Genesis and characteristics of lacustrine hydrothermal-sedimentary rock of the Lower Cretaceous in Yingejing sag of Bayan Gebi Basin, Inner Mongolia
Xiang Long1,2, Liu Xiao-Dong1,2, Liu Ping-Hui1,2, Dai Chao-Cheng1,2, Jiang Wen-Jian1,2
1 College of Earth Sciences,East China University of Technology,Nanchang 330013,China; 2 State Key Laboratory of Nuclear Resources and Environment,Nanchang 330013,China
Abstract:The Upper Member of Lower Cretaceous Bayingebi Formation in Yingejing sag,Bayan Gebi Basin,Inner Mongolia is the key pre-selected section of clay rock repository for China’s high-level radioactive waste(HLW). The studies of petrological,mineralogical and geochemical for the sedimentary rocks in this section show that the cores of hydrothermal-sedimentary rocks are dark-gray and gray,and have five typical structures,i.e. laminated and banded,stockwork,syngenetic deformation bedding,porphyritic massive structures. The hydrothermal-sedimentary rock is predominantly composed of dolomite,ankerite,analcime,illite,albite,and pyrite,which are typical minerals of exhalative sedimentary rocks. There are 4 types of hydrothermal-sedimentary rock based on the difference among major minerals. Geochemical characteristics confirm that the main elements are iron and manganese. The typical deep-source gas-liquid trace elements such as Mo,Sb,Zn,As,Sr and Ba are relatively abundant. The average value of $\sum$REE is 119.85 μg/g and is characterized by enrichment of light REE and depletion of heavy REE. There is no significant enrichment or loss of δCe(average value 0.99),and δEu shows a medium strong negative anomaly(average value 0.62). The values of δ18O are mainly negative bias,indicating the formation temperatures of lake-facies hydrothermal-sediments ranging from 40.41℃ to 64.87℃. The samples of Fe-Mn-(Cu+Ni+Co)-ternary diagram all fall into hydrothermal sediment area. The comprehensive analyses show that this is a set of low-temperature “white smoke type” hydrothermal sedimentary rock associated with magmatism and deep hydrothermal fluid under the mainly arid depositional environment within the brackish-saline lake. The 100-120Ma tectonic activity in the Altun fault zone was the main controlling factor for the formation of exhalative sedimentary rocks,which provided the migration pathway for dolomitized fluids. The study on hydrothermal-sedimentary rock with unique mineral composition provides scientific basis and new ideas for claystone geological disposal repository of China’ HLW.
Xiang Long,Liu Xiao-Dong,Liu Ping-Hui et al. Genesis and characteristics of lacustrine hydrothermal-sedimentary rock of the Lower Cretaceous in Yingejing sag of Bayan Gebi Basin, Inner Mongolia[J]. JOPC, 2019, 21(5): 709-726.
[1] 陈先沛,高计元,陈多福,董维全. 1987. 热水沉积作用的概念和几个岩石学标志. 沉积学报, 10(3): 124-131. [Chen X P,Gao J Y,Chen D F,Dong W Q.1987. The concept of hydro-thermal sedimentation and its petrological criteria. Acta Sedimentologica Sinica, 10(3): 124-131] [2] 陈志鹏,任战利,于春勇,祁凯,任文波,杨燕,马骞. 2018. 银额盆地哈日凹陷下白垩统热水沉积岩特征及成因. 地球科学, 43(6): 1941-1956. [Chen Z P,Ren Z L,Yu C Y,Qi K,Ren W B,Yang Y,Ma Q.2018. Characteristics and genetic analysis of hydrothermal sediment of Lower Cretaceous in Hari Depression,Yin’e Basin. Earth Science, 43(6): 1941-1956] [3] 戴朝成,郑荣才,文华国,雷光明,谢春红. 2008. 辽东湾盆地沙河街组湖相白云岩成因研究. 成都理工大学学报(自然科学版), 35(2): 187-193. [Dai C C,Zheng R C,Wen H G,Lei G M,Xie C H.2008. Origin of lacustrine dolomite in Shahejie Formation from Liaodongwan Basin. Journal of Chengdu University of Technology(Science & Technology Edition), 35(2): 187-193] [4] 黎彤. 1976. 化学元素的地球丰度. 地球化学,(3): 167-174. [Li T.1976. Chemical element abundances in the earth and it’s major shells. Geochimica,(3): 167-174] [5] 李海兵,杨经绥,许志琴,孙知明,Paul Tapponnier,Jerome Wagoner der woerd,Anne-Sophie Merisux.2006. 阿尔金断裂带对青藏高原北部生长、隆升的制约. 地学前缘, 13(4): 59-79. [Li H B,Yang J S,Xu Z Q,Tapponnier P,Wagoner der woerd J,Merisux A S.2006. The constraint of the Altyn Tagh fault system to the growth and rise of the northern Tibetan Plateau. Earth Science Frontiers, 13(4): 59-79] [6] 李红,柳益群,李文厚,杨锐,雷川,刘林玉,刘洪福,李海平. 2013. 新疆乌鲁木齐二叠系湖相微生物白云岩成因. 地质通报, 32(4): 661-670. [Li H,Liu Y Q,Li W H,Yang R,Lei C,Liu L Y,Liu H F,Li H P.2013. The microbial precipitation of lacustrine dolomite from Permian Formation,Urumchi,Xinjiang,China. Geological Bulletin of China, 32(4): 661-670] [7] 李红,柳益群,周鑫,牛元哲,李旭,刘永杰. 2017. 准噶尔盆地东部中二叠统平地泉组具“斑状”结构热水喷流沉积岩的成因及地质意义. 古地理学报, 19(2): 211-226. [Li H,Liu Y Q,Zhou X,Niu Y Z,Li X,Liu Y J.2017. Origin and geological significance of sedimentary exhalative rocks with“porphyritic”structures in the Middle Permian Pingdiquan Formation,eastern Junggar Basin. Journal of Palaeogeography(Chinese Edition), 19(2): 211-226] [8] 李江海,冯军,牛向龙,郑近武,陈征. 2003. 华北中元古代硫化物黑烟囱发现的初步报道. 岩石学报, 19(1): 167-168. [Li J H,Feng J,Niu X L,Zheng J W,Chen Z.2003. The preliminary report on the discovery of black smoker chimney within the Mesoproterozoic sulphide deposit of North China. Acta Petrologica Sinica, 19(1): 167-168] [9] 林培贤,林春明,姚悦,王兵杰,李乐,张霞,张妮. 2017. 渤海湾盆地北塘凹陷古近系沙河街组三段白云岩中方沸石的特征及成因. 古地理学报, 19(2): 241-256. [Lin P X,Lin C M,Yao Y,Wang B J,Li L,Zhang X,Zhang N.2017. Characteristics and causes of analcime distributed in dolostone of the Member 3 of Paleogene Shahejie Formation in Beitang sag,Bohai Bay Basin. Journal of Palaeogeography(Chinese Edition), 19(2): 241-256] [10] 柳益群,焦鑫,李红,袁明生,YANG Wan,周小虎,梁浩,周鼎武,郑朝阳,孙芹,汪双双. 2011. 新疆三塘湖跃进沟二叠系地幔热液喷流型原生白云岩. 中国科学: 地球科学, 41(12): 1860-1871. [Liu Y Q,Jiao X,Li H,Yuan M S,Yang W,Zhou X H,Liang H,Zhou D W,Zheng C Y,Sun Q,Wang S S.2011. Primary dolostone formation related to mantle-originated exhalative hydrothermal activities,Permian Yuejingou section,Santanghu area,Xinjiang. Scientia Sinica Terrae, 41(12): 1860-1871] [11] 卢凤艳,安芷生. 2010. 青海湖表层沉积物介形虫丰度及其壳体氧同位素的气候环境意义. 海洋地质与第四纪地质, 30(5): 119-128. [Lu F Y,An Z S.2010. Climatic and environmental significance of ostracod abundance and their shell oxygen isotope from Lake Qinghai surface sediments. Marine Geology & Quaternary Geology, 30(5): 119-128] [12] 罗伟,刘池洋,张东东,王建强,牛海青,郭佩. 2016. 贺兰山—六盘山地区中侏罗统直罗组地球化学特征及其地质意义. 古地理学报, 18(6): 1030-1043. [Luo W,Liu C Y,Zhang D D,Wang J Q,Niu H Q,Guo P.2016. Geochemistry characteristics of the Middle Jurassic Zhiluo Formation in Helan Mountain-Liupan Mountain area and their geological significances. Journal of Palaeogeography(Chinese Edition), 18(6): 1030-1043] [13] 潘立银,黄革萍,寿建峰,刘占国. 2009. 柴达木盆地南翼山地区新近系湖相碳酸盐岩成岩环境初探: 碳、氧同位素和流体包裹体证据. 矿物岩石地球化学通报, 28(1): 71-74. [Pan L Y,Huang G P,Shou J F,Liu Z G.2009. A preliminary study of formation environment of the Neogene lacustrine carbonates in Nanyishan area of Qaidam Basin: Constrains from carbon-oxygen isotope and fluid inclusion analysis. Bulletin of Mineralogy,Petrology and Geochemistry, 28(1): 71-74] [14] 任战利,赵重远. 2001. 中生代晚期中国北方沉积盆地地热梯度恢复及对比. 石油勘探与开发, 28(6): 1-4. [Ren Z L,Zhao C Y.2001. Recovery and comparison of geo-thermal gradient for the Late Mesozoic sedimentary basins in the northern Part of China. Petroleum Exploration and Development, 28(6): 1-4] [15] 涂光炽. 1984 中国层控矿床地球化学·第一卷. 北京: 科学出版社. [Tu G Z.1984. Stratabound Deposits Geochemstry of China-volume One. Beijing: Science Press,70-128] [16] 王凤岗,侯树仁,张良,门宏,王俊林. 2018. 巴音戈壁盆地南部塔木素铀矿床水岩作用特征及其与铀成矿关系研究. 地质论评, 64(3): 633-646. [Wang F G,Hou S R,Zhang L,Men H,Wang J L.2018. Study on the characteristics of water-rock interaction and its relation to uranium mineralization in Tamusu Uranium Deposit,southern Bayin’gobi Basin. Geological Review, 64(3): 633-646] [17] 王会来,高先志,杨德相,李浩,张志强,王旭,张丽. 2014. 二连盆地巴音都兰凹陷下白垩统湖相云质岩成因研究. 沉积学报, 32(3): 560-567. [Wang H L,Gao X Z,Yang D X,Li H,Zhang Z Q,Wang X,Zhang L.2017. Genesis of dolomitic rock within the Lower Cretaceous lacustrine facies in Bayindulan sag,Erlian Basin. Acta Sedimentologica Sinica, 32(3): 560-567] [18] 文华国,郑荣才,Hairuo Qing,范铭涛,李雅楠,宫博识. 2014. 青藏高原北缘酒泉盆地青西凹陷白垩系湖相热水沉积原生白云岩. 中国科学: 地球科学, 44(4): 591-604. [Wen H G,Zheng R C,Qing H R,Fan M T,Li Y N,Gong B S.2014. Primary dolostone related to the Cretaceous lacustrine hydrothermal sedimentation in Qingxi sag,Jiuquan Basin on the northern Tibetan Plateau. Scientia Sinica Terrae, 44(4): 591-604] [19] 吴仁贵,周万蓬,徐喆,刘平华,张雷. 2010. 巴音戈壁盆地苏红图组时代归属研究. 铀矿地质, 26(3): 152-157. [Wu R G,Zhou W P,Xu Z,Liu P H,Zhang L.2010. Discussion on the chronology of Suhongtu Formation in Bayin’gebi Basin. Uranium Geology, 26(3): 152-157] [20] 吴赛赛,赵省民,邓坚. 2016. 漠河盆地中侏罗统漠河组泥岩元素地球化学特征及其地质意义: 以MK-3井为例. 地质科技情报,35(3): 17-27. [Wu S S,Zhao S M,Deng J.2016. Geochemical characteristics of elements of the mudstones in Middle Jurassic Mohe Formation in Mohe Basin and their geological implications: A case from drilling hole MK-3. Geological Science and Technology Information,35(3): 17-27] [21] 肖荣阁,杨忠芳,杨卫东,李朝阳. 1994. 热水成矿作用. 地学前缘, 1(3-4): 140-147. [Xiao R G,Yang Z F,Yang W D,Li C Y.1994. Hydrothermal mineralizing process. Earth Science Frontiers, 1(3-4): 140-147] [22] 薛春纪,刘淑文,冯永忠,李强,王涛,朱经祥,吴邦朝. 2005. 南秦岭旬阳盆地下古生界热水沉积成矿地球化学. 地质通报, 24(10-11): 927-934. [Xue C J,Liu S W,Feng Y Z,Li Q,Wang T,Zhu J X,Wu B C.2005. Geochemistry of hydrothermal sedimentary mine valization in the Lower Paleozoic of the Xunyang Basin, South Qinling,China. Geological Bulletin of China, 24(10-11): 927-934] [23] 杨喆,钟大康,张硕,郭强,路昭. 2018. 二连盆地白音查干凹陷下白垩统湖相沸石成因: 来自矿物学、微量元素特征的证据. 地球科学, 43(10): 3733-3748. [Yang Z,Zhong D K,Zhang S,Guo Q,Lu Z.2018. Mineralogical and trace-element constrains on the genesis of zeolite in Lower Cretaceous lacustrine rocks from Bayinchagan sag,Erlian Basin,China. Earth Science, 43(10): 3733-3748] [24] 翟秀芬,汪泽成,罗平,王铜山,石书缘,张洪. 2017. 四川盆地高石梯东部地区震旦系灯影组微生物白云岩储层特征及成因. 天然气地球科学, 28(8): 1199-1210. [Zhai X F,Wang Z C,Luo P,Wang T S,Shi S Y,Zhang H.2017. Characteristics and origin of microbial dolomite reservoirs in Upper Sinian Deingying Formation,eastern Gaoshiti area,Sichuan Basin,SW China. Natural Gas Geoscience, 28(8): 1199-1210] [25] 张成勇,聂逢君,侯树仁,王俊林,邓薇,张良. 2015. 巴音戈壁盆地构造演化及其对砂岩型铀矿成矿的控制作用. 铀矿地质, 31(3): 384-388+412. [Zhang C Y,Nie F J,Hou S R,Wang J L,Deng W,Zhang L.2015. Tectonic evolution characteristics of Bayingebi Basin and its control on the mineralization of sandstone type uranium deposits. Uranium Geology, 31(3): 384-388+412] [26] 张建军,牟传龙,周恳恳,伍皓,陈小炜,夏彧. 2017. 滇西户撒盆地芒棒组第三段泥岩地球化学特征: 物源及其风化作用. 矿物岩石地球化学通报, 36(4): 574-581. [Zhang J J,Mou C L,Zhou K K,Wu H,Cehn X W,Xia Y.2017. Geochemistry of the Mangbang Formation mudstones of the HuSa Basin,western Yunan: Implications for provenance and source weathering. Bulletin of Mineralogy,Petrology and Geochemistry, 36(4): 574-581] [27] 郑荣才,王成善,朱利东,刘红军,方国玉,杜文博,王崇孝,汪满福. 2003. 酒西盆地首例湖相“白烟型”喷流岩热水沉积白云岩的发现及其意义. 成都理工大学学报(自然科学版), 30(1): 1-9. [Zheng R C,Wang C S,Zhu L D,Liu H J,Fang G Y,Du W B,Wang C X,Wang M F.2003. Discovery of the first example of“White Smoke Type”of exhalative rock(hydrothermal sedimentary dolostone)in Jiuxi Basin and its significance. Journal of Chengdu University of Technology(Science & Technology Edition), 30(1): 1-9] [28] 郑荣才,文华国,范铭涛,汪满福,吴国瑄,夏佩芬. 2006. 酒西盆地下沟组湖相白烟型喷流岩岩石学特征. 岩石学报,22(12): 3027-3038. [Zheng R C,Wen H G,Fan M T,Wang M F,Wu G X,Xia P F.2006. Lithological characteristics of sub lacustrine white smoke type exhalative rock of the Xiagou Formation in Jiuxi Basin. Acta Petrologica Sinica. 22(12): 3027-3038] [29] 郑荣才,文华国,李云,常海亮. 2018. 甘肃酒西盆地青西凹陷下白垩统下沟组湖相喷流岩物质组分与结构构造. 古地理学报, 20(1): 1-18. [Zheng R C,Wen H G,Li Y,Chang H L.2018. Compositions and texture of lacustrine exhalative rocks from the Lower Cretaceous Xiagou Formation in Qingxi sag of Jiuxi Basin,Gansu. Journal of Palaeogeography(Chinese Edition), 20(1): 1-18] [30] 钟大康,姜振昌,郭强,孙海涛,杨喆. 2015. 内蒙古二连盆地白音查干凹陷热水沉积白云岩的发现及其地质与矿产意义. 石油与天然气地质, 36(4): 587-509. [Zhong D K,Jiang Z C,Guo Q,Sun H T,Yang Z.2015. Discovery of hydrothermal dolostones in Baiyinchagan sag of Erlian Basin,Inner Mongolia,and its geologic and mineral significance. Oil & Gas Geology, 36(4): 587-509] [31] 钟大康,杨喆,孙海涛,张硕. 2018. 热水沉积岩岩石学特征: 以内蒙古二连盆地白音查干凹陷下白垩统腾格尔组为例. 古地理学报, 20(1): 20-32. [Zhong D K,Yang Z,Sun H T,Zhang S.2018. Petrological characteristics of hydrothermal-sedimentary rocks: A case study of the Lower Cretaceous Tengger Formation in the Baiyinchagan sag of Erlian Basin,Inner Mongolia. Journal of Palaeogeography(Chinese Edition), 20(1): 20-32] [32] 周建民,杨清堂,马秀莲,王吉平. 1995. 河南安棚碱矿中自生沸石的产状及成因探讨. 化工矿产地质, 17(2): 111-115. [Zhou J M,Yang Q T,Ma X L,Wang J P.1995. Occurrence and origination of authgenic zeolite from Anpeng alkali deposit,Henan. Geology of Chemical Minerals, 17(2): 111-115] [33] 朱东亚,金之钧,胡文瑄. 2010. 塔北地区下奥陶统白云岩热液重结晶作用及其油气储集意义. 中国科学: 地球科学, 40(2): 156-170. [Zhu D Y,Jin Z J,Hu W X.2010. Hydrothermal recrystallization of the Lower Ordovician dolomite and its significance to reservoir in northern Tarim Basin. Scientia Sinica Terrae, 40(2): 156-170] [34] Barrat J A,Boulegue J,Tiercelin J J,Lesourd M.2000. Strontium isotopes and rare-earth element geochemistry of hydrothermal carbonate deposits from lake Tanganyika,East Africa. Geochimica Et Cosmochimica Acta, 64(2): 287-298. [35] Bontognali T R R,Vasconcelos C,Warthmann R J,Lundberg R,Mckenzie J A.2012. Dolomite-mediating bacterium isolated from the sabkha of Abu Dhabi(UAE). Terra Nova, 24(3): 248-254. [36] Brown A C.1993. Sediment-host of stratiform copper deposits. Geoscience Canada, 19(3): 125-1415. [37] Campbell F A,Wiliams G D.1965. Chemical composition of shales of Mannville Group(Lower Cretaceous)of Central Alberta,Canada. AAPG Bulletin, 49(1): 81-87. [38] Davies G R,Smith L B.2006. Structurally controlled hydrothermal dolomite reservoir facies: An Overview. AAPG Bulletin, 90: 1641-1690. [39] Edmond J M,Damm K V.1983. Hot springs on the ocean floor. Poultry Science, 248(4): 70-85. [40] Elderfield H A,Greaves M J.1982. The rare earth elements in seawater. Nature, 296(5854): 214-219. [41] Gamero-Diaz H,Miller C K,Lewis R.2013. Score: A mineralogy based classification scheme for organic mudstones. Society of Petroleum Engineers. doi: 10.2118/166284-MS. [42] Gaucher G,Robelin C,Matray J M,Negrel G,Gros Y,Heltz J F,Vinsot A,Rebours H,Cassgnabere A,Bouchet A.2004. Andra underground research laboratory: Interpretation of the mineralogical and geochemical data acquired in the Callovian-Oxfordian Formation by investigative drilling. Physics and Chemistry of the Earth, 29: 55-77. [43] Hekinian R.1982. Petrology of Ocean Floors. Amsterdam,1-382. [44] Horacek M,Brandner R,Abart R.2007. Carbon isotope record of the P/T boundary and the Lower Triassic in the southern Alps: Evidence for rapid changes in storage of organic carbon. Palaeogeography,Palaeoclimatology,Palaeoecology, 252(1-2): 0-354. [45] Herron M M.1988. Geochemical classification of terrigenous sands and shales from core or log data. Journal of Sedimentary Research, 58: 820-829. [46] Jones B,Manning D A C.1994. Comparison of geochemical indices used for the interpretation of palaeo redox conditions in ancient mudstones. Chemical Geology, 111: 111-129. [47] Klinkhammer G P,Elderfield H,Edmond J M,Mitra A.1994. Geochemical implications of rare earth element patterns in hydrothermal fluids from mid-ocean ridges. Geochim Cosmochim Acta, 58(23): 5105-5113. [48] O’Neil J R,Clayton R N,Mayeda T K.1969. Oxygen isotope fractionation in divalent metal carbonates. The Journal of Chemical Physics, 51(12): 5547-5558. [49] Scott S D.1997. Submarine Hydrothermal Systems and Deposits. New York: Wiley. [50] Taylor S R,Mclennan S M.1985. The continental Crust: Its Composition and Evolution. Oxford: Blackwell Scientific Publication. [51] Warthmann R,Vasconcelos C,Sass H,McKenzie J A.2005. Desulfovibrio brasiliensis sp. nov.,a moderate halophilic sulfate-reducing bacterium from Lagoa Vermelha(Brazil)mediating dolomite formation. Extremophiles, 9(3): 255-261. [52] Xu Y,Schoonen M A A,Nordstrom D K,Cunningham K M,Ball J W.1998. Sulfur geochemistry of hydrothermal waters in Yellowstone National Park. 1: The origin of thiosulfate in hot spring waters. Geochimica Et Cosmochimica Acta, 62(23-24): 3729-3743.