Characteristics of heavy minerals in modern sediments of Minjiang and Jiulongjiang Rivers,Fujian Province and their provenance implication
Chen Xin-Yi1, Huang Chi-Yue1,2, Shao Lei1
1 State Key Laboratory of Marine Geology,Tongji University,Shanghai 200092; 2 Department of Earth Sciences,National Cheng Kung University, Tainan 701, Taiwan
Abstract:Analyses of this study revealed that the heavy mineral assemblages in the sediments along the Minjiang River and Jiulongjiang River and the rock types in their adjacent provenance areas are highly correlated. The heavy mineral assemblages in drainage areas of Minjiang and Jiulongjiang Rivers are characterized by opaque Fe oxide minerals,epidote,zircon,tourmaline,and hornblende,with epidote accounting for up to 70% among the primary transparent minerals. Except for the reason of high-grade metamorphism of these rocks,the high epidote content is also associated with the contact metamorphic zone between acid granite intrusion and surrounding rocks. According to the analysis of heavy mineral assemblages,provenance-sensitive index,and U-Pb dating of detrital zircon,heavy minerals in the drainage area of Minjiang River were interpreted to be derived from the Precambrian rocks in the Wuyishan Mountain in northwestern Fujian,Yanshannian magmatite and contact metamorphic rocks in eastern Fujian,and heavy minerals in the drainge area of Jiulongjiang River were derived from Indosinian-Yanshanian granite in southwestern Fujian. Sediments in the upper Minjiang River contain heavy minerals characteristic of high-grade metamorphic parent rocks. Heavy minerals in the sediments in the middle and lower Minjiang River are derived from magmatic rocks,contact metamorphic rocks,and from upper reaches of the river. The heavy minerals in Jiulongjiang River are mainly from Indosinian-Yanshanian granite in southwestern Fujian. This research shows that in rivers with small to medium drainage areas,due to the limited transport distance,the provenance information can be largely preserved in the heavy mineral assemblages. Analysis of heavy minerals can therefore yield crucial information for reconstructions of tectonic evolution and source-to-sink analysis.
Chen Xin-Yi,Huang Chi-Yue,Shao Lei. Characteristics of heavy minerals in modern sediments of Minjiang and Jiulongjiang Rivers,Fujian Province and their provenance implication[J]. JOPC, 2018, 20(4): 637-650.
[1] 曹立成,姜涛,王振峰,张道军,孙辉. 2013. 琼东南盆地新近系重矿物分布特征及其物源指示意义. 中南大学学报(自然科学版), 44(5): 1971-1981. [Cao L C,Jiang T,Wang Z F,Zhang D J,Sun H.2013. Characteristics of heavy minerals and their implications for Neogene provenances evolution in Qiongdongnan Basin. Journal of Central South University(Science and Technology), 44(5): 1971-1981] [2] 陈国建. 2014. 福建南平花岗伟晶岩型钽铌矿床地质特征与成因. 地质通报, 33(10): 1550-1561. [Chen G J.2014. Geological characteristics and genesis of the Nanping granitic pegmatite type Ta-Nb deposit,Fujian Province. Geological Bulletin of China, 33(10): 1550-1561] [3] 陈静,王哲,王张华,陈中原. 2007. 长江三角洲东西部晚新生代地层中的重矿物差异及其物源意义. 第四纪研究, 27(5): 700-708. [Chen J,Wang Z,Wang Z H,Chen Z Y.2007. Heavy mineral discrepancy and their provenance tracing implication of eastern and western Yangtze River deltas of China. Quaternary Sciences, 27(5): 700-708] [4] 福建省地质矿产局. 1985. 福建省区域地质志. 北京: 地质出版社,1-671. [Bureau of Geology & Mineral Resources of Fujian Province. 1985. Regional Geological Records of Fujian Province. Beijing: Geological Publishing House,1-671] [5] 郭春丽,郑佳浩,楼法生,曾载淋. 2012. 华南印支期花岗岩类的岩石特征、成因类型及其构造动力学背景探讨. 大地构造与成矿学, 36(3): 457-472. [Guo C L,Zheng J H,Lou F S,Zeng Z L.2012. Petrography,genetic types and geological dynamical settings of the Indosinian granitoids in South China. Geotectonica Et Metallogenia,36(3):457-472] [6] 黄秀琴. 2008. 九龙江流域水文特性. 水利科技, (1): 16-17,20. [Huang X Q.2008. Hydrological characteristics of the Jiulongjiang River area. Hydraulic Science and Technology, (1): 16-17,20] [7] 金文山,庄建民,杨传夏,陈云钊. 1992. 福建前加里东区域变质岩系的岩石学、地球化学和变质作用特征. 福建地质, 4: 241-262. [Jin W S,Zhuang J M,Yang C X,Chen Y Z.1992. Characteristics of petrology,geochemistry and metamorphism of the Pre-Caledonian regional metamorphic rocks in Fujian Province. Geology of Fujian, 4: 241-262] [8] 李根坤,李昌泽,宋彩珍,林文生,郭烈光. 1983. 福建沿海中生代变质带的变质作用特征. 中国区域地质, 3: 78-89. [Li G K,Li C Z,Song C Z,Lin W S,Guo L G.1983. Metamorphic features of the Mesozoic metamorphic zone along the coast of Fujian. Regional Geology of China, 3: 78-89] [9] 李林林,郭召杰,管树巍,周苏平,王明振,房亚男,张晨晨. 2015. 柴达木盆地西南缘新生代碎屑重矿物组合特征及其古地理演化. 中国科学: 地球科学, 45(6): 780-798. [Li L L,Guo Z J,Guan S W,Zhou S P,Wang M Z,Fang Y N,Zhang C C.2015. Heavy mineral assemblage characteristics and the Cenozoic paleogeographic evolution in southwestern Qaidam Basin. Science China: Earth Sciences, 58(6): 859-875] [10] 林畅松,夏庆龙,施和生,周心怀. 2015. 地貌演化、源-汇过程与盆地分析. 地学前缘, 22(1): 9-20. [Lin C S,Xia Q L,Shi H S,Zhou X H.2015. Geomorphological evolution,source to sink system and basin analysis. Earth Science Frontiers, 22(1): 9-20] [11] 林晓彤,李巍然,时振波. 2003. 黄河物源碎屑沉积物的重矿物特征. 海洋地质与第四纪地质, 23(3): 17-21. [Lin X T,Li W R,Shi Z B.2003. Characteristics of mineralogy in the clastic sediments from the Yellow River provenance,China. Marine Geology & Quaternary Geology,23(3):17-21] [12] 毛建仁,厉子龙,叶海敏. 2014. 华南中生代构造—岩浆活动研究: 现状与前景. 中国科学: 地球科学, 44(12): 2593-2617. [Mao J R,Li Z L,Ye H M.2014. Mesozoic tectono-magmatic activities in South China: Retrospect and prospect. Science China: Earth Sciences, 57(12): 2853-2877] [13] 舒良树. 2006. 华南前泥盆纪构造演化: 从华夏地块到加里东期造山带. 高校地质学报, 12(4): 418-431. [Shu L S.2006. Pre-Devonian tectonic evolution of south China: From Cathaysia Block to Caledonian folded belt. Geological Journal of China Universities, 12(4): 418-431] [14] 舒良树,周新民. 2002. 中国东南部晚中生代构造作用. 地质论评, 48(3): 249-260. [Shu L S,Zhou X M.2002. Late Mesozoic tectonism of Southeast China. Geological Review, 48(3): 249-260] [15] 舒良树,于津海,王德滋. 2000. 长乐—南澳断裂带晚中生代岩浆活动与变质—变形关系. 高校地质学报, 6(3): 368-378. [Shu L S,Yu J H,Wang D Z.2000. Late Mesozoic granitic magmatism and its relation to metamorphism-ductile deformation in the Changle-Nan’ao fault zone,Fujian Province. Geological Journal of China Universities, 6(3): 368-378] [16] 舒良树,于津海,贾东,王博,沈渭洲,张岳桥. 2008. 华南东段早古生代造山带研究. 地质通报, 27(10): 1581-1593. [Shu L S,Yu J H,Jia D,Wang B,Shen W Z,Zhang Y Q.2008. Early Paleozoic orogenic belt in the eastern segment of South China. Geological Bulletin of China, 27(10): 1581-1593] [17] 陶于祥,谢鸿森,龙江平. 1993. 长乐—南澳变形变质带岩石部分熔融及其与化学成分关系研究. 矿物岩石地球化学通讯, 12(3): 142-143. [Tao Y X,Xie H S,Long J P.1993. The relationship between partial melting and its chemical composition of Changle-Nanao metamorphic zone. Bulletin of Mineralogy,Petrology and Geochemistry, 12(3): 142-143] [18] 王德滋,周新民. 2002. 中国东南部晚中生代花岗质火山—侵入杂岩成因与地壳演化. 北京: 科学出版社, 1-289. [Wang D Z,Zhou X M.2002. The Factors and Crust Evolution of Late Mesozoic Granitic Volcanic-intrusive Complex in Southeastern China.Beijing: Science Press, 1-289] [19] 王岳军,Zhang Y H,范蔚茗,席先武,郭锋,林舸. 2002. 湖南印支期过铝质花岗岩的形成: 岩浆底侵与地壳加厚热效应的数值模拟. 中国科学D 辑: 地球科学, 32(6): 491-499. [Wang Y J,Zhang Y H,Fan W M,Xi X W,Guo F,Lin G.2002. Numerical modeling of the formation of Indo-Sinian peraluminous granitoids in Hunan Province: Basaltic underplating versus tectonic thickening. Science in China(Series D): Earth Science, 32(6): 491-499] [20] 王岳军,范蔚茗,梁新权,彭头平,石玉若. 2005. 湖南印支期花岗岩SHRIMP 锆石U-Pb 年龄及其成因启示. 科学通报, 50(12): 1259-1266. [Wang Y J,Fan W M,Liang X Q,Peng T P,Shi Y R.2005. SHRIMP zircon U-Pb geochronology of Indosinian granites in Hunan Province and its petrogenetic implications. Chinese Science Bulletin, 50(13): 1395-1403] [21] 韦德光,揭育金,黄廷淦. 1997. 福建省区域地质构造特征. 中国区域地质, 16(2): 162-170. [Wei D G,Jie Y J,Huang T G.1997. Regional geological structure of Fujian. Regional Geology of China, 16(2): 162-170] [22] 向绪洪,邵磊,乔培军,赵梦. 2012. 珠江流域沉积物重矿物特征及其示踪意义. 海洋地质与第四纪地质, 31(6): 27-35. [Xiang X H,Shao L,Qiao P J,Zhao M.2012. Characteristics of heavy minerals in Pearl River sediments and their implications for provenance. Marine Geology & Quaternary Geology, 31(6): 27-35] [23] 徐茂泉. 1996. 闽江口表层沉积物中0.125~0.250mm粒级重矿物的分布与组合特征. 台湾海峡, 15(3): 229-234. [Xu M Q.1996. Study on heavy minerals in surface sediments of Minjiang Estuary. Journal of Oceanography in Taiwan Strait, 15(3): 229-234] [24] 徐茂泉,李超. 2003. 九龙江口沉积物中重矿物组成及其分布特征. 海洋通报, 22(4): 32-40. [Xu M Q,Li C.2003. Characteristics of heavy minerals composition and distribution in sediment from Jiulong River estuary. Marine Science Bulletin, 22(4): 32-40] [25] 徐先兵,张岳桥,舒良树,贾东,王瑞瑞,许怀智. 2009. 闽西南玮埔岩体和赣南菖蒲混合岩锆石La-ICPMS U-Pb年代学: 对武夷山加里东运动时代的制约. 地质论评, 55(2): 277-285. [Xu X B,Zhang Y Q,Shu L S,Jia D,Wang R R,Xu H Z.2009. Zircon LA-ICPMS U-Pb Dating of the Weipu granitic pluton in southwest Fujian and the Changpu migmatite in south Jiangxi: Constrains to the timing of Caledonian Movement in Wuyi Mountains. Geological Review, 55(2): 277-285] [26] 徐先兵,张岳桥,舒良树,贾东,王瑞瑞,许怀智. 2010. 武夷山地区前寒武纪地层沉积时代研究. 地层学杂志, 34(3): 254-267. [Xu X B,Zhang Y Q,Shu L S,Jia D,Wang R R,Xu H Z.2010. Precambrian geochronology and stratigraphy in the Wuyishan area. South China. Journal of Stratigraphy, 34(3): 254-267] [27] 徐勇航,陈坚. 2010. 台湾海峡西岸闽江口和九龙江口沉积物中碎屑锆石铀—铅定年及物源意义. 海洋学报(中文版), 32(4): 110-117. [Xu Y H,Chen J.2010. Uranium-lead dating of detrial zircons from the Minjiang and Jiulongjiang Estuaries in the western coast of the Taiwan Strait: Implication for its provenance. Acta Oceanologica Sinica, 32(4): 110-117] [28] 严肃庄. 1988. 闽江口表层沉积物中重矿物分布特征. 台湾海峡, 7(2): 112-118. [Yan S Z.1988. Characteristics of heavy minerals distribution in the surface sediments in Minjiang Estuarine region. Journal of Oceanography in Taiwan Strait, 7(2): 112-118] [29] 张开毕. 2017. 福建侵入岩的划分与对比. 福建地质, 36(1): 1-9. [Zhang K H.2017. Division and correlation of intrusive rocks in Fujian Province. Geology of Fujian, 36(1): 1-9] [30] 郑声俭,马金清,黄泉祯,严炳铨. 1999. 福建省侵入岩谱系单位. 中国区域地质, 18(3): 229-239. [Zheng S J,Ma J Q,Huang Q Z,Yan B Q.1999. Hierarchy of intrusive rocks in Fujian Province. Regional Geology of China, 18(3): 229-238] [31] 中国地质科学院地矿所. 1977. 砂矿物鉴定手册. 北京: 地质出版社. 1-241. [Chinese Academy of Geological Sciences. 1977. Identification Manual of Sand Minerals. Beijing: Geological Publishing House, 1-241] [32] 周新民. 2003. 对华南花岗岩研究的若干思考. 高校地质学报, 9(4): 556-565. [Zhou X M.2003. My thinking about granite geneses of South China. Geological Journal of China Universities, 9(4): 556-565] [33] Anthony E J,Julian M.1999. Source-to-sink sediment transfers,environmental engineering and hazard mitigation in the steep Var River catchment,French Riviera,southeastern France. Geomorphology, 31(1-4): 337-354. [34] Bhatia M R.1985. Plate tectonics and geochemical composition of sandstones: A reply. The Journal of Geology, 93(1): 85-87. [35] Charvet J,Cluzel D,Faure M,Caridroit M,Shu L S,Lu H F.1999. Some tectonic aspects of the pre-Jurassic evolution of East Asia. In: Metealfe I,Ren J,Charvet J,Hada S(eds). Gondwana Dispersion and Asian Accretion,A A. Balkema/Rotterdam/brookfield, 337-65. [36] Charvet J,Shu L S,Shi Y S,Guo L Z,Faure M.1996. The building of South China: Collision of Yangtze and Cathaysia blocks,problems and tentative answers. Journal of Southeast Asian Earth Sciences, 13(3-5): 223-235. [37] Enkelmann E,Weislogel A,Ratschbacher L,Eide E,Renno A,Wooden J.2007. How was the Triassic Songpan-Ganzi basin filled?: A provenance study. Tectonics, 26(4): 640-641. [38] Frihy O E,Lawrence D.2004. Evolution of the modern Nile delta promontories: Development of accretional features during shoreline retreat. Environmental Geology, 46(6-7): 914-931. [39] Frihy O E,Lotfy M F,Komar P D.1995. Spatial variations in heavy minerals and patterns of sediment sorting along the Nile Delta,Egypt. Sedimentary Geology, 97(1-2): 33-41. [40] Hubert J F.1962. A zircon-tourmaline-rutile maturity index and the interdependence of the composition of heavy mineral assemblages with the gross composition and texture of sandstones. Journal of Sedimentary Research, 32(3): 440-450. [41] Lan Q,Yan Y,Huang C Y,Santosh M. Shan Y H,Chen W H Yu M M,Qian K.2016. Topographic architecture and drainage reorganization in Southeast China: Zircon U-Pb chronology and Hf isotope evidence from Taiwan. Gondwana Research, 36(24): 376-389. [42] Mange M A,Morton A C.2007. Geochemistry of heavy minerals. In: Mange M A,Wright D T(eds). Heavy Minerals in Use. Developments in Sedimentology, 58: 345-391. [43] Meade R H.1982. Sources,sinks,and storage of river sediment in the Atlantic Drainage of the United States. The Journal of Geology, 90(3): 235-252. [44] Morton A C,Hallsworth C R.1994. Identifying provenance-specific features of detrital heavy mineral assemblages in sandstones. Sedimentary Geology, 90(3-4): 241-256. [45] Morton A C,Hallsworth C R.1999. Processes controlling the composition of heavy mineral assemblages in sandstones. Sedimentary Geology, 124(1-4): 3-29. [46] Morton A C,Smale D.1990. The effects of transport and weathering on heavy minerals from the Cascade River,New Zealand. Sedimentary Geology, 68(1-2): 117-123. [47] Morton A C.1985. Heavy minerals in provenance studies. In: Zuffa G.G.(ed.)Provenance of Arenites. Berlin: Springer,249-277. [48] Pettijohn F J, Potter P E, Siever R.1987. Sand and Sandstone. Berlin: Springer. [49] Shao L,Cao L C,Pang X,Jiang T,Qiao P J,Zhao M.2016. Detrital zircon provenance of the Paleogene syn-rift sediments in the northern South China Sea. Geochemistry, Geophysics, Geosystems, 17(2): 255-269. [50] Shu L S,Faure M,Wang B,Zhou X M,Song B.2008. Late Palaeozoic-Early Mesozoic geological features of South China: Response to the Indosinian collision events in Southeast Asia. Comptes Rendus Geoscience, 340(2-3): 151-165. [51] Sømme T O,Jackson A L,Vaksdal M.2013. Source-to-sink analysis of ancient sedimentary systems using a subsurface case study from the Møre-Trøndelag area of southern Norway: Part 1-depositional setting and fan evolution. Basin Research, 25(5): 489-511. [52] Vital H,Stattegger K,Garbe-Schoenberg C D.1999. Composition and trace-element geochemistry of detrital clay and heavy-mineral suites of the lowermost Amazon River;a provenance study. Journal of Sedimentary Research, 69(3): 563-575. [53] Wan Y S,Liu D Y,Xu M H,Zhuang J M,Song B,Shi Y R,Du L L.2007. SHRIMP U-Pb zircon geochronology and geochemistry of metavolcanic and metasedimentary rocks in Northwestern Fujian,Cathaysia block,China: Tectonic implications and the need to redefine lithostratigraphic units. Gondwana Research, 12(1-2): 166-183. [54] Wang D Z,Shu L S.2012. Late Mesozoic basin and range tectonics and related magmatism in Southeast China. Geoscience Frontiers, 3(2): 109-124. [55] Wang Q,Li J W,Jian P,Zhao Z H,Xiong X L,Bao Z W,Xu J F,Li C F,Ma J L.2005. Alkaline syenites in eastern Cathaysia(South China): link to Permian-Triassic transtension. Earth and Planetary Science Letters, 230(3): 339-354. [56] Weltje G J,von Eynatten H.2004. Quantitative provenance analysis of sediments: Review and outlook. Sedimentary Geology, 171(1-4): 1-11. [57] Xiao W J,He H Q.2005. Early Mesozoic thrust tectonics of the northwest Zhejiang region(Southeast China). Geological Society of America Bulletin, 117(7): 945-961. [58] Yang S Y,Wang Z B,Guo Y,Li C X,Cai J G.2009. Heavy mineral compositions of the Changjiang(Yangtze River)sediments and their provenance-tracing implication. Journal of Asian Earth Sciences, 35(1): 56-65. [59] Zhang X C,Huang C Y,Wang Y J,Clift P D,Yan Y,Fu X W,Chen D F.2017. Evolving Yangtze River reconstructed by detrital zircon U-Pb dating and petrographic analysis of Miocene marginal Sea sedimentary rocks of the Western Foothills and Hengchun Peninsula,Taiwan. Tectonics,36:634-651. [60] Zhou X M,Li W X.2000. Origin of Late Mesozoic igneous rocks in southeastern China: Implications for lithosphere subduction and underplating of mafic magmas. Tectonophysics, 326(3): 269-287. [61] Zhou X M,Sun T,Shen W Z,Shu L S,Niu Y L.2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution. Episodes, 29(1): 26-33.