[1] 杜远生,余文超. 2020. 沉积型铝土矿的陆表淋滤成矿作用: 兼论铝土矿的成因分类. 古地理学报, 22(5):812-826.
[Du Y S, Yu W C. 2020. Subaerial leaching process of sedimentary bauxite deposits and the discussion on elassifications of bauxite deposits. Journal of Palaeogeography (Chinese Edition), 22(5): 812-826]
[2] 杜远生,龚一鸣,曾雄伟,黄宏伟,杨江海,张哲,黄志强. 2008. 广西泥盆系弗拉斯—法门期之交的事件沉积及其对小行星碰撞引起的大海啸的启示. 中国科学D辑: 地球科学, 38(12): 1504-1513.
[Du Y S,Gong Y M,Zeng X W,Huang H W,Yang J H,Zhang Z,Huang Z Q. 2008. Event deposition of Devonian Frasnian-Famennian boundary in Guangxi and its implication for tsunami caused by asteroid impact. Science China-Earth Sciences, 38(12): 1504-1513]
[3] 杜远生,周琦,余文超,王萍,袁良军,齐靓,郭华,徐源. 2015. Rodinia超大陆裂解、Sturtian冰期事件和扬子地块东南缘大规模锰成矿作用. 地质科技情报, 34(6): 1-7.
[Du Y S,Zhou Q,Yu W C,Wang P,Yuan L J,Qi L,Guo H,Xu Y. 2015. Linking the cryogenian manganese metallogenic process in the southeast margin of Yangtze Block to break-up of Rodinia supercontinent and sturtian glaciation. Geological Science and Technology Information, 34(6): 1-7]
[4] 杜远生,余文超,张亚冠. 2020. 矿产沉积学: 一个新的交叉学科方向. 古地理学报, 22(4): 601-619.
[Du Y S,Yu W C,Zhang Y G. 2020. Ore sedimentology: A developing interdisciplinary research direction of sedimentology. Journal of Palaeogeography(Chinese Edition), 22(4): 601-619]
[5] 刘志臣,周琦,颜佳新,汪洋,陈登,钟月丽,秦先进. 2019. 二叠纪贵州遵义次级裂谷盆地结构及其对锰矿的控制作用. 古地理学报, 21(3): 517-526.
[Liu Z C,Zhou Q,Yan J X,Wang Y,Chen D,Zhong Y L,Qin X J. 2019. The structure of the Zunyi rift basin and its control on the Permian manganese deposit in Zunyi of Guizhou Province. Journal of Palaeogeography(Chinese Edition), 21(3): 517-526]
[6] 李三忠,余珊,赵淑娟,张国伟,刘鑫,曹花花,许立青,戴黎明,李涛. 2015. 超大陆旋回与全球板块重建趋势. 海洋地质与第四纪地质, 35(1): 51-60.
[Li S Z,Yu S,Zhao S J,Zhang G W,Liu X,Cao H H,Xu L Q,Dai L M,Li T. 2015. Perspectives of supercontinent cycle and global plate reconstruction. Marine Geology and Quaternary Geology, 35(1): 51-60]
[7] 沈树忠,张华. 2017. 什么引起五次生物大灭绝?科学通报, 62(11): 1119-1135.
[Shen S Z,Zhang H. 2017. What caused the five mass extinctions. Chinese Science Bulletin, 62(11): 1119-1135]
[8] 孙枢,王成善. 2009. “深时”(Deep Time)研究与沉积学. 沉积学报, 27(5): 792-810.
[Sun S,Wang C S. 2009. Deep Time and sedimentology. Acta Sedimentologica Sinica, 27(5): 792-810]
[9] 王成善. 2006. 白垩纪地球表层系统重大地质事件与温室气候变化研究: 从重大地质事件探寻地球表层系统耦合. 地球科学进展, 21(7): 838-841.
[Wang C S. 2017. Coupling of the Earth surface system: Inferring from the Cretaceous major geological events. Advances in Earth Science, 21(7): 838-841]
[10] 王成善,王天天,陈曦,高远,张来明. 2017. 深时古气候对未来气候变化的启示. 地学前缘, 24(1): 1-17.
[Wang C S,Wang T T,Chen X,Gao Y,Zhang L M. 2017. Paleoclimate implications for future climate change. Earth Science Frontiers, 24(1): 1-17]
[11] 徐义刚. 2002. 地幔柱构造 、大火成岩省及其地质效应. 地学前沿, 9(4): 341-353.
[Xu Y G. 2002. Mantle plumes,large igneous provinces and their geologic consequences. Earth Science Frontiers, 9(4): 341-353]
[12] 张帮禄,张连昌,冯京. 2018. 西昆仑玛尔坎苏地区奥尔托喀讷什大型碳酸锰矿床地质特征及成因探讨. 地质论评, 64(2): 361-377.
[Zhang B L,Zhang L C,Feng J. 2018. Genesis of the large-scale Orto Karnash manganese carbonate deposit in the Malkansu district,Western Kunlun: Evidence from geological features. Geological Review, 64(2): 361-377]
[13] 张连昌,翟明国,万渝生,郭敬辉,代堰锫,王长乐,刘利. 2012. 华北克拉通前寒武纪BIF铁矿研究: 进展与问题. 岩石学报, 28(11): 3431-3445.
[Zhang L C,Zhai M G,Wan Y S,Guo J H,Dai Y P,Wang C L,Liu L. 2012. Study of the Precambrian BIF-iron deposits in the North China Craton: Progresses and questions. Acta Petrologica Sinica, 28(11): 3431-3445]
[14] 周琦,杜远生,覃英. 2013. 古天然气渗漏沉积型锰矿床成矿系统与成矿模式: 以黔湘渝毗邻区南华纪“大塘坡式”锰矿为例. 矿床地质, 32(3): 457-466.
[Zhou Q,Du Y S,Qin Y. 2013. Ancient natural gas seepage sedimentary-type manganese metallogenic system and ore-forming model: A case study of‘Datangpo type' manganese deposits formed in rift basin of Nanhua Period along Guizhou-Hunan-Chongqing border area. Mineral Deposits, 32(3): 457-466]
[15] 周琦,杜远生,袁良军,张遂,余文超,杨胜堂,刘雨. 2016. 黔湘渝毗邻区南华纪武陵裂谷盆地结构及其对锰矿的控制作用. 地球科学, 41(2): 177-188.
[Zhou Q,Du Y S,Yuan L J,Zhang S,Yu W C,Yang S T,Liu Y. 2016. The structure of the Wuling rift basin and its control on the manganese deposit during the Nanhua period in Guizhou-Hunan-Chongqing Border area,South China. Earth Science, 41(2): 177-188]
[16] Beukes N J,Swindell E P W,Wabo H. 2016. Manganese deposits of Africa. Episodes, 39(2): 285-317.
[17] Hoffman P F,Abbot D S,Ashkenazy Y,Benn D I,Brocks J J,Cohen P A,Cox G M,Creveling J R,Donnadieu Y,Erwin D H. 2017. Snowball Earth climate dynamics and Cryogenian geology-geobiology. Science Advances, 3(11): e1600983.
[18] Holland H D. 2002. Volcanic gases,black smokers,and the Great Oxidation Event. Geochimica et Cosmochimica Acta, 66(21): 3811-3826.
[19] Li P G,Yu W C,Du Y S,Lai X L,Weng S F,Pang D W,Xiong G L,Lei Z Y,Zhao S,Yang S Q. 2020. Influence of geomorphology and leaching on the formation of Permian bauxite in northern Guizhou Province,South China. Journal of Geochemical Exploration, 210: 106446.
[20] Montañez I P,Poulsen C J. 2013. The Late Paleozoic Ice Age: An evolving paradigm. Annual Review of Earth and Planetary Sciences, 41(1): 629-656.
[21] Och L M,Shields-Zhou G A. 2012. The Neoproterozoic oxygenation event: Environmental perturbations and biogeochemical cycling. Earth-Science Reviews, 110(1): 26-57.
[22] Roy S. 1981. Manganese Deposits. London: Academic Press,458.
[23] Roy S. 2006. Sedimentary manganese metallogenesis in response to the evolution of the Earth system. Earth-Science Reviews, 77: 273-305.
[24] Shi G R,Waterhouse J B. 2010. Late Paleozoic global changes affecting high-latitude environments and biotas: An introduction. Palaeogeography,Palaeoclimatology,Palaeoecology, 298(1-2): 1-16.
[25] Skrimshire S. 2019. Deep Time and secular time: A critique of the environmental‘Long View’. Theory,Culture & Society, 36(1): 63-81.
[26] Spence G H,Heron D P L,Fairchild I J. 2016. Sedimentological perspectives on climatic,atmospheric and environmental change in the Neoproterozoic Era. Sedimentology, 63(2): 253-306.
[27] Urban H,Stribrny B,Lippolt H J. 1992. Iron and manganese deposits of the Urucum District,Mato Grosso do Sul,Brazil. Economic Geology, 87: 1375-1392.
[28] Wang C L,Zhang L C,Lan C Y,Dai Y P. 2014. Rare earth element and yttrium compositions of the Paleoproterozoic Yuanjiacun BIF in the Lüliang area and their implications for the Great Oxidation Event(GOE). Science China-Earth Sciences, 57: 2469-2485.
[29] Wang P,Algeo T J,Zhou Q,Yu W C,Du Y S,Qin Y J,Xu Y,Yuan L J,Pan W. 2019. Large accumulations of 34S-enriched pyrite in a low-sulfate marine basin: The Sturtian Nanhua Basin,South China. Precambrian Research, 335: 105504.
[30] Wang P,Du Y S,Yu W C,Thomas J Algeo,Zhou Q,Xu Y,Qi L,Yuan L J,Pan W. 2020. The chemical index of alteration(CIA)as a proxy for climate change during glacial-interglacial transitions in Earth history. Earth-Science Reviews, 201: 103032.
[31] Weng S F,Yu W C,Algeo T J,Du Y S,Li P G,Lei Z Y,Zhao S. 2019. Giant bauxite deposits of South China: Multistage formation linked to Late Paleozoic Ice Age(LPIA)eustatic fluctuations. Ore Geology Reviews, 104: 1-13.
[32] Yu W C,Algeo T J,Du Y S,Maynard B,Guo H,Zhou Q,Peng T P,Wang P,Yuan L J. 2016. Genesis of Cryogenian Datangpo manganese deposit: Hydrothermal influence and episodic post-glacial ventilation of Nanhua Basin,South China. Palaeogeography,Palaeoclimatology,Palaeoecology, 459: 321-337.
[33] Yu W C,Algeo T J,Du Y S,Zhou Q,Wang P,Xu Y,Yuan L J,Pan W. 2017. Newly discovered Sturtian cap carbonate in the Nanhua Basin,South China. Precambrian Research, 293: 112-130.
[34] Yu W C,Algeo T J,Yan J X,Yang J H,Du Y S,Huang X,Weng S F. 2019a. Climatic and hydrologic controls on upper Paleozoic bauxite deposits in South China. Earth-Science Reviews, 189: 159-176.
[35] Yu W C,Polgári M,Gyollai I,Fintor K,Szabó M,Kovács I,Fekete J,Du Y S,Zhou Q. 2019b. Microbial metallogenesis of Cryogenian manganese ore deposits in South China. Precambrian Research, 322: 122-135. |