Tectono-climatic-sedimentary evolution and coupling mechanism during the middle Permian-early Triassic in Bogda area,Xinjiang
Shi Yan-Qing1,2, Wang Jian3, Zhang Guo-Yi4, Liu Ming3, Xiang Peng-Fei1,2, Yang Zhi-Bo1,2, Ji Han-Cheng1,2
1 College of Geosciences,China University of Petroleum(Beijing),Beijing 102249,China; 2 State Key Laboratory of Petroleum Resources and Prospecting,China University of Petroleum(Beijing),Beijing 102249,China; 3 Research Institute of Experiment and Detection,PetroChina Xinjiang Oilfield Company,Xinjiang Karamay 834000,China; 4 Exploration & Development Research Institute, PetroChina Jilin Oilfield Company, Jilin Sonyuan 138000, China
Abstract The evolution of the basin-mountain relationship,the initial uplift time of Bogda Mountain,and the tectonic-climate-sedimentary coupling mechanism have been the research issues,and have been restricting the process of oil and gas exploration and development in the southeastern margin of the Junggar Basin. This work uses the outcrops in north rim of the Bogda Mountain,cores,seismic,drilling and logging data of the Fukang and Jimusar sag to illuminate the middle Permian-lower Triassic stratigraphic distribution,characteristics of sedimentary facies,and climate change in the Bogda region. Based on above research,a tectono-climate-sedimentary evolution of the middle Permian to early Triassic can be rebuilt. In the middle Permian,the Bogda area was characterized by a rift-depression tectonic setting,an arid and semi-arid climate,and a braided river delta-lacustrine sedimentary system in the basin center. In the late Permian,the Bogda Mountain was uplifted initially,the early lake basin died out and replaced by alluvial fans in front of the north slope of the Bogda Mountain. The paleoclimate changed from semi-arid to semi-humid. In the early Triassic,the tectonic background of the Bogda region was relatively stable,but the paleoclimate gradually became warm and humid,which played a major role in affecting the regional weathering degree and sedimentary process. The Bogda Mountain underwent intense weathering and denudation,and the fan delta-lake sedimentary system was formed on its north side in this period.
Fund:Financially supported by the Strategic Cooperation Technology Projects of CNPC and CUPB(No. ZLZX2020-01)
Corresponding Authors:
Ji Han-Cheng, born in 1966,professor and doctoral supervisor of China University of Petroleum(Beijing),is mainly engaged in researches on reservoir geology and sedimentology. E-mail: jhch@cup.edu.cn.
About author: Shi Yan-Qing,born in 1986,Ph.D.,working at the University of Petroleum(Beijing),is mainly engaged in the teaching and researches of sedimentology,paleogeography and reservoir geology.
Cite this article:
Shi Yan-Qing,Wang Jian,Zhang Guo-Yi et al. Tectono-climatic-sedimentary evolution and coupling mechanism during the middle Permian-early Triassic in Bogda area,Xinjiang[J]. JOPC, 2021, 23(2): 389-404.
Shi Yan-Qing,Wang Jian,Zhang Guo-Yi et al. Tectono-climatic-sedimentary evolution and coupling mechanism during the middle Permian-early Triassic in Bogda area,Xinjiang[J]. JOPC, 2021, 23(2): 389-404.
[1] 方世虎,宋岩,贾承造,王绪龙,袁庆东. 2007. 新疆博格达地区中—新生代碎屑成分特征与盆山分异过程. 地质学报,81(9): 71-79. [Fang S H,Song Y,Jia C Z,Wang X L,Yuan Q D.2007. The Mesozoic-Cenozoic clastic composition of Bogda Area,Xinjiang: implications on the evolution of basin-range pattern. Acta Geologica Sinica, 81(9): 71-79] [2] 黄云飞,张昌民,朱锐,易雪斐,瞿建华,唐勇. 2017. 准噶尔盆地玛湖凹陷晚二叠世至中三叠世古气候、物源及构造背景. 地球科学, 42(10): 1736-1749. [Huang Y F,Zhang C M,Zhu R,Yi X F,Qu J H,Tang Y.2017. Palaeoclimatology,provenance and tectonic setting during late Permian to middle Triassic in Mahu sag,Junggar basin,China. Earth Science, 42(10): 1736-1749] [3] 李忠,汤望新,彭守涛,徐建强. 2012. 准噶尔盆地南缘中—新生界碎屑锆石的U-Pb年代学和沉积学记录及其反映的盆山构造演化. 地质科学, 47(4): 1016-1040. [Li Z,Tang W G,Peng S T,Xu J Q.2012. Detrital zircon U-Pb geochronological and depositional records of the Mesozoic-Cenozoic profile in the southern Junggar Basin northwest China,and their responses to basin-range tectonic evolution. Chinese Journal of Geology, 47(4): 1016-1040] [4] 李江海, 姜洪福. 2013. 全球古板块再造,岩相古地理及古环境图集. 北京: 地质出版社, 33. [Li J H,Jiang H F.2013. Global Paleo-plate Reconstruction,Atlas of Lithofacies Paleogeography and Paleoenvironment. Beijing: Geological Publishing House, 33] [5] 刘冬冬,郭召杰,张子亚. 2013. 一个不整合面引发的构造故事: 从天山艾维尔沟不整合谈起. 大地构造与成矿学, 37(3): 3-19. [Liu D D,Guo Z J,Zhang Z Y.2013. A new viewpoint of the Aiweiergou Unconformity,Northern Tian Shan,Xinjiang. Geotectonica and Metallogenia, 37(3): 3-19] [6] 马克,侯加根,刘钰铭,史燕青,闫林,陈福利. 2017. 吉木萨尔凹陷二叠系芦草沟组咸化湖混合沉积模式. 石油学报,38(6): 636-648. [Ma K,Hou J G,Liu Y M,Shi Y Q,Yan L,Chen F L.2017. The sedimentary model saline lacustrine mixed sedimentation in Permian Lucaogou formation,Jimsar sag. Acta Petrolei Sinica, 38(6): 636-648] [7] 舒良树,朱文斌. 2005. 新疆博格达南缘后碰撞期陆内裂谷和水下滑塌构造. 岩石学报,21(1): 25-36. [Shu L S,Zhu W B.2005. The post-collision intracontinental rifting and olistostrome on the southern slope of Bogda Mountains,Xinjiang. Acta Petrologica Sinica, 21(1): 25-36] [8] 田景春. 2016. 沉积地球化学. 北京: 地质出版社. [Tian J C.2016. Sedimentary Geochemistry. Beijing: Geological Publishing House] [9] 新疆维吾尔自治区地质矿产局. 1993. 新疆维吾尔自治区区域地质志. 北京: 地质出版社. [Bureau of Geology and Mineral Resources of Xinjiang Uygur Autonomous Region. 1993. Regional Geology of Xinjiang Uygur Autonomous Region. Beijing: Geological Publishing House] [10] 新疆维吾尔自治区地质矿产局. 1999. 全国地层多重划分对比研究: 新疆维吾尔自治区岩石地层. 湖北武汉: 中国地质大学出版社. [Bureau of Geology and Mineral Resources of Xinjiang Uygur Autonomous Region. 1999. Lithostratigraphy of Xinjiang Uygur Autonomous Region. Hubei Wuhan: China University of Geosciences Press] [11] 徐小涛,邵龙义. 2018. 利用泥质岩化学蚀变指数分析物源区风化程度时的限制因素. 古地理学报, 20(3): 515-522. [Xu X T,Shao L Y.2018. Limiting factors in utilization of chemical index of alteration of mudstones to quantify the degree of weathering in provenance. Journal of Palaeogeography(Chinese Edition), 20(3): 515-522] [12] Charvet J,Shu L S,Laurent-Charvet S.2007. Paleozoic structural and geodynamic evolution of eastern Tianshan NW China: welding of the Tarim and Junggar plates. Episodes, 30(3): 162-186. [13] Chen K,Lin W,Wang Q.2015. The Bogeda Shan uplifting: evidence from multiple phases of deformation. Journal of Asian Earth Sciences,99:1-12. [14] Chen X,Shu L,Santosh M.2011. Late Paleozoic post-collisional magmatism in the Eastern Tianshan Belt,Northwest China: new insights from geochemistry,geochronology and petrology of bimodal volcanic rocks. Lithos,127(3-4):581-598. [15] Fedo C M,Wayne N H,Young G M.1995. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols,with implications for paleoweathering conditions and provenance. Geology,23(10):921-924. [16] Greene T J,Carroll A R,Hendrix M S,Graham S A,Wartes M A,Abbink O A.2001. Sedimentary record of Mesozoic deformation and inception of the Turpan-Hami basin,northwest China. Geol. Soc. Am, 194: 317-340. [17] Han B,Guo Z J,Zhang Z C,Zhang L,Chen J F,Song B.2010. Age,geochemistry,and tectonic implications of a late Paleozoic stitching pluton in the North Tian Shan suture zone,western China. GSA Bulletin, 122(3-4): 627-640. [18] Hendrix M S,Dumitru T A,Graham S A.1994. Late Oligocene-early Miocene unroofing in the Chinese Tian Shan: an early effect of the India-Asia collision. Geology,22(6):487-490. [19] Jahn B.2004. The Central Asian Orogenic Belt and growth of the continental crust in the Phanerozoic. Geological Society,London,Special Publications, 226(1): 73-100. [20] Jolivet M,Dominguez S,Charreau J,Chen Y,Li Y,Wang Q.2010. Mesozoic and Cenozoic tectonic history of the central Chinese Tian Shan: reactivated tectonic structures and active deformation. Tectonics,29(6):1-30. [21] Li Z.2012. Detrital zircon U-Pb geochronological and depositional records of the Mesozoic-Cenozoic profile in the southern JunggarBasin,northwestChina,and their responses to basin-range tectonic evolution. Scientia Geologica Sinica, 47(4): 1016-1040. [22] Liu D D,Zhang C,Yao E D,Song Y,Jiang Z X,Luo Q.2017. What generated the Late Permian to Triassic unconformities in the southern Junggar Basin and western Turpan Basin: tectonic uplift,or increasing aridity? Palaeogeography,Palaeoclimatology,Palaeoecology, 46(8): 1-17. [23] Mclennnan S M.1993. Weathering and global denudation. Journal of Geology, 102(2): 295-303. [24] Nesbitt H,Young G M.1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature,299(5885),715-717. [25] Qiu N,Zhang Z,Xu E.2008. Geothermal regime and Jurassic source rock maturity of the Junggar basin,northwest China. Journal of Asian Earth Sciences, 31(4-6): 464-478. [26] Sengör A C,Natal'in B A.1996. Turkic-type orogeny and its role in the making of the continental crust. Annual Review of Earth and Planetary Sciences,24(1):263-337. [27] Shi Y,Ji H,Yu J,Xiang P,Yang Z,Liu D.2020. Provenance and sedimentary evolution from the Middle Permian to Early Triassic around the Bogda Mountain,NW China: a tectonic inversion responding to the consolidation of Pangea. Marine and Petroleum Geology,114:104169. [28] Liang S S,Bo W,Fan Y,Huafu L U,Charvet J,Laurent-Charvet S.2003. Polyphase tectonic events and Cenozoic basin-Range Coupling in the Tianshan Belt,Northwestern China. Acta Geologica Sinica-English Edition, 77(4):457-467. [29] Sun H,Xiao Y,Gao Y,Zhang G,Casey J F,Shen Y.2018. Rapid enhancement of chemical weathering recorded by extremely light seawater lithium isotopes at the Permian-Triassic boundary. Proceedings of the National Academy of Sciences,115(15):3782-3787. [30] Tang W H,Zhang Z C,Li J F,Li K,Chen Y,Guo Z J.2014. Late Paleozoic to Jurassic tectonic evolution of the Bogda area northwest China): evidence from detrital zircon U-Pb geochronology. Tectonophysics, 62(6): 144-156. [31] Trappe J.2000. Pangea: extravagant sedimentary resource formation during supercontinent configuration,an overview. Palaeogeography,Palaeoclimatology,Palaeoecology,161(1-2): 35-48. [32] Wali G,Wang B,Cluzel D,Zhong L.2018. Carboniferous-early Permian magmatic evolution of the Bogda range(Xinjiang,NW China): implications for the late Paleozoic accretionary tectonics of the SW central Asian orogenic belt. Journal of Asian Earth Sciences,153: 238-251. [33] Wang B,Cluzel D,Shu L,Faure M,Charvet J,Chen Y,de Jong K.2009. Evolution of calc-alkaline to alkaline magmatism through Carboniferous convergence to Permian transcurrent tectonics,western Chinese Tianshan. International Journal of Earth Sciences,98(6): 1275. [34] Wang B,Shu L,Faure M,Jahn B M,Cluzel D,Charvet J,Meffre S.2011. Paleozoic tectonics of the southern Chinese Tianshan: insights from structural,chronological and geochemical studies of the Heiyingshan ophiolitic mélange(NW China). Tectonophysics,497(1-4): 85-104. [35] Wang B,Zhai Y,Kapp P,de Jong K,Zhong L,Liu H,Geng H.2018a. Accretionary tectonics of back-arc oceanic basins in the South Tianshan: insights from structural,geochronological,and geochemical studies of the Wuwamen ophiolite mélange. GSA Bulletin,130(1-2): 284-306. [36] Wang J,Cao Y C,Wang X T,Liu K Y,Wang Z K,Xu Q S.2018b. Sedimentological constraints on the initial uplift of the West Bogda Mountains in Mid-Permian. Scientific Reports,(81): 1453. [37] Wang J L,Wu C D,Li Z,Zhu W,Zhou T Q,Wu J,Wang J.2017. The tectonic evolution of the Bogda region from Late Carboniferous to Triassic time: evidence from detrital zircon U-Pb geochronology and sandstone petrography. Geological Magazine, 155(5): 1063-1088. [38] Windley B F,Alexeiev D,Xiao W,Kroöner A,Badarch G.2007. Tectonic models for accretion of the Central Asian Orogenic Belt. Journal of the Geological Society,164(1):31-47. [39] Xiao W,Han C,Yuan C,Sun M,Lin S,Chen H,Li Z,Li J,Shu S.2008. Middle Cambrian to Permian subduction-related accretionary orogenesis of Northern Xinjiang,NW China: implications for the tectonic evolution of central Asia. Journal of Asian Earth Sciences, 32(2-4): 1-117. [40] Xiao W J,Huang B C,Han C M,Sun S,Li J L.2010. A review of the western part of the Altaids: a key to understanding the architecture of accretionary orogens. Gondwana Research, 18(2-3): 253-273.