Gravity flow deposits associating with ichnoassemblages within the middle Member 3 of Paleogene Shahejie Formation in Dongpu sag, Henan Province
Zhang Hong-An1, Wang Chang-Zheng2, Jiang Fei-Hu1, Jin Ya-Qin1, Hu Bin2, 3
1. SINOPEC Zhongyuan Oilfield Company,Henan Puyang 457001,China; 2. Institute of Resources and Environment,Henan Polytechnic University,Henan JiaoZuo 454003,China; 3. Henan Collaborative Innovation Center of Coal(Shale)Seam Gas in Central Plains Economic Zone,Henan JiaoZuo 454003,China
Abstract Based on the observation and analyses of 97 exploratory well cores in Dongpu sag,four types of gravity flow(including sliding,slumping,debris flow and turbidity current)deposits in lacustrine facies have been recognized within the middle Member 3 of the Paleogene Shahejie Formation. Their main identification marks are outlined as follows: (1)the sliding deposits are characterized by the partial preservation of primary sedimentary structures,the development of small penecontemporaneous fracture or fault in sandstone beds,and steep dip of strata,with Skolithos-Palaeophycus ichnoassemblage and/or Planolites-Taenidium ichnoassemblage,which commonly occurred in the shore and shallow lake environments. (2)General characteristics of slumping deposits mainly are the abrupt contact between sandstone beds(top and bottom)and dark mudstone beds,and development of all kinds of penecontemporaneous soft-sediment deformation structures such as convolution bedding,flame structure,water-escape structure,liquefied vein and tearing debris. (3)The sandy debris flow deposits are mainly marked by the massive sandstone,abrupt contact between sandstone beds(top and bottom)and dark mudstone beds,as well as developing floating gravels near the top of sandstone beds and tearing mudstone debris in the bottom of sandstone beds,sometimes with occurring the mud-coated intraclasts. Meanwhile,slumping and sandy debris flow deposits commonly associated with the Mermoides-Parapaleodictyon ichnoassemblage produced in semi-deep water lake environment. (4)The turbidity deposit is mainly indicated by the complete or incomplete Bouma sequences,normal-graded bedding,and all kinds of sole marks such as scour marks,irregular flute casts and load casts,and the Semirotundichnus-Puyangichnus ichnoassemblage frequently occurred in the middle to upper parts of the turbidite beds that formed in deep-water lake environment. After comprehensive analyses of above four types of gravity flow deposits and water-depth variation reflected by different ichnoassemblages,it can be considered that ichnoassemblage changes appear a zonation with the depth of the lake,which is consistent with variations in gravity flow deposits from sliding-slumping-debris flows to turbidity currents,and the bioturbation generated with gravity flow deposits is enhanced. Therefore,the research of bioturbation structures(ichnofossils)is not only of great significance to study the physical property of sandstone reservoir in lacustrine deposits,but also to provide important ichnological information for discerning various types of gravity flow deposits.
Fund:Co-funded by the National Science and Technology Major Project of China(No.2016ZX05006-004)and the Natural Science Foundation of Henan Province(No.13181012)
Corresponding Authors:
Wang Chang-Zheng,born in 1979,Ph.D.,is currently engaged in sedimentology and continental ichnology. E-mail: wangchangzheng@hpu.edu.cn.
About author: Zhang Hong-An,born in 1965,Ph.D.,senior engineer,is currently engaged in basin analysis and petroleum exploration. E-mail: zhangha.zyyt@sinopec.com.
Cite this article:
Zhang Hong-An,Wang Chang-Zheng,Jiang Fei-Hu et al. Gravity flow deposits associating with ichnoassemblages within the middle Member 3 of Paleogene Shahejie Formation in Dongpu sag, Henan Province[J]. JOPC, 2020, 22(6): 1157-1170.
Zhang Hong-An,Wang Chang-Zheng,Jiang Fei-Hu et al. Gravity flow deposits associating with ichnoassemblages within the middle Member 3 of Paleogene Shahejie Formation in Dongpu sag, Henan Province[J]. JOPC, 2020, 22(6): 1157-1170.
[1] 操应长,王思佳,王艳忠,杨田,张少敏,张会娜. 2017a. 滑塌型深水重力流沉积特征及沉积模式: 以渤海湾盆地临南洼陷古近系沙三中亚段为例. 古地理学报, 19(3): 419-432. [Cao Y C,Wang S J,Wang Y Z,Yang T,Zhang S M,Zhang H N.2017a. Sedimentary characteristics and depositional model of slumping deep-water gravity flow deposits: A case study from the middle Member 3 of Paleogene Shahejie Formation in Linnan subsag,Bohai Bay Basin. Journal of Palaeogeography(Chinese Edition), 19(3): 419-432] [2] 操应长,张青青,王艳忠,杨田,王心怿,薛秀杰. 2017b. 东营凹陷沙三中亚段三角洲前缘滑塌型重力流岩相类型及其分布特征. 沉积与特提斯地质, 37(1): 9-17. [Cao Y C,Zhang Q Q,Wang Y Z,Yang T,Wang X Y,Xue X J.2017b. Delta front gravity flow deposits in the middle submember of the third member of the Shahejie Formation in the Dongying depression: Lithofacies and lithofacies association types and their distribution. Sedimentary Geology and Tethyan Geology, 37(1): 9-17] [3] 常龙,王长征,胡斌,陈传浩. 2017. 东濮凹陷沙三段正常三角洲沉积中遗迹化石及意义. 沉积与特提斯地质, 37(3): 66-73. [Chang L,Wang C Z,Hu B,Chen C H.2017. Trace fossils and sedimentological significance in the Member Ⅲ of the Shahejie Formation in Dongpu Sag. Sedimenstary Geology and Tethyan Geology, 37(3): 66-73] [4] 陈广坡,李娟,吴海波,彭威,李敬生,谢明贤,张斌,石小茜. 2018. 陆相断陷湖盆滑塌型深水重力流沉积特征、识别标志及形成机制: 来自海拉尔盆地东明凹陷明D2井全井段连续取心的证据. 石油学报, 39(10): 1119-1129. [Chen G P,Li J,Wu H B,Peng W,Li J S,Xie M X,Zhang B,Shi X X.2018. Sedimentary characteristics,indentification mark and formation mechanism of the slumping deepwater gravity flow in fault lacustrine basin: A case study on the consecutive coring well of Ming D2 in Dongming sag,Hailaer Basin. Acta Petrolei Sinica, 39(10): 1119-1129] [5] 陈书平,漆家福,王德仁,程秀申,赵衍彬,徐振强,解晨,孙海龙. 2007. 东濮凹陷断裂系统及变换构造. 石油学报, 28(1): 43-49. [Chen S P,Qi J F,Wang D R,Cheng X S,Zhao Y B,Xu Z Q,Xie C,Sun H L.2007. Fault systems and transfer structures in Dongpu Sag. Acta Petrolei Sinica, 28(1): 43-49] [6] 高红灿,郑荣才,陈发亮,朱宝兵,宋萍,刘显英,付晓宁. 2010. 东濮凹陷古近系沙河街组震积岩的认识及意义. 古地理学报, 12(4): 384-398. [Gao H C,Zheng R C,Chen F L,Zhu B B,Song P,Liu X Y,Fu X Y.2010. Recognition and significance of seismites of the Paleogene Shahejie Formation in Dongpu Sag. Journal of Palaeogeography(Chinese Edition), 12(4): 384-398] [7] 何卫军,甘军,刘芳,焦祥燕,罗威,黄灿. 2019. 涠西南凹陷流一段上亚段重力流沉积特征及发育模式. 油气地质与采收率, 26(3): 31-37. [He W J,Gan J,Liu F,Jiao X Y,Luo W,Huang C.2019. Sedimentary characteristics and development of gravity flow in the upper submember of the first member of Liu Formation in Weixi,nan Sag. Petroleum Geology and Recovery Efficiency, 26(3): 31-37] [8] 胡斌,陈传浩,王长征,常龙. 2017. 东濮凹陷文留地区沙三中(Es3中)遗迹化石与沉积环境. 河南理工大学学报(自然科学版), 36(3): 40-46. [Hu B,Chen C H,Wang C Z,Chang L.2017. Trace fossils and sedimentary environments in the middle part of third member Shahejie Formation in Wenliu area,Dongpu Sag. Journal of Henan Polytechnic University(Natural Science), 36(3): 40-46] [9] 纪友亮,冯建辉,王声朗,张宏安,王德仁. 2005. 东濮凹陷古近系沙河街组沙三段沉积期湖岸线的变化及岩相古地理特征. 古地理学报, 7(2): 479-484. [Ji Y L,Feng J H,Wang S L,Zhang H A,Wang D R.2005. Shifting of lake shoreline and lithofacies palaeogeographic characters during sedimentary period of the Member 3 of Shahejie Formation of Paleogene in Dongpu Sag. Journal of Palaeogeography(Chinese Edition), 7(2): 479-484] [10] 李云,郑荣才,朱国金,胡晓庆. 2011. 沉积物重力流研究进展综述. 地球科学进展, 26(2): 157-165. [Li Y,Zheng R C,Zhu G J,Hu X Q.2011. Reviews on sediment gravity flow. Advances in Earth Science, 26(2): 157-165] [11] 李被,刘池洋,黄雷,蒋飞虎,郭佩,鹿坤. 2018. 东濮凹陷北部沙河街组三段中亚段沉积环境分析. 现代地质, 32(2): 227-239. [Li B,Liu C Y,Huang L,Jiang F H,Guo P,Lu K.2018. Analysis of the sedimentary environment in the north of Dongpu Depression during the deposition of the Middle Section of the Third Member of the Shahejie Formation. Geoscience, 32(2): 227-239] [12] 李相博,刘化清,潘树新,王菁. 2019. 中国湖相沉积物重力流研究的过去、现在与未来. 沉积学报, 37(5): 904-921. [Li X B,Liu H Q,Pan S X,Wang Q.2019. The past,present and future of research on deep-water sedimentary gravity flow in lake basins of China. Acta Sedimentologica Sinica, 37(5): 904-921] [13] 李振鹏,王航,常涛,刘建国,刘斌. 2019. 歧南断阶带沙一段重力流类型及勘探潜力分析. 断块油气田, 26(1): 7-11. [Li Z P,Wang H,Chang T,Liu J G,Liu B.2019. Gravity flow identification characteristics and exploration potential in Es1 of Qinan Fault stepbelt. Fault-Block Oil & Gas Field, 26(1): 7-11] [14] 刘卫彬,周新桂,李世臻,张世奇. 2016. 构造裂缝对低孔低渗储层的影响作用研究: 以东濮凹陷沙三段为例. 天然气地球科学, 27(11): 1993-2004. [Liu W B,Zhou X G,Li S Z,Zhang S Q.2016. The influences of tectonic fractures on low-porosity and low-permeablity sandstone reservoirs: A case study of the third member of Shahejie Formation in Dongpu Depression. Natural Gas Geoscience, 27(11): 1993-2004] [15] 刘卫彬,张世奇,徐兴友,周新桂,李世臻,陈珊,白静. 2019. 东濮凹陷沙三段致密砂岩储层裂缝形成机制及对储层物性的影响. 大地构造与成矿学, 43(1): 58-68. [Liu W B,Zhang S Q,Xu X Y,Zhou X G,Li S Z,Chen S,Bai J.2019. Fracturing and its influence on the compact sandstone reservoir in the Third Member of the Shahejie Formation in the Northern Dongpu Depression. Geotectonica et Metallogenia, 43(1): 58-68] [16] 吕艳南,张金川,张鹏,黄宇琪,邓恩德. 2014. 东濮凹陷北部沙三段页岩油气形成及分布预测. 特种油气藏, 21(4): 48-53. [Lü Y N,Zhang J C,Zhang P,Huang Y Q,Deng E D. 2014. Shale oil/gas formation and distribution prediction in Sha-3 Member of Northern Dongpu Sag. Special Oil and Gas Reservoirs, 21(4): 48-53] [17] 庞雄,朱明,柳保军,颜承志,胡琏,郑金云. 2014. 南海北部珠江口盆地白云凹陷深水区重力流沉积机理. 石油学报, 35(4): 646-653. [Pang X,Zhu M,Liu B J,Yan C Z,Hu L,Zheng J Y.2014. The mechanism of gravity flow deposition in Baiyun Sag deepwater area of the northern South China Sea. Acta Petrolei Sinica, 35(4): 646-653] [18] Shanmugam G.2013. 深水砂体成因研究新进展. 石油勘探与开发, 40(3): 294-301. [Shanmugam G.2013. New perspectives on deep-water sandstones: Implications. Petroleum Exploration and Development, 40(3): 294-301] [19] 孙利,余光华,李建革,王家亮,巩建强. 2014. 东濮凹陷膏盐岩沉积控制因素及其对油气成藏的影响. 油气地质与采收率, 21(5): 27-31. [Sun L,Yu G H,Li J G,Wang J L,Gong J Q.2014. Controlling factors of gypsolith sedimentary and its impact on hydrocarbon reservoirs in Dongpu sag. Petroleum Geology and Recovery Efficiency, 21(5): 27-31] [20] 万涛,谈玉明,苏惠,王兴武,倪军锋,刘和美,万晶. 2014. 东濮凹陷濮城地区沙三中亚段古地貌与沉积相关系. 中国地质, 41(1): 206-214. [Wan T,Tan Y M,Su H,Wang X W,Ni J F,Liu H M,Wan J.2014. Palaeogeomorphology of Middle Es3 Formation in Pucheng area of Dongpu depression and its relationship with sedimentary facies. Geology in China, 41(1): 206-214] [21] 王昊,杨友运,李元昊,陈朝兵. 2019. 鄂尔多斯盆地合水地区长 7段重力流沉积特征及分布规律. 西安石油大学学报(自然科学版), 34(2): 39-45. [Wang H,Yang Y Y,Li Y H,Chen C B.2019. Characteristics and distribution of gravity flow deposition of Chang 7 Member in Heshui area,Ordos Basin. Journal of Xi,an Shiyou University(Natural Science Edition), 34(2): 39-45] [22] 鲜本忠,万锦峰,姜在兴,张建国,李振鹏,佘源琦. 2012. 断陷湖盆洼陷带重力流沉积特征与模式: 以南堡凹陷东部东营组为例. 地学前缘, 19(1): 121-135. [Xian B Z,Wang J F,Jiang Z X,Zhang J G,Li Z P,She Y Q.2012. Sedimentary characteristics and model of gravity flow deposition in the depressed belt of rift lacustrine basin: A case study from Dongying Formaton in Nanpu Depression. Earth Science Frontiers, 19(1): 121-135] [23] 向龙,贾然. 2014. 东濮凹陷胡12区块储层非均质性特征研究. 长江大学学报(自然科学版), 11(31): 56-58. [Xiang L,Jia R.2014. Reservoir heterogeneity study of HU 12 block in the Dongpu depression. Journal of Yangtze University(Natural Science Edition), 11(31): 56-58] [24] 胥菊珍,蒋飞虎,高平,刘户琴,王又杰. 2004. 东濮凹陷古近系沙三段、沙四段介形类生物地层及界线. 地层学杂志, 28(1): 87-92. [Xu J Z,Jiang F H,Gao P,Liu H Q,Wang Y J.2004. Ostracoda assemblages from the third and fourth members of the Paleogene Shahejie Formation and their boundary in the Dongpu depression. Journal of Stratigraphy, 28(1): 87-92] [25] 杨田,操应长,王艳忠,张少敏. 2015. 深水重力流类型、沉积特征及成因机制: 以济阳坳陷沙河街组三段中亚段为例. 石油学报, 36(9): 1048-1059. [Yang T,Cao Y C,Wang Y Z,Zhang S M.2015. Types,sedimentary characteristics and genetic mechanisms of deep-water gravity flows: A case study of the middle submenber in Member 3 of Shahejie Formation in Jiyang depression. Acta Petrolei Sinica, 36(9): 1048-1059] [26] 周进松,于兴河,杜海峰,刘超. 2010. 东濮凹陷北部古近系沙三中段沉积体系特征及充填模式. 沉积与特提斯地质, 30(3): 90-95. [Zhou J S,Yu X H,Du H F,Liu C.2010. Sedimentary systems and filling models for the middle part of the third member of the Shahejie Formation in northern Dongpu depression. Sedimentary Geology and Tethyan Geology, 30(3): 90-95] [27] 周学文,姜在兴,汤望新,许文茂,胡晨林,贾超尘. 2018. 牛庄洼陷沙三中亚段三角洲—重力流体系沉积特征与模式. 沉积学报, 36(2): 376-389. [Zhou X W,Jiang Z X,Tang W X,Xu W M,Hu C L,Jia C C.2018. Sedimentary characteristics and depositional model of delta and gravity flow system of the Middle Member 3 of Shahejie Formation in Niuzhuang Sag. Acta Sedimentologica Sinica, 36(2): 376-389] [28] 朱筱敏,谈明轩,董艳蕾,李维,秦祎,张自力. 2019. 当今沉积学研究热点讨论: 第20届国际沉积学大会评述. 沉积学报, 37(1): 1-16. [Zhu X M,Tan M X,Dong Y L,Li W,Qin Y,Zhang Z L.2019. Current hot topics of sedimentology: Comment on the 20th International Sedimentological Congress. Acta Sedimentologica Sinica, 37(1): 1-16] [29] 张广雪,范忠礼,孟宁宁,张鹏辉,吕昕. 2014. 东濮凹陷卫城油田卫2块沙三下亚段储层非均质性及对剩余油分布的影响. 科学技术与工程, 14(35): 34-40. [Zhang G X,Fan Z L,Meng N N,Zhang P H,Lü X.2014. Heterogeneity and its impact on remaining oil distribution of Es3 in Wei2 Block,Weicheng Oil Field,Dongpu Depression. Science Technology and Engineering, 14(35): 34-40] [30] Blanchard S,Matheson E J,Fielding C R,Best J L,Bryk A,Howell K J,Monson C C,Mahoney G,Peakall J.2018. Early burial mud diapirism and its impact on stratigraphic architecture in the Carboniferous of the Shannon Basin,County Clare,Ireland. Sedimentology,https: //doi.org/10.1111/sed.12492. [31] Dott R H.1963. Dynamics of subaqueous gravity depositional processes. AAPG Bulletin, 47: 104-128. [32] Gingras M K,Mendoza C A,Pemberton S G.2004. Fossilized worm burrows influence the resource quality of porous media. AAPG Bulletin, 88: 875-883. [33] Knaust D.2013. Bioturbation and Reservoir Quality: Towards a Genetic Approach. Adapted from oral presentation at AAPG Annual Convention and Exhibition,Pittsburgh,Pennsylvania,19-22. [34] Knaust D,Bromley R G.2012. Trace Fossils as Indicators of Sedimentary Environments. Amsterdam: Elsevier,379-418. [35] Middleton G V,Hampton M A.1973. Sediment-gravity flows: Mechanics of flow and deposition. In: Middleton G V,Bouma A H(eds). Turbidites and Deep-Water Sedimentation: Short Course Lecture Notes,Part Ⅰ. California: Los Angeles,1-38. [36] Middleton G V,Hampton M A.1976. Subaqueous sediment transport and deep sediment gravity flows. In: Stanley D J, Swift D J P(eds). Marine Sediment Transport and Environmental Management. New York: Wiley Inter-science,197-218. [37] Mulder T,Alexander J.2001. The physical character of subaqueous sedimentary density flows and their deposits. Sedimentology, 48: 269-299. [38] Piper D J W,Normark W R.2009. Processes that initiate turbidity currents and their influence on turbidites: A marine geology perspective. Journal of Sedimentary Research, 79: 347-362. [39] Shanmugam G,Moiola R J.1995. Reinterpretation of depositional processes in a classic flysch sequence(Pennsylvanian Jackfork Group),Ouachita Mountains,Arkansas and Oklahoma. American Association of Petroleum Geologists Bulletin, 79: 672-695. [40] Shanmugam G.2000.50 Years of the Turbidite Paradigm(1950s-1990s): Deep-water processes and facise model: A critical perspective. Marine and Petroleum Geology, 17(2): 285-342. [41] Shanmugam G.2012. New Perspectives on Deep-water Sandstones: Origin,Recognition,Initiation,and Reservoir Quality. Amsterdam: Elsevier,1-419. [42] Shipp R C,Weimer P,Posamentier H W.2011. Mass-transport deposits in deepwater settings: An introduction. SEPM,Special Publication, 96: 1-4. [43] Talling P J,Masson D G,Sumner E J,Malgesini G.2012. Subaqueous sediment density flows: Depositional processes and deposit types. Sedimentology, 59: 1937-2003.