Provenance analysis of the Upper Miocene turbidite sand-bodies in deep-sea basin of northern South China Sea
Zhou Jun-Shen1, Shao Lei1, Qiao Pei-Jun1, Cui Yu-Chi1, Sun Zhen2, Hou Yuan-Li1, Yang Yi-Kai1
1 State Key Laboratory of Marine Geology,Tongji University,Shanghai 200092,China; 2 CAS Key Laboratory of Ocean and Marginal Sea Geology,South China Sea Institute of Oceanology, Chinese Academy of Sciences,Guangzhou,510301 China
Abstract The International Ocean Discovery Program (IODP) Expedition 367/368 reported massive Upper Miocene deep-sea turbidite in the northern South China Sea basin. The Upper Miocene turbidite sand-bodies at Site U1500 were examined with detrital zircon U-Pb dating to conduct the source-to-sink analysis. This study shows that the U-Pb age spectrums of Site U1500 sample are similar to those detrital zircons from the Miocene Qiongdongnan Basin and the Pearl River Mouth Basin. Multidimensional scaling (MDS) plot also shows that the turbidite sand-bodies at Site U1500 are closely related to the sediments in the Pearl River Mouth Basin and Qiongdongnan Basin. It is likely that the thick deep-sea turbidite succession in the deep-water basin of northern South China Sea was formed by a mixed provenance pattern during the late Miocene. On the one hand, terrigenous sediments from the west of the South China Sea were transported along the Central Canyon to the eastern South China Sea deep-sea basin in the form of turbidity current. On the other hand, terrigenous sediments were also transported from the Pearl River through the slope canyon system to the northern South China Sea in the form of gravity flow . Those mixed sediments from two different source areas have collectively deposited at the deep-sea basin and thus, give rise to turbidite sequence of hundred meters. Provenance analysis of the thick turbidites sand-bodies in the deep-sea basin is of great significance to the profound understanding of the tectonic evolution, filling processes, provenance evolution, and the palaeogeographic characteristics of the Cenozoic basins of the South China Sea.
Fund:National Natural Science Foundation of China(No.41576059),the National Science and Technology Major Project(No.2016ZX05026004-002)and the National Key Research and Development Program of China(No.2018YFE0202400)
Corresponding Authors:
Shao Lei,born in 1960,Ph.D., is a professor of Tongji University. He mainly specializes in sedimentology and geochemistry. E-mail: lshao@tongji.edu.cn.
About author: Zhou Jun-Shen,born in 1995,is a master degree candidate of Tongji University. He majors in ocean science. E-mail: zjs@tongji.edu.cn.
Cite this article:
Zhou Jun-Shen,Shao Lei,Qiao Pei-Jun et al. Provenance analysis of the Upper Miocene turbidite sand-bodies in deep-sea basin of northern South China Sea[J]. JOPC, 2020, 22(4): 775-784.
Zhou Jun-Shen,Shao Lei,Qiao Pei-Jun et al. Provenance analysis of the Upper Miocene turbidite sand-bodies in deep-sea basin of northern South China Sea[J]. JOPC, 2020, 22(4): 775-784.
[1] 陈国俊,李超,张功成,吕成福,郑胜,马明. 2015. 南海西北陆缘莺琼双峰多阶深水扇体系的形成演化特征. 见: 第十七届中国科协年会: 南海深水油气勘探开发技术研讨会论文集,57-67. [Chen G J,Li C,Zhang G C,Lü C F,Zheng S,Ma M.2015. The development and evolution characteristics of Ying-Qiong-Shuangfeng Multi-rank Deepwater Fan,northwestern South China Sea. In: The 17th Annual Conference of the China Association for Science and Technology: Proceedings of the South China Sea Deepwater Oil and Gas Exploration and Development Technology Seminar,57-67] [2] 陈慧,解习农,毛凯楠. 2015. 南海北缘一统暗沙附近深水等深流沉积体系特征. 地球科学, 40(4): 733-743. [Chen H,Xie X N,Ma K N.2015. Deep-water contourite deposition system in vicinity of Yi'tong Shoal on northern margin of the South China Sea. Earth Science, 40(4): 733-743] [3] 韩喜彬,李家彪,龙江平,初凤友,丁巍伟,张绍勇,许东,杨海丽. 2010. 中国海底峡谷研究进展. 海洋地质动态, 26(2): 41-48. [Han X B,Li J B,Long J P,Chu F Y,Ding W W,Zhang S Y,Xu Dong,Yang H L.2010. Development of research on submarine canyon in China. Marine Geology Letters, 26(2): 41-48] [4] 黄奇瑜. 2017. 台湾岛的年龄. 中国科学: 地球科学, 47(4): 394-405. [Huang C Y.2017. Geological ages of Taiwan stratigraphy and tectonic events. Scientia Sinica Terrae, 47(4): 394-405] [5] 姜涛,解习农,王振峰,李绪深,张迎朝,孙志鹏,张道军. 2015. 南海西北部深水区中央峡谷体系沉积物来源与演化. 第十七届中国科协年会论文集,1-11. [Jiang T,Xie X N,Wang Z F,Li X S,Zhang Y Z,Sun Z P,Zhang D J.2015. Provenance of Central Canyon sediments in deepwater area of northwestern South China Sea. 17th Annual Meeting of China Association for Science and Technology: 1-11] [6] 林长松,高金耀,虞夏军,叶芳,谭勇华. 2006. 南海北部新生代的构造运动特征. 海洋学报, 28(4): 81-86. [Lin C S,Gao J Y,Yu X J,Ye F,Tan Y H.2006. Characteristics of tectonic movement in the northern part of South China Sea during the Cenozoic. Acta Oceanologica Sinica, 28(4): 81-86] [7] 刘兵,吴世敏,龙根元,郭翔艳. 2012. 琼东南盆地基底特征及其构造演化. 地球物理学进展, 27(4): 1465-1475. [Liu B,Wu S M,Long G Y,Guo X Y.2012. Basement characteristics and tectonic evolution in Qiongdongnan Basin. Progress in Geophysics, 27(4): 1465-1475] [8] 鲁宝亮,孙晓猛,张功成,张斌,郎元强,王璞珺. 2011. 南海北部盆地基底岩性地震—重磁响应特征与识别. 地球物理学报, 54(2): 563-572. [Lu B L,Sun X M,Zhang G C,Zhang B,Lang Y Q,Wang P J.2011. Seismic-potential field response characteristics and identification of basement lithology of the northern South China Sea basin. Chinese Journal of Geophysics, 54(2): 563-572] [9] 马本俊. 2017. 南海北部不同背景下深水斜坡沉积体系特征及其演化模式. 中国科学院深海科学与工程研究所博士论文,34-71. [Ma B J.2017. Characteristics and Evolution Model of the Deepwater Slope Systems Under Different Sedimentary Settings in the Continental Margin of Northern South China Sea. Doctoral dissertation of the University of Chinese Academy of Sciences,34-71] [10] 庞雄,陈长民,邵磊,王成善,朱明,何敏,申俊,连世勇,吴湘杰. 2007. 白云运动: 南海北部渐新统—中新统重大地质事件及其意义. 地质论评, 53(2): 145-151. [Pang X,Chen C M,Shao L,Wang C S,Zhu M,He M,Shen J,Lian S Y,Wu X J.2007. Baiyun Movement,a great tectonic event on the Oligocene-Miocene boundary in the northern South China Sea and its implications. Geological Review, 53(2): 145-151] [11] 邵磊,庞雄,张功成,乔培军,李前裕,韦刚健,吴梦霜. 2009. 南海北部渐新世末的构造事件. 地球科学, 34(5): 717-724. [Shao L,Pang X,Zhang G C,Qiao P J,Li Q Y,Wei G J,Wu M S.2009. Late Oligocene tectonic event in the northern South China Sea and its implications. Earth Science, 34(5): 717-724] [12] 邵磊,赵梦,乔培军,庞雄,吴梦霜. 2013. 南海北部沉积物特征及其对珠江演变的响应. 第四纪研究, 33(4): 760-770. [Shao L,Zhao M,Qiao P J,Pang X,Wu M S.2013. The characteristics of the sediment in northern South China Sea and its response to the evolution of the Pearl River. Quaternary Sciences, 33(4): 760-770] [13] 邵磊,崔宇驰,乔培军,朱伟林,钟锴,周俊燊. 2019. 南海北部古河流演变对欧亚大陆东南缘早新生代古地理再造的启示. 古地理学报, 21(2): 216-231. [Shao L,Cui Y C,Qiao P J,Zhu W L,Zhong K,Zhou J S.2019. Implications on the early Cenozoic palaeogeographical reconstruction of SE Eurasian margine based on northern South China Sea palaeo-drainage system evolution. Journal of Palaeogeography(Chinese Edition), 21(2): 216-231] [14] 苏明,解习农,王振峰,姜涛,张成,何云龙. 2013. 南海北部琼东南盆地中央峡谷体系沉积演化. 石油学报, 34(3): 467-478. [Su M,Xie X N,Wang Z F,Jiang T,Zhang C,He Y L.2013. Sedimentary evolution of Central Canyon System in Qiongdongnan Basin,northern South China Sea. Acta Petrolei Sinica, 34(3): 467-478] [15] 苏明,张成,解习农,王振峰,姜涛,何云龙,张翠梅. 2014. 深水峡谷体系控制因素分析: 以南海北部琼东南盆地中央峡谷体系为例. 中国科学: 地球科学, 44(8): 1807-1820. [Su M,Zhang C,Xie X N,Wang Z F,Jiang T,He Y L,Zhang C M.2014. Controlling factors on the submarine canyon system: A case study of the Central Canyon System in the Qiongdongnan Basin,northern South China Sea. Science China: Earth Sciences, 44(8): 1807-1820] [16] 吴元保,郑永飞. 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589-1604. [Wu Y B,Zheng Y F.2004. Mineralogical study of zircon genesis and its restriction on the interpretation of U-Pb age. Chinese Science Bulletin, 49(16): 1589-1604] [17] 解习农,陈志宏,孙志鹏,姜涛,何云龙. 2012. 南海西北陆缘深水沉积体系内部构成特征. 地球科学, 37(4): 5-12. [Xie X N,Chen Z H,Sun Z P,Jiang T,He Y L.2012. Depositional architecture characteristic of deepwater depositional system on the continental margin of northwestern South China Sea. Earth Science, 37(4): 5-12] [18] 张道军,张迎朝,邵磊,刘新宇,王亚辉,何小胡,崔宇驰. 2017. 琼东南盆地中央峡谷沉积物源探讨. 天然气地球科学, 28(10): 1574-1581. [Zhang D J,Zhang Y C,Shao L,Liu X Y,Wang Y H,He X H,Cui Y C.2017. Sedimentary provenance in the Central Canyon of Qiongdongnan Basin in the northern South China Sea. Natural Gas Geoscience, 28(10): 1574-1581] [19] Andersen T.2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology, 192(1): 59-79. [20] Cao L C,Jiang T,Wang Z F,Zhang Y Z,Sun H.2015. Provenance of Upper Miocene sediments in the Yinggehai and Qiongdongnan Basins,northwestern South China Sea: Evidence from REE,heavy minerals and zircon U-Pb ages. Marine Geology, 361: 136-146. [21] Cao L C,Shao L,Qiao P J,Zhao Z G,van Hinsbergen D J J.2018. Early Miocene birth of modern Pearl River recorded low-relief,high-elevation surface formation of SE Tibetan Plateau. Earth and Planetary Science Letters, 496: 120-131. [22] Cui Y C,Shao L,Qiao P J,Pei J X,Zhang D J,Huyen Tran.2019. Upper Miocene-Pliocene provenance evolution of the Central Canyon in northwestern South China Sea. Marine Geophysical Research, 40(2): 223-235. DOI: 10.1007/s11001-018-9359-2. [23] Huang C Y,Yuan P B,Lin C W,Wang T K,Chang C P.2000. Geodynamic processes of Taiwan arc-continent collision and comparison with analogs in Timor,Papua New Guinea,Urals and Corsica. Tectonophysics,325(1/2): 1-21. [24] Ma M,Chen G J,Li,C,Zhang G C,Lü C F,Xue L H,Shen H L,Zhao Z.2019. Petrography and geochemistry of Oligocene to Lower Miocene sandstones in the Baiyun Sag,Pearl River Mouth Basin,South China Sea: Provenance,source area weathering,and tectonic setting. Geological Journal, 54: 564-589. [25] Shao L,Qiao P J,Zhao M,Li Q Y,Wu M S,Pang X,Zhang H.2016. Depositional characteristics of the northern South China Sea in response to the evolution of the Pearl River. Geological Society London Special Publications, 429(1): 31-44. [26] Shao L,Cui Y C,Stattegger K,Zhu W L,Qiao P J,Zhao Z G.2019. Drainage control of Eocene to Miocene sedimentary records in the southeastern margin of Eurasian Plate. Geological Society of America Bulletin, 131(3-4): 461-478. [27] Stock J M,Sun Z,Klaus A,Larsen H C,Jian Z M,Alvarez Zarikian C A,Boaga J,Bowden S A,Briais A,Chen Y F,Cukur D,Dadd K A,Ding W,Dorais M J,Ferré E C,Ferreira F,Furusawa A,Gewecke A J,Hinojosa J L,Höfig T W,Hsiung K H,Huang B,Huang E Q,Huang X L,Jiang S J,Jin H Y,Johnson B G,Kurzawski R M,Lei C,Li B H,Li L,Li Y P,Lin J,Liu C,Liu C L,Liu Z F,Luna A,Lupi C,McCarthy A J,Mohn G,Ningthoujam L S,Nirrengarten M,Osono N,Peate D W,Persaud P,Qui N,Robinson C M,Satolli S,Sauermilch I,Schindlbeck J C,Skinner S M,Straub S M,Su X,Tian L Y,van der Zwan F M,Wan S M,Wu H C,Xiang R,Yadav R,Yi L,Zhang C M,Zhang J C,Zhang Y,Zhao N,Zhong G F,and Zhong L F.2018. Site U1500. In Sun Z,Jian Z M,Stock J M,Larsen H C,Klaus A,Alvarez Zarikian C A,and the Expedition 367/368 Scientists. 2018. South China Sea Rifted Margin. Proceedings of the International Ocean Discovery Program,367/368: College Station,TX(International Ocean Discovery Program). https: //doi.org/10.14379/iodp.proc.367368.104.2018. [28] Vermeesch P.2013. Multi-sample comparison of detrital age distributions. Chemical Geology, 341(2): 140-146. [29] Zhang G C,Shao L,Qiao P J,Cao L C,Pang X,Zhao Z G,Xiang X H,Cui Y C.2020. Cretaceous-Paleogene sedimentary evolution of the South China Sea region: A preliminary synthesis. Geological Journal, 55: 2662-2683. [30] Zhong L F,Li G,Yan W,Xia B,Feng,Y X,Miao L,Zhao J X.2017. Using zircon U-Pb ages to constrain the provenance and transport of heavy minerals within the northwestern shelf of the South China Sea. Journal of Asian Earth Science, 134: 176-190.