] 3 陈世悦. 2000. 华北地块南部晚古生代—三叠纪盆山耦合关系. 沉积与特提斯地质,20(3): 37-43. [Chen S Y. 2000. The basin-range coupling in southern North China block during the Late Palaeozoic to Triassic. Sedimentary Geology and Tethyan Geology,20(3): 37-43] 4 杜远生. 2011. 中国地震事件沉积研究的若干问题探讨. 古地理学报,13(6): 581-590. [Du Y S. 2011. Discussion about studies of earthquake event deposit in China. Journal of Palaeogeography(Chinese Edition),13(6): 581-590] 5 杜远生,Shi G,龚一鸣,徐亚军. 2007. 东澳大利亚南悉尼盆地二叠系与地震沉积有关的软沉积变形构造. 地质学报,81(4): 511-518. [Du Y S,Shi G,Gong Y M,Xu Y J. 2007. Permian soft-sediment deformation structures related to earthquake in the southern Sydney Basin,Eastern Australia. Acta Geologica Sinica,81(4): 511-518] 6 李凤杰,李磊,魏旭,杨豫川,李俊武,代廷勇,杨承锦,师桂霞,林艳波. 2014. 鄂尔多斯盆地华池地区长6油层组湖底扇内深水重力流沉积特征. 古地理学报,16(6): 827-834. [Li F J,Li L,Wei X,Yang Y C,Li J W,Dai T Y,Yang C J,Shi G X,Lin Y B. 2014. Characteristics of deep water gravity flows sediments in sublacustrine fan of the Chang 6 interval of Yanchang Formation in Huachi area,Ordos Basin. Journal of Palaeogeography(Chinese Edition),16(6): 827-834] 7 廖纪佳,朱筱敏,邓秀芹,孙勃,惠潇. 2013. 鄂尔多斯盆地陇东地区延长组重力流沉积特征及其模式. 地学前缘,20(2): 29-39. [Liao J J,Zhu X M,Deng X Q,Sun B,Hui X. 2013. Sedimentary characteristics and model of gravity flow in triassic yanchang formation of longdong area in ordos basin. Earth Science Frontiers,20(2): 29-39] 8 刘喜杰. 2003. 豫西地区上三叠统生油岩特征研究. 江汉石油职工大学学报,16(3): 47-49. [Liu X J. 2003. Research about the features of oil source rock in Upper Triassic in Western Henan. Journal of Jianghan Petroleum University of Staff and Works,16(3): 47-49] 9 乔秀夫,郭宪璞. 2011. 新疆西南天山下侏罗统软沉积物变形研究. 地质论评,57(6): 761-769. [Qiao X F,Guo X P. 2011. On the Lower Jurassic soft-sediment deformation of Southwestern Tianshan Mountains,Xinjiang,China. Geological Review,57(6): 761-769] 10 乔秀夫,李海兵. 2008. 枕、球—枕构造: 地层中的古地震记录. 地质论评,54(6): 721-730. [Qiao X F,Li H B. 2008. Pillow,ball-and-pillow structures: Paleo-seismic records within strata. Geological Review,54(6): 721-730] 11 乔秀夫,李海兵. 2009. 沉积物的地震及古地震效应. 古地理学报,11(6): 593-610. [Qiao X F,Li H B. 2009. Effect of earthquake and ancient earthquake on sediments. Journal of Palaeogeography(Chinese Edition),11(6): 593-610] 12 乔秀夫,郭宪璞,李海兵,苟宗海,苏德辰,唐哲民,张伟,杨光. 2012. 龙门山晚三叠世软沉积物变形与印支期构造运动. 地质学报,86(1): 132-156. [Qiao X F,Guo X P,Li H B,Gou Z H,Su D C,Tang Z M,Zhang W,Yang G. 2012. Soft-sediment deformation in the Late Triassic and the Indosinian tectonic movement in Longmenshan. Acta Geologica Sinica,86(1): 132-156] 13 王定一,王立宝. 1993. 留山、马市坪盆地构造特征及其形成演化. 石油与天然气地质,14(1): 53-60. [Wang D Y,Wang L B. 1993. Tectonic characteristics and evolution of Liushan and Mashiping basins. Oil andGas Geology,14(1): 53-60] 14 吴贤涛. 1985. 豫西济源—义马盆地浊流沉积中的痕迹化石及其环境意义. 沉积学报,3(3): 23-31. [Wu X T. 1985. Trace fossils and their environmental significance in non-marine turbidite deposits from Jiyuan-Yima Basin,western Henan. Acta Sedimentology Sinica,3(3): 23-31] 15 吴贤涛,孟繁顺,姚庚云. 1989. 河南省中生代含煤地层划分及对比兼谈义马型煤田预测. 焦作矿业学院学报,6(1): 1-16. [Wu X T,Meng F S,Yao G Y. 1989. On the stratigraphic classification and correlation of the Mesozoic coal-bearing bens in Henan and the predicting of Yima type coal field. Journal of Jiaozuo Mining Institute,6(1): 1-16] 16 杨仁超,何治亮,邱桂强,金之钧,孙冬胜,金晓辉. 2014. 鄂尔多斯盆地南部晚三叠世重力流沉积体系. 石油勘探与开发,41(6): 661-670. [Yang R C,He Z L,Qiu G Q,Jin Z Y,Sun D S,Jin X H. 2014. A late Triassic gravity flow depositional system in the southern ordos basin. Petroleum Exploration & Development,41(6): 661-670] 17 杨文涛,王敏,杜远生. 2014. 中生代济源盆地沉积充填特征及其对秦岭、太行山隆升作用的响应. 地质论评,60(2): 260-274. [Yang W T,Wang M,Du Y S. 2014. The depositional characteristics from mesozoic Jiyuan Basin with its Response to the Uplift of Qinling Orogen and Taihang Mountains. Geological Review,60(2): 260-274] 18 杨文涛,汪校锋,杨江海,杜远生. 2011. 豫西义马地区中—晚三叠世古地震引起的软沉积物变形构造. 古地理学报,13(6): 635-644. [Yang W T,Wang X F,Yang J H,Du Y S. 2011. Soft-sediment deformation structures caused by palaeoearthquake in the Middle-Late Triassic in Yima area,western Henan Province. Journal of Palaeogeography(Chinese Edition),13(6): 635-644] 19 Allen J R L. 1986. Earthquake magnitude-frequency,epicentral distance,and soft-sediment deformation in sedimentary basins. Sedimentary Geology,46: 67-75. 20 Alsop G I,Marco S. 2013. Seismogenic slump folds formed by gravity-driven tectonics down a negligible subaqueous slope. Tectonophysics,605: 48-69. 21 Alves T M. 2015. Submarine slide blocks and associated soft-sediment deformation in deep-water basins: A review. Marine & Petroleum Geology,67: 262-285. 22 Berra F,Felletti F. 2011. Syndepositional tectonics recorded by soft-sediment deformation and liquefaction structures(continental Lower Permian sediments,Southern Alps,Northern Italy): Stratigraphic significance. Sedimentary Geology,235: 249-263. 23 Dong Y,Santosh M. 2016. Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt,Central China. Gondwana Research,29: 1-40. 24 Dong Y,Zhang G,Neubauer F,Liu X,Genser J,Hauzenberger C. 2011. Tectonic evolution of the Qinling Orogen,China: Review and synthesis. Journal of Asian Earth Sciences,41: 213-237. 25 Dong Y,Zhang X,Liu X,Li W,Chen Q,Zhang G. Zhang H,Yang Z,Sun S,Zhang F. 2015. Propagation tectonics and multiple accretionary processes of the Qinling Orogen. Journal of Asian Earth Sciences,104: 84-98. 26 Du Y,Xu Y,Yang J. 2008. Soft-sediment deformation structures related to earthquake from the Devonian of the eastern North Qilian Mts. and its tectonic significance. Acta Geologica Sinica,82(6): 1185-1193. 27 Ezquerro L,Moretti M,Liesa CL,Luzón A,Pueyo EL,Simón J L. 2016. Controls on space-time distribution of soft-sediment deformation structures: Applying palaeomagnetic dating to approach the apparent recurrence period of paleoseisms at the Concud Fault(eastern Spain). Sedimentary Geology,http: //dx.doi.org/10.1016/j.sedgeo.2016.06.007. 28 Gibert L,Alfaro P,García-Tortosa F J,Scott G. 2011. Superposed deformed beds produced by single earthquakes(Tecopa Basin,California): Insights into paleoseismology. Sedimentary Geology,235: 148-159. 29 Hilbert-Wolf H L,Simpson E L,Simpson W S,Tindall S E,Wizevich M C. 2009. Insights into syndepositional fault movement in a foreland basin;trends in seismites of Upper Cretaceous Wahweap Formation,Kaiparowits Basin,Utah,U.S.A. Basin Research,21: 856-871. 30 Liesa C L,Rodríguez-López J P,Ezquerro L,Alfaro P,Rodríguez-Pascua M A,Lafuente P,Arlegui L,Simón J L. 2016. Facies control on seismites in an alluvial-aeolian system: The Pliocene dunefield of the Teruel half-graben basin(eastern Spain). Sedimentary Geology, http: //dx.doi.org/10.1016/j.sedgeo.2016.05.009. 31 Liu L,Zhong Y,Chen H,Xu C,Wu K. 2016. Seismically induced soft-sediment deformation structures in the palaeogene deposits of the liaodong bay depression in the bohai bay basin and their spatial stratigraphic distribution. Sedimentary Geology,342: 78-90. 32 Liu S,Su S,Zhang G W. 2013. Early Mesozoic basin development in North China: Indications of cratonic deformation. Journal of Asian Earth Sciences,62: 221-236. 33 Lu H,Zhang Y,Zhang Q,Xiao J. 2006. Earthquake-related tectonic deformation of soft-sediments and its constraints on basin tectonic evolution. Acta Geologica Sinica,80(5): 724-732. 34 Martín-Chivelet J,Palma R M,López-Gómez J,Kietzmann D A. 2011. Earthquake-induced soft-sediment deformation structures in Upper Jurassic open-marine microbialites(Neuquén Basin,Argentina). Sedimentary Geology,235: 210-221. 35 Mazumder R,van Loon A J,Malviya V P,Arima M,Ogawa Y. 2016. Soft-sediment deformation structures in the Mio-Pliocene Misaki Formation within alternating deep-sea clays and volcanic ashes(Miura Peninsula,Japan). Sedimentary Geology,http: //dx.doi.org/10.1016/j.sedgeo.2016.02.010. 36 Montenat C,Barrier P,dÉstevou P O,Hibsch C. 2007. Seismites: An attempt at critical analysis and classification. Sedimentary Geology,196: 5-30. 37 Moretti M,Alfaro P,Caselles O,Canas J A. 1999. Modelling seismites with a digital shaking table. Tectonophysics,304: 369-383. 38 Moretti M,van Loon A J. 2014. Restrictions to the application of‘diagnostic criteria for recognizing ancient seismites. Journal of Palaeogeography,3: 162-173. 39 Obermeier S F. 1996. Use of liquefaction-induced features for paleoseismic analysis-An overview of how seismic liquefaction features can be distinguished from other features and how their regional distribution and properties of source sediment can be used to infer the location and strength of Holocene paleo-earthquakes. Engineering Geology,44: 1-76. 40 Obermeier S F,Jacobson R B,Smoot J P,Weems R E,Gohn G S,Monroe J E,Powars D S. 1990. Earthquake-induced liquefaction features in the coastal setting of South Carolina and in the fluvial setting of the New Madrid seismic zone. United States Geological Survey Professional Paper,1504: 44. 41 Onorato M R,Perucca L,Coronato A,Rabassa J,López R. 2016. Seismically-induced soft-sediment deformation structures associated with the magallanes-fagnano fault system(isla grande de tierra del fuego,argentina). Sedimentary Geology,http: //dx.doi.org/10.1016/j.sedgeo.2016.04.010. 42 Owen G,Moretti M. 2011. Identifying triggers for liquefaction-induced soft-sediment deformation in sands. Sedimentary Geology,235: 141-147. 43 Owen G,Moretti M,Alfaro P. 2011. Recognising triggers for soft-sediment deformation: Current understanding and future directions. Sedimentary Geology,235: 133-140. 44 Põldsaar K,Ainsaar L. 2013. Extensive soft-sediment deformation structures in the early Darriwilian(Middle Ordovician)shallow marine siliciclastic sediments formed on the Baltoscandian carbonate ramp,northwestern Estonia. Marine Geology,http: //dx.doi.org/10.1016/j.margeo.2013.08.012. 45 Põldsaar K,Ainsaar L. 2014. Extensive soft-sediment deformation structures in the early Darriwilian(Middle Ordovician)shallow marine siliciclastic sediments formed on the Baltoscandian carbonate ramp,northwestern Estonia. Marine Geology,356: 111-127. 46 Rana N,Sati S P,Sundriyal Y,Juyal N. 2016. Genesis and implication of soft-sediment deformation structures in high-energy fluvial deposits of the Alaknanda Valley,Garhwal Himalaya,India. Sedimentary Geology,http: //dx.doi.org/10.1016/j.sedgeo.2016.06.012. 47 Rodríguez-López J P,Meléndez N,Soria A R,Liesa C L,van Loon A J. 2007. Lateral variability of ancient seismites related to diferences in sedimentary facies(the synrift Escucha Formation,mid-Cretaceous,Eastern Spain). Sedimentary Geology,201: 461-484. 48 Seilacher A. 1969. Fault-grade bed interpreted as seismites. Sedimentology,13: 155-159. 49 Seilacher A. 1984. Sedimentary structure tentatively attributed to seismic events. Marine Geology,55(1/2): 1-12. 50 Sims J D. 1975. Determining earthquake recurrence intervals from deformational structures in young lacustrine sediments. Tectonophysics,29: 141-152. 51 van Loon A J,Pisarska-Jamrozy M,Nartiss M,Krievans M,Soms J. 2016. Seismites resulting from high-frequency,high-magnitude earthquakes in Latvia caused by Late Glacial glacio-isostatic uplift. Journal of Palaeogeography,http: //dx.doi.org/10.1016/j.jop.2016.05.002. 52 Wheeler R L. 2002. Distinguishing seismic from nonseismic soft-sediment structures: Criteria from seismic-hazard analysis. In: Ettensohn F R,Rast N,Brett C E(eds).Ancient Seismites. Geological Society of America Special Paper,359: 1-11. 53 Yang W,Wang M,Qi Y. 2015. Earthquake-induced soft-sediment deformation structures in the Dengfeng Area,Henan Province,China: Constraints on Qinling tectonic evolution during the Early Cambrian. Acta Geologica Sinica(English Edition),89(6): 1835-1846.