Identification methods and features of unconformity within carbonate successions of the Lower-Middle Ordovician Yingshan Formation in Tahe area,Tarim Basin
Wei Duan1, 2, Gao Zhiqian1, 2, Yang Xiaoqun1, 2, Meng Miaomiao1, 2, Chen Yue3, Dong Zhenkun1, 2, Wang Shanshan1, 2
1 School of Energy Resources,China University of Geosciences(Beijing),Beijing 100083; 2 Ministry of Education Key Laboratory of Marine Reservoir Evolution and Hydrocarbon Enrichment Mechanism,China University of Geosciences(Beijing),Beijing 100083; 3 Research Institute of Experimental Geology,CNSPC,Wuxi 214151,Jiangsu;
Abstract:This paper integrates outcrops,well log and seismic data to describe the features of unconformity T67 within the Yingshan Formation in Tahe area, Tarim Basin. The unconformity T67 is characterized by lithofacies transitional surface at outcrops. δ13C and δ18O values below the unconformity T67 are significantly more negative,the same as the trace elements of Sc,Co,Ni,Ba,U,and Sr. The contents of Li and V below the unconformity T67 are relatively high. The GR logs in the lower part of the Yingshan Formation are more variable and have higher values. The Th/U values amended by filtering method are low at the section of unconformity T67 . It is difficult to identify the unconformity T67 based on the phenomena of reflection termination such as truncations,onlap and toplap in seismic profile,but some “beads-like” reflection anomalies are found along the unconformity T67 surface. These “beads-like” reflections are interpreted to indicate karst-relate palaeo-caverns. The unconformity T67 results from a short-term exposure(<1,Ma)and is controlled by sea-level changes and the palaeogeomorphology. The exposure degree of the unconformity T67 is variable in Tahe area,with the largest in the middle-east part,and the lowest in the northwest part. The unconformity T67 has great importance for the formation of carbonate reservoirs in the Yingshan Formation. It not only can provide the geological background for the interlayer karst development,but also can connect the fracture system to provide channels for the meteoric water flowing.
Wei Duan,Gao Zhiqian,Yang Xiaoqun et al. Identification methods and features of unconformity within carbonate successions of the Lower-Middle Ordovician Yingshan Formation in Tahe area,Tarim Basin[J]. JOPC, 2017, 19(3): 457-468.
[1] 白斌,邹才能,朱如凯,翟文亮,刘柳红,戴朝成,张健,杜红权,毛治国. 2010. 利用露头、自然伽马、岩石地球化学和测井地震一体化综合厘定层序界面: 以四川盆地上三叠统须家河组为例. 天然气地球科学,21(1): 78-86. [Bai B,Zou C N,Zhu R K,Zhai W L,Liu L H,Dai Z C,Zhang J,Du H Q,Mao Z G. 2010. Integrated identification of sequence boundaries through outcrop,natural gammaray spectral,rock geochemistry,logging and seismic: A Case of Upper Triassic Xujiahe Formation,Sichuan Basin. Natural Gas Geoscience,21(1): 78-86] [2] 陈鑫. 2010. 塔里木盆地奥陶系碳酸盐岩储集体井下和露头对比研究. 中国石油大学(华东)博士论文. [Chen X. 2010. Underground and outcrops comparative research about the reservoir in carbonate rocks,Tarim Basin. Doctoral Dissertation of China University of Petroleum(East China)] [3] 邓胜徽,黄智斌,景秀春,杜品德,卢远征,张师本. 2008. 塔里木盆地西部奥陶系内部不整合. 地质论评,54(6): 741-747. [Deng S H,Huang Z B,Jing X C,Du P D,Lu Y Z,Zhang S B. 2008. Unconformities in the Ordovician of Western Tarim Basin,N-W China. Geological Review,54(6): 741-747] [4] 段丽琴,宋金明,许思思. 2009. 海洋沉积物中的钒、钼、铊、镓及其环境指示意义. 地质论评,55(3): 420-427. [Duan L Q,Song J M,Xu S S. 2009. V,Mo,Tl,Ga and their environmental marker function in marine sediment. Geological Review,55(3): 420-427] [5] 房文静,范宜仁,李霞. 2006. 多尺度分析方法及其在测井中的应用. 测井技术,30(2): 139-141. [Fang W J,Fan Y R,Li X. 2006. Multiscale analysis and its application in well Logging. Well Logging Technology,30(2): 139-141] [6] 冯增昭,张家强,王国力,金振奎,鲍志东. 2000. 中国西北地区寒武纪和奥陶纪岩相古地理. 山东东营: 石油大学出版社. [Feng Z Z,Zhang J Q,Wang G L,Jin Z K, Bao Z D. 2000. Lithofacies Paleogeography of the Cambrian in Northwest China. Dongying,Shandong: University of Petroleum Press] [7] 高达,林畅松,胡明毅,黄理力. 2016. 利用自然伽马能谱测井识别碳酸盐岩高频层序: 以塔里木盆地塔中地区T1井良里塔格组为例. 沉积学报,34(4): 707-715. [Gao D,Lin C S,Hu M Y,Huang L L. 2016. Using spectral gamma ray log to recognize high-frequency sequences in carbonate strata: A case study from the Lianglitage Formation from Well T1 in Tazhong area,Tarim Basin. Acta Sedimentologica Sinica,34(4): 707-715] [8] 高志前,樊太亮,刘忠宝,刘典波,初广震. 2005. 塔里木盆地塔中地区奥陶系关键不整合性质论证及其对储集层的影响. 石油天然气学报,27(4): 33-35. [Gao Z Q,Fan T L,Liu Z B,Liu D B,Chu G Z. 2005. Demonstration on key Ordovician unconformity of Tazhong area in Tarim Basin and its influence on reservoirs. Journal of Oil and Gas Technology,27(4): 33-35] [9] 韩杰,吴萧,潘文庆,江杰,张敏. 2015. 塔里木盆地西北缘巴楚—乌什露头区奥陶系沉积相特征. 沉积学报,33(4): 764-772. [Han J,Wu X,Pan W Q,Jiang J,Zhang M. 2015. Ordovician sedimentary facies characteristic in Bachu-Wushi outcrop area of Northwest Tarim Basin. Acta Sedimentologica Sinica,33(4): 764-772] [10] 何碧竹,许志琴,焦存礼,李海兵,蔡志慧. 2011. 塔里木盆地构造不整合成因及对油气成藏的影响. 岩石学报,27(1): 253-265. [He B Z,Xu Z Q,Jiao C L,Li H B,Cai Z H. 2011. Tectonic unconformities and their forming: Implication for hydrocarbon accumulations in Tarim Basin. Acta Petrologica Sinica,27(1): 253-265] [11] 何治亮,高志前,张军涛,丁茜,焦存礼. 2014. 层序界面类型及其对优质碳酸盐岩储集层形成与分布的控制. 石油与天然气地质,35(6): 853-859. [He Z L,Gao Z Q,Zhang J T,Ding Q,Jiao C L. 2014. Types of sequence boundaries and their control over formation and distribution of quality carbonate reservoirs. Oil & Gas Geology,35(6): 853-859] [12] 胡明毅,钱勇,胡忠贵,王延奇,向娟. 2010. 塔里木柯坪地区奥陶系层序地层与同位素地球化学响应特征. 岩石矿物学杂志,29(2): 199-205. [Hu M Y,Qian Y,Hu Z G,Wang Y Q,Xiang J. 2010. Carbon isotopic and element geochemical responses of carbonate rock sand Ordovician sequence stratigraphy in Keping area,Tarim Basin. Acta Petrological et Mineralogical,29(2): 199-205] [13] 姜海健,陈强路,尤东华,黄继文,陈跃. 2015. 塔里木盆地柯坪—巴楚地区奥陶系层序界面特征及成因分析. 新疆地质,33(1): 84-89. [Jiang H J,Chen Q L,You D H,Huang J W,Chen Y. 2015. The different Ordovician sequence boundary's features and factors of Keping-Bachu area in Tarim Basin. Xinjiang Geology,33(1): 84-89] [14] 李浩,王骏,殷进垠. 2007. 测井资料识别不整合面的方法. 石油物探,46(4): 421-424. [Li H,Wang J,Yin J Y. 2007. Method of identifying unconformity by using logging data. Geophysical Prospecting for Petroleum,46(4): 421-424] [15] 刘忠宝,谢华锋,于炳松,高志前. 2007. 塔中地区西部奥陶系岩溶发育特征及其与关键不整合面的关系. 地层学杂志,31(2): 127-132. [Liu Z B,Xie H F,Yu B S,Gao Z Q. 2007. The development characteristics of Ordovician Karsts and its relationship to key unconformities in the western part of the middle Tarim Basin. Journal of Stratigraphy,31(2): 127-132] [16] 汤济广,胡望水,李伟,张光亚. 2013. 古地貌与不整合动态结合预测风化壳岩溶储集层分布: 以四川盆地乐山—龙女寺古隆起灯影组为例. 石油勘探与开发,40(6): 674-681. [Tang J G,Hu W S,Li W,Zhang G Y. 2013. Prediction of weathering paleokarst reservoirs by combining paleokarst landform with unconformity: A case study of Sinian Dengying Formation in Leshan. Longnüsi paleo-uplift,Sichuan Basin. Petroleum Exploration and Development,40(6): 674-681] [17] 汪凯明,罗顺社. 2009. 海相碳酸盐岩锶同位素及微量元素特征与海平面变化. 海洋地质与第四纪地质,29(6): 55-62. [Wang K M,Luo S S. 2009. Strontium isotope and trace element characteristics of marine carbonate and sea level fluctuation. Marine Geology & Quaternary Geology,29(6): 55-62] [18] 王招明,于红枫,吉云刚,敬兵,张祖海. 2011. 塔中地区海相碳酸盐岩特大型油气田发现的关键技术. 新疆石油地质,32(3): 218-223. [Wang Z M,Yu H F,Ji Y G,Jing B,Zhang Z H. 2011. Key technologies for discovery of giant marine carbonate oil-gas fields in Tazhong area,Tarim Basin. Xinjiang Petroleum Geology,32(3): 218-223] [19] 邬光辉,杨海军,屈泰来,李浩武,罗春树,李本亮. 2012. 塔里木盆地塔中隆起断裂系统特征及其对海相碳酸盐岩油气的控制作用. 岩石学报,28(3): 793-805. [Wu G H,Yang H J,Qu T L,Li H W,Luo C S,Li B L. 2012. The fault system characteristics and its controlling roles on marine carbonate hydrocarbon in the central uplift,Tarim Basin. Acta Petrologica Sinica,28(3): 793-805] [20] 严兆彬,郭福生,潘家永,郭国林,张曰静. 2005. 碳酸盐岩C,O,Sr同位素组成在古气候、古海洋环境研究中的应用. 地质找矿论丛,20(1): 53-56. [Yan Z B,Guo F S,Pan J Y,Guo G L,Zhang Y J. 2005. Application of C,O and Sr isotope composition of carbonates in the research of paleoclimate and paleooceanic environment. Contributions to Geology and Mineral Resources Research,20(1): 53-56] [21] 阳孝法,林畅松,杨海军,彭莉,刘景彦,肖天君,佟建宇,王海平,李换浦. 2010. 自然伽马能谱在塔中地区晚奥陶世碳酸盐岩层序地层分析中的应用. 石油地球物理勘探,45(3): 384-391. [Yang X F,Lin C S,Yang H J,Peng L,Liu J Y,Xiao T J,Tong J Y,Wang H P,Li H P. 2010. Application of natural gamma ray spectrometry in analysis of late Ordovician carbonate sequence stratigraphic analysis in middle-Tarim Basin. Oil Geophysical Prospecting,45(3): 384-391] [22] 伊海生. 2011. 测井曲线旋回分析在碳酸盐岩层序地层研究中的应用. 古地理学报,13(4): 456-466. [Yi H S. 2011. Application of well log cycle analysis in studies of sequence stratigraphy of carbonate rocks. Journal of Palaeogeography(Chinese Edition),13(4): 456-466] [23] 于红枫,白忠凯,邓力萍,焦伟伟,潘杨勇,赵越. 2011. 塔中下奥陶统鹰山组不整合面的确定及其地质意义. 新疆石油地质,32(3): 231-234. [Yu H F,Bai Z K,Deng L P,Jiao W W,Pan Y Y,Zhao Y. 2011. Determination and geologic significance of Yingshan unconformity of lower Ordovician in Tazhong Area,Tarim Basin. Xinjiang Petroleum Geology,32(3): 231-234] [24] 张华,陈小宏,杨海燕. 2011. 地震信号去噪的最优小波基选取方法. 石油地球物理勘探,46(1): 70-75. [Zhang H,Chen X H,Yang H Y. 2011. Optimistic wavelet basis selection in seismic signal noise elimination. Oil Geophysical Prospecting,46(1): 70-75] [25] 赵文智,沈安江,潘文庆,张宝民,乔占峰,郑剑锋. 2013. 碳酸盐岩岩溶储集层类型研究及对勘探的指导意义:以塔里木盆地岩溶储集层为例. 岩石学报,29(9): 3213-3222. [Zhao W Z,Shen A J,Pan W Q,Zhang B M,Qiao Z F,Zheng J F. 2013. A research on carbonate karst reservoirs classification and its implication on hydrocarbon exploration: Cases studies from Tarim Basin. Acta Petrologica Sinica,29(9): 3213-3222] [26] 赵宗举,潘文庆,张丽娟,邓胜徽,黄智斌. 2009. 塔里木盆地奥陶系层序地层格架. 大地构造与成矿学,33(1): 175-188. [Zhao Z J,Pan W J,Zhang L J,Deng S H,Huang Z B. 2009. Sequence stratigraphy in the Ordovician in the Tarim Basin. Geotectonica et Metallogenia,33(1): 175-188] [27] Embry A F. 2009. Practical sequence stratigraphy XⅢ: Sequence stratigraphy hierarchy. Canadian Society of Petroleum Geologists:59-64. [28] Gao Z Q,Fan T L. 2015. Carbonate platform-margin architecture and its influence on Cambrian-Ordovician reef-shoal development,Tarim Basin,NW China. Marineand Petroleum Geology,68:291-306. [29] Gao Z Q,Fan T L,Ding Q N,Hu X L. 2016a. A third-order unconformity within lower Ordovician carbonate in the Tarim Basin,NW China: Implications for reservoir development. Journal of Petroleum Geology,39(3):287-304. [30] Gao Z Q,Liu Z B,Gao S L,Ding Q N,Wu S Q,Liu S. 2016b. Characteristics and genetic models of Lower Ordovician carbonate reservoirs in southwest Tarim Basin,NW China. Journal of Petroleum Science and Engineering,144: 99-112. [31] Hundert T,Piper D J W,Pe-piper G. 2006. Genetic model and exploration guidelines for Kaolin Beneath Unconformities in the Lower Cretaceous fluvial Chaswood Formation,Nova Scotia. Exploration and Mining Geology,15: 9-26. [32] Jiang M,Zhu J,Chen D. 2001. Carbon and strontium isotope variations and responses to sea level fluctuations in the Ordovician of the Tarim Basin. Science in China,44(9): 816-823. [33] Krumbein W C,Sloss L L. 1963. Stratigraphy and Sedimentation. Freeman and Company,SanFrancisco:660. [34] Li H,Lin C S,Zhang Y. 2012. Stratigraphic architecture and computer modelling of carbonate platform margin,Late Ordovician Lianglitage Formation,central Tarim Basin. Journal of Earth Science,23(4): 627-638. [35] Miriam C,Vincen P. 2000. Sedimentary and biological response to sea level and palaeo-oeanographic changes of a Low Middle Jurassic Tethyan platform margin(Southern Alps,Italy). Palaeogeography,Palaeoclimatology,Palaeoecology,169: 219. [36] Veizer J. 1975. Possible use of strontium in sedimentary rocks as a paleo-environmental indicator. Sedimentary Geology,5(1): 5-22.