Siderite in banded iron formation of the Neoarchean Baizhiyan Formation, Shanxi Province: genesis and palaeoenvironmental implications
Xie Bao-Zeng1,2, Sun Long-Fei2, Fang Hao2, Shi Xiao-Ying1,2, Tang Dong-Jie1,3
1 State Key Laboratory of Biogeology and Environmental Geology,China University of Geosciences(Beijing),Beijing 100083,China; 2 School of Earth Sciences and Resources,China University of Geosciences(Beijing),Beijing 100083,China; 3 Institute of Earth Sciences,China University of Geosciences(Beijing),Beijing 100083,China
Abstract Siderite is one of the major mineral components in Precambrian banded iron formation(BIF)and an archive for palaeoenvironmental reconstruction. However,it can exist as primary,early diagenetic,and late diagenetic origins,thus limiting its application in palaeoenvironmental analysis to a certain extent. Previous studies mainly focused on geochemical features of siderite,whereas its petrographic features were paid less attention. In order to further reveal the origin of siderite in BIF,this study took BIF from the Neoarchean Baizhiyan Formation in Yangjiaogou Mining Area,Dai County,Shanxi Province as a target,and carried out a systematic petrographic analysis. The results show that the BIF in the Baizhiyan Formation is mainly composed of alternating centimeter-scale,iron-rich and silicon-rich bands. Wave-agitated structure is rare,but occasionally cross lamination and storm debris are present,suggesting that the BIF was mainly deposited below the storm-wave base. There are three main occurrences for the siderite,including: (1)sub-millimeter layers with detrital particles “suspended” in them,indicating that they may have the primary origin formed in water column or sediment-water interface; (2)dispersed anhedral grains in iron-rich layers,which may be of an early diagenetic origin;and (3)veins penetrating into layers of chlorite,or truncating quartz and ankerite,which is of a late diagenetic origin. The occurrence of primary siderite in the BIF from the Baizhiyan Formation suggests that the Neoarchean seawater below the storm-wave base was strongly anoxic,iron-rich,and of low sulfate concentration. Siderite has the potential to reflect the information of marine chemistry;however,the occurrence of siderite with different origins in one sample requires fabric-specific analysis.
Fund:Co-funded by the National Natural Science Foundation of China(Nos. 41930320,41972028),the Key Research Program of the Institute of Geology & Geophysics,CAS(No. IGGCAS-201905),and the Fundamental Research Funds for the Central Universities(No.2652019093)
Corresponding Authors:
Tang Dong-Jie,born in 1985,is an associate professor and Ph.D. supervisor of China University of Geosciences(Beijing). He is engaged in geobiology and Precambrian geology. E-mail: dongjtang@126.com.
About author: Xie Bao-Zeng,born in 1994,is a graduated student of China University of Geosciences(Beijing). E-mail: baozeng-xie@163.com.
Cite this article:
Xie Bao-Zeng,Sun Long-Fei,Fang Hao et al. Siderite in banded iron formation of the Neoarchean Baizhiyan Formation, Shanxi Province: genesis and palaeoenvironmental implications[J]. JOPC, 2021, 23(1): 175-190.
Xie Bao-Zeng,Sun Long-Fei,Fang Hao et al. Siderite in banded iron formation of the Neoarchean Baizhiyan Formation, Shanxi Province: genesis and palaeoenvironmental implications[J]. JOPC, 2021, 23(1): 175-190.
[1] 白瑾. 1986. 五台山早前寒武纪地质. 天津: 天津科学技术出版社,376-379. [Bai J.1986. The Early Precambrian Geology of Wutaishan. Tianjin: Tianjin Science and Technology Press,376-379] [2] 华仁民,李晓峰,张开平,季峻峰,张文兰. 2003. 金山金矿热液蚀变粘土矿物特征及水-岩反应环境研究. 矿物学报, 23(1): 23-30. [Hua R M,Li X F,Zhang K P,Ji J F,Zhang W L.2003. Characteristics of clay minerals derived from hydrothermal alteration in Jinshan gold deposit: implication for the environment of water-rock interaction. Acta Mineralogica Sinica, 23(1): 23-30] [3] 黄丽萍. 2004. 论龙永煤田童子岩组菱铁矿及其岩相意义. 中国煤田地质, 16: 35-37. [Huang L P.2004. On siderite in Tongziyan formation,Longyong coalfield and its lithofacies meaning. Coal Geology of China, 16: 35-37] [4] 李江海,牛向龙,钱祥麟,田永清. 2006. 五台山区太古宙/元古宙界线划分及其地球演化意义. 大地构造与成矿学, 30(4): 409-418. [Li J H,Niu X L,Qian X L,Tian Y Q.2006. Division of Archean/Proterozoic boundary and its implication for geological evolution in Wutai Mountain area,North China. Geotectonica et Metallogenia, 30(4): 409-418] [5] 刘敦一,Page R W,Compston W,伍家善. 1984. 太行山—五台山区前寒武纪变质岩系同位素地质年代学研究. 中国地质科学院院报, 8: 57-84. [Liu D Y,Page R W,Compston W,Wu J S.1984. U-Pb zircon geochronology of Precambrian metamorphic rocks in the Taihangshan-Wutaishan area,North China, Bulletin of the Chinese Academy of Geological Sciences, 8: 57-84] [6] 沈保丰,毛德宝. 2003. 论五台群的地质时代. 地质调查与研究, 26(2): 72-79. [Shen B F,Mao D B.2003. On Wutai Group geochronology. Geological Survey and Research, 26(2): 72-79] [7] 万渝生,苗培森,刘敦一,杨崇辉,王伟,王惠初,王泽九,董春艳,杜利林,周红英. 2010. 华北克拉通高凡群、滹沱群和东焦群的形成时代和物质来源: 碎屑锆石SHRIMP U-Pb 同位素年代学制约. 科学通报, 55(7): 572-578. [Wan Y S,Miao P S,Liu D Y,Yang C H,Wang W,Wang H C,Wang Z J,Dong C Y,Du L L,Zhou H Y.2010. Formation ages and source regions of the Paleoproterozoic Gaofan,Hutuo and Dongjiao groups in the Wutai and Dongjiao areas of the North China Craton from SHRIMP U-Pb dating of detrital zircons: resolution of debates over their stratigraphic relationships. Chinese Science Bulletin, 55(7): 572-578] [8] 王凯怡,李继亮,郝杰,柴育成,周少平. 1997. 山西省五台山晚太古代镁铁质—超镁铁质岩: 一种可能的古蛇绿混杂岩. 岩石学报, 13(2): 139-151. [Wang K Y,Li J L,Hao J,Chai Y C,Zhou S P.1997. Late Archean mafic-ultramafic rocks from the Wutaishan,Shanxi Province: a possible ophiolite mélange. Acta Petrologica Sinica, 13(2): 139-151] [9] 王汝铮,颜耀阳,李惠民,林源贤. 1997. 山西五台山地区早前寒武纪年代构造格架. 前寒武纪研究进展, 20(2): 44-50. [Wang R Z,Yan Y Y,Li H M,Lin Y X.1997. The Early Precambrian chronotectonic framework in the Wutaishan area. Progress in Precambrian Research, 20(2): 44-50] [10] 赵飞凡,陈衍景. 2020. 五台群是新太古代还是古元古代? 同位素年代学研究评述. 地球科学: 1-38. [Zhao F F,Chen Y J. 2020. Is the Wutai Group of Neoarchean or Paleoproterozoic?a review of isotope chronological studies. Earth Science,1-38. http://kns.cnki.netkcmsdetail/42.1874.P.20200305.1734.012.html] [11] 中国地质调查局. 2013. 全国1:50万地质图. http://www.ngac.org.cn/DataSpecial/geomap.html. [The China Geological Survey. 2013. 1:500000 Geological Map of China. http://www.ngac.org.cn/DataSpecial/geomap.html] [12] Allwood A C,Walter M R,Kamber B S,Marshall C P,Burch I W.2006. Stromatolite reef from the Early Archaean era of Australia. Nature, 441(7094): 714-718. [13] Awramik S M.2006. Respect for stromatolites. Nature, 441(7094): 700-701. [14] Bachan A,Kump L R.2015. The rise of oxygen and siderite oxidation during the Lomagundi Event. Proceedings of the National Academy of Sciences, 112(21): 6562-6567. [15] Baker J C,Kassan J,Hamilton P J.1996. Early diagenetic siderite as an indicator of depositional environment in the Triassic Rewan Group,southern Bowen Basin,eastern Australia. Sedimentology, 43(1): 77-88. [16] Battaglia S.1999. Applying X-ray geothermometer diffraction to a chlorite. Clays and Clay Minerals, 47(1): 54-63. [17] Bekker A,Holland H D,Wang P L,Rumble Ⅲ D,Stein H J,Hannah J L,Coetzee L L,Beukes N J.2004. Dating the rise of atmospheric oxygen. Nature, 427: 117-120. [18] Bekker A,Slack J F,Planavsky N,Krapez B,Hofmann A,Konhauser K O,Rouxel O J.2010. Iron formation: the sedimentary product of a complex interplay among mantle,tectonic,oceanic,and biospheric processes. Economic Geology, 105(3): 467-508. [19] Berner R A.1981. A new geochemical classification of sedimentary environments. Journal of Sedimentary Research, 51(2): 359-365. [20] Beukes N J,Gutzmer J E N S.2008. Origin and paleoenvironmental significance of major iron formations at the Archean-Paleoproterozoic boundary. Reviews in Economic Geology, 15: 5-47. [21] Canfield D E,Zhang S,Wang H,Wang X,Zhao W,Su J,Bjerrum C J,Haxen E R,Hammarlund E U.2018. A Mesoproterozoic iron formation. Proceedings of the National Academy of Sciences, 115(17): E3895-E3904. [22] Cavarretta G,Gianelli G,Puxeddu M.1982. Formation of authigenic minerals and their use as indicators of the physicochemical parameters of the fluid in the Larderello-Travale geothermal field. Economic Geology, 77(5): 1071-1084. [23] Cloud P.1965. Significance of Gunflint(Precambrian)microflora-photosynthetic oxygen may have had important local effects before becoming a major atmospheric gas. Science, 148: 27-35. [24] Farquhar J,Bao H,Thiemens M.2000. Atmospheric influence of Earth's earliest sulfur cycle. Science, 289(5480): 756-758. [25] Frierdich A J,Beard B L,Scherer M M,Johnson C M.2014. Determination of the Fe(Ⅱ)aq-magnetite equilibrium iron isotope fractionation factor using the three-isotope method and a multi-direction approach to equilibrium. Earth and Planetary Science Letters, 391: 77-86. [26] Gäb F,Ballhaus C,Siemens J,Heuser A,Lissner M,Geisler T,Garbe-Schönberg D.2017. Siderite cannot be used as CO2 sensor for Archaean atmospheres. Geochimica et Cosmochimica Acta, 214: 209-225. [27] Gaines R R,Vorhies J S.2016. Growth mechanisms and geochemistry of carbonate concretions from the Cambrian Wheeler Formation(Utah,USA). Sedimentology, 63(3): 662-698. [28] Garcia T I,Gorton M P,Li H,Wortmann U G,Spooner E T.2016. The geochemistry of the 2.75 Ga-old Helen Iron Formation,Wawa,Ontario-Insights into iron formation deposition from carbon isotopes and rare earth elements. Precambrian Research, 275: 357-368. [29] Guo Q,Strauss H,Kaufman A J,Schröder S,Gutzmer J,Wing B,Baker M A,Bekker A,Kim S T,Farquhar J.2009. Reconstructing Earth's surface oxidation across the Archean-Proterozoic transition. Geology, 37: 399-402. [30] Halama M,Swanner E D,Konhauser K O,Kappler A.2016. Evaluation of siderite and magnetite formation in BIFs by pressure-temperature experiments of Fe(Ⅲ)minerals and microbial biomass. Earth and Planetary Science Letters, 450: 243-253. [31] Halevy I,Alesker M,Schuster E M,Popovitz-Biro R,Feldman Y.2017. A key role for green rust in the Precambrian oceans and the genesis of iron formations. Nature Geoscience, 10(2): 135-139. [32] Han C,Xiao W,Su B,Saky P A,Ao S,Zhang J,Wan B,Song D,Zhang Z,Wang Z,Ding J.2017. Neoarchean Algoma-type banded iron formation from the Northern Shanxi,the Trans-North China Orogen: SIMS U-Pb age,origin and tectonic setting. Precambrian Research, 303: 548-572. [33] Heimann A,Johnson C M,Beard B L,Valley J W,Roden E E,Spicuzza M J,Beukes N J.2010. Fe,C,and O isotope compositions of banded iron formation carbonates demonstrate a major role for dissimilatory iron reduction in ~2.5 Ga marine environments. Earth and Planetary Science Letters, 294(1-2): 8-18. [34] Hoashi M,Bevacqua D C,Otake T,Watanabe Y,Hickman A H,Utsunomiya S,Ohmoto H.2009. Primary haematite formation in an oxygenated sea 3.46 billion years ago. Nature Geoscience, 2(4): 301-306. [35] Holland H D.2002. Volcanic gases,black smokers,and the great oxidation event. Geochimica et Cosmochimica Acta, 66(21): 3811-3826. [36] Holland H D.2006. The oxygenation of the atmosphere and oceans. Philosophical Transactions of the Royal Society B: Biological Sciences, 361(1470): 903-915. [37] Johnson C M,Ludois J M,Beard B L,Beukes N J,Heimann A.2013. Iron formation carbonates: paleoceanographic proxy or recorder of microbial diagenesis? Geology, 41(11): 1147-1150. [38] Kappler A,Pasquero C,Konhauser K O,Newman D K.2005. Deposition of banded iron formations by anoxygenic phototrophic Fe(Ⅱ)-oxidizing bacteria. Geology, 33: 865-868. [39] Klein C.2005. Some Precambrian banded iron-formations(BIFs)from around the world: their age,geologic setting,mineralogy,metamorphism,geochemistry,and origins. American Mineralogist, 90(10): 1473-1499. [40] Köhler I,Konhauser K O,Papineau D,Bekker A,Kappler A.2013. Biological carbon precursor to diagenetic siderite with spherical structures in iron formations. Nature Communications, 4(1): 1-7. [41] Konhauser K O,Newman D K,Kappler A.2005. The potential significance of microbial Fe(Ⅲ)reduction during deposition of Precambrian banded iron formations. Geobiology, 3(3): 167-177. [42] Kröner A,Wilde S A,Li J H,Wang K Y.2005. Age and evolution of a late Archean to Paleoproterozoic upper to lower crustal section in the Wutaishan/Hengshan/Fuping terrain of northern China. Journal of Asian Earth Sciences, 24(5): 577-595. [43] Kusky T M,Li J.2003. Paleoproterozoic tectonic evolution of the North China Craton. Journal of Asian Earth Sciences, 22(4): 383-397. [44] Kusky T M,Li J H,Santosh M.2007. The Paleoproterozoic North Hebei Orogen: North China Craton's Collisional Suture with the Columbia Supercontinent. Gondwana Research, 12(1): 4-28. [45] Li J H,Kusky T M.2007. A Late Archean Foreland Fold and Thrust Belt in the North China Craton: implications for Early Collisional Tectonics. Gondwana Research, 12(1): 47-66. [46] Liu A Q,Tang D J,Shi X Y,Zhou L M,Zhou X Q,Shang M H,Li Y,Song H Y.2019. Growth mechanisms and environmental implications of carbonate concretions from the ~1.4 Ga Xiamaling Formation,North China. Journal of Palaeogeography, 8(1): 20-36. https://doi.org/10.1186/s42501-019-0036-4. [47] Liu C,Liu F,Shi J,Liu P,Yang H,Liu L,Wang W,Tian Z.2016. Depositional age and provenance of the Wutai Group: evidence from zircon U-Pb and Lu-Hf isotopes and whole-rock geochemistry. Precambrian Research, 281: 269-290. [48] Mozley.1989. Relation between depositional environment and the elemental composition of early diagenetic siderite. Geology, 17: 704-706. [49] Ohmoto H,Watanabe Y,Kumazawa K.2004. Evidence from massive siderite beds for a CO2-rich atmosphere before~1.8 billion years ago. Nature,429: 395-399. [50] Pecoits E,Gingras M K,Barley M E,Kappler A,Posth N R,Konhauser K O.2009. Petrography and geochemistry of the Dales Gorge banded iron formation: paragenetic sequence,source and implications for palaeo-ocean chemistry. Precambrian Research, 172(1-2): 163-187. [51] Peng P,Feng L,Sun F,Yang S,Su X,Zhang Z,Wang C.2017. Dating the Gaofan and Hutuo groups-targets to investigate the Paleoproterozoic great oxidation event in North China. Journal of Asian Earth Sciences, 138: 535-547. [52] Polat A,Kusky T,Li J,Fryer B,Kerrich R,Patrick K.2005. Geochemistry of Neoarchean(ca.2.55-2.50 Ga)volcanic and ophiolitic rocks in the Wutaishan greenstone belt,central orogenic belt,North China craton: implications for geodynamic setting and continental growth. Geological Society of America Bulletin,117(11-12): 1387-1399. [53] Posth N R,Konhauser K O,Kappler A.2013. Microbiological processes in banded iron formation deposition. Sedimentology, 60(7): 1733-1754. [54] Qiu Y,Zhao T,Li Y.2020. The Yunmengshan iron formation at the end of the Paleoproterozoic era. Applied Clay Science, 199: 105888. [55] Raiswell R,Reinhard C T,Derkowski A,Owens J,Bottrell S H,Anbar A D,Lyons T W.2011. Formation of syngenetic and early diagenetic iron minerals in the late Archean Mt. McRae Shale,Hamersley Basin,Australia: new insights on the patterns,controls and paleoenvironmental implications of authigenic mineral formation. Geochimica et Cosmochimica Acta, 75(4): 1072-1087. [56] Rasmussen B,Muhling J R,Suvorova A,Krapež B.2017. Greenalite precipitation linked to the deposition of banded iron formations downslope from a late Archean carbonate platform. Precambrian Research, 290: 49-62. [57] Rasmussen B,Muhling J R.2018. Making magnetite late again: evidence for widespread magnetite growth by thermal decomposition of siderite in Hamersley banded iron formations. Precambrian Research, 306: 64-93. [58] Rasmussen B,Muhling J R.2019. Syn-tectonic hematite growth in Paleoproterozoic stirling range “red beds”,Albany-Fraser orogen,Australia: Evidence for oxidation during late-stage orogenic uplift. Precambrian Research, 321: 54-63. [59] Riding R,Fralick P,Liang L.2014. Identification of an Archean marine oxygen oasis. Precambrian Research, 251: 232-237. [60] Roberts J A,Bennett P C,González L A,Macpherson G L,Milliken K L.2004. Microbial precipitation of dolomite in methanogenic groundwater. Geology, 32(4): 277-280. [61] Romanek C S,Jiménez-López C,Navarro A R,Sánchez-Román M,Sahai N,Coleman M.2009. Inorganic synthesis of Fe-Ca-Mg carbonates at low temperature. Geochimica et Cosmochimica Acta, 73(18): 5361-5376. [62] Tang D J,Shi X Y,Jiang G Q,Wu T,Ma J B,Zhou X Q.2018. Stratiform siderites from the Mesoproterozoic Xiamaling Formation in North China: genesis and environmental implications. Gondwana Research, 58: 1-15. [63] Teixeira N L,Caxito F A,Rosière C A,Pecoits E,Vieira L,Frei R,Sial A N,Poitrasson F.2017. Trace elements and isotope geochemistry(C,O,Fe,Cr)of the Cauê iron formation,Quadrilátero Ferrífero,Brazil: evidence for widespread microbial dissimilatory iron reduction at the Archean/Paleoproterozoic transition. Precambrian Research, 298: 39-55. [64] Tian Y Q.1991. Geology and Mineralization of the Wutai-Hengshan Greenstone Belt. Taiyuan: Shanxi Science and Technology Press, 137-152. [65] Tosca N J,Guggenheim S,Pufahl P K.2016. An authigenic origin for Precambrian greenalite: implications for iron formation and the chemistry of ancient seawater. Bulletin, 128(3-4): 511-530. [66] Tosca N J,Jiang C Z,Rasmussen B,Muhling J.2019. Products of the iron cycle on the early Earth. Free Radical Biology and Medicine, 140: 138-153. [67] Trouwborst R E,Johnston A,Koch G,Luther Ⅲ G W,Pierson B K.2007. Biogeochemistry of Fe(Ⅱ)oxidation in a photosynthetic microbial mat: implications for Precambrian Fe(Ⅱ)oxidation. Geochimica et Cosmochimica Acta, 71(19): 4629-4643. [68] Vuillemin A,Wirth R,Kemnitz H,Schleicher A M,Friese A,Bauer K W,Simister R,Nomosatryo S,Ordoñez L,Ariztegui D,Henny C.2019. Formation of diagenetic siderite in modern ferruginous sediments. Geology, 47(6): 540-544. [69] Wang C,Zhang L,Lan C,Dai Y.2014. Petrology and geochemistry of the Wangjiazhuang banded iron formation and associated supracrustal rocks from the Wutai greenstone belt in the North China Craton: implications for their origin and tectonic setting. Precambrian Research, 255: 603-626. [70] Wilde S A,Cawood P A,Wang K,Nemchin A,Zhao G.2004. Determining Precambrian crustal evolution in China: a case-study from Wutaishan,Shanxi Province,demonstrating the application of precise SHRIMP U-Pb geochronology. Geological Society,London,Special Publications, 226(1): 5-25. [71] Wilde S A,Cawood P A,Wang K,Nemchin A A.2005. Granitoid evolution in the Late Archean Wutai Complex,North China Craton. Journal of Asian Earth Sciences, 24(5): 597-613. [72] Wittkop C,Teranes J,Lubenow B,Dean W E.2014. Carbon-and oxygen-stable isotopic signatures of methanogenesis,temperature,and water column stratification in Holocene siderite varves. Chemical Geology, 389: 153-166. [73] Zhao G,Wilde S A,Cawood P A,Sun M.2001. Archean blocks and their boundaries in the North China Craton: lithological,geochemical,structural and P-T path constraints and tectonic evolution. Precambrian Research, 107(1-2): 45-73. [74] Zhao G,Sun M,Wilde S A,Guo J.2004. Late Archaean to Paleoproterozoic evolution of the Trans-North China Orogen: insights from synthesis of existing data from the Hengshan-Wutai-Fuping belt. Geological Society,London,Special Publications, 226(1): 27-55. [75] Zhao G,Sun M,Wilde S A,Sanzhong L.2005. Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited. Precambrian Research, 136(2): 177-202. [76] Zhao G,Zhai M.2013. Lithotectonic elements of Precambrian basement in the North China Craton: review and tectonic implications. Gondwana Research, 23(4): 1207-1240.