Characteristics,origin and significance of strata-bound chalcedonization siliceous rocks of the Jixianian Luonan Group in Luonan Country,Shaanxi Province
Qu Hong-Jun1,2, Li Wen-Hou1,2, Yao Tian-Xing1,2, Wu Long-Fa1,2, Wang Yan-Xin1,2, Hu Jia-Sen2, Cheng Yi-Shan2
1 State Key Laboratory of Continental Dynamics,Northwest University,Xi'an 710069,China; 2 Department of Geology,Northwest University,Xi'an 710069,China
Abstract Quasi-lamellar siliceous chalcedonies and lenticular flints developed at the top of the Xunjiansi Formation of Mesoproterozoic Luonan Group of the Jixian System,in northern Luonan of Shaanxi Province,southern margin of the North China Plate. The siliceous chalcedonies and flints have become jade of gay colors and fine texture,with high-grade quartzite jade level,which are claimed as the national gemstone minerals,budding in the gemstone market,with great economic development potential. At present,no research has been conducted on the characteristics,origins and diversity of jade in this siliceous layer. This paper used petrological and geochemical analyses to study the siliceous layer and grained the following findings. (1)The quasi-lamellar siliceous chalcedonies and lenticular flints were found in the fuchsia and sage green lamellar arenaceous pelitic slate at the bottom of the Xunjiansi Formation,with a thickness of 0.5~4 m;the quasi-lamellar chalcedonies are mostly fuchsia,sage green,smoke gray and colorless;most of the lenticular flints are ring-shaped with agate lines in fuchsia and sage green,and part of lenticular flints are brecciated and in sage green. (2)The main components of the silica chalcedonies are quartz;they have crypto-to microcrystalline or blocky structures,fine and hard texture,glassy luster,translucent-slightly transparent. Based on the geochemical analysis of Al/(Al+Fe+Mn)(0.62 on average),Zr/Hf(34.83 on average),Sr/Ba(0.50 on average,except an abnormal sample),V/Ni(0.37 on average),ΣREE(5.11 on average),δCe(1.02 on average),δEu(0.86 on average),and LaN/CeN(0.85 on average),the results suggest that the depositional environment is freshwater settings,and the silicon is mainly terrigenous origin. (3)The quasi-lamellar siliceous chalcedony layer in the Luoguan Group of the Jixian System is a hardgroud surface of seabeds or a siliceous crust formed by fresh-water leaching and siliceous metasomatism caused by rapid regression. Lenticular flints with agate lines and colorful quasi-lamellar siliceous chalcedonies formed during diagenesis under changes of redox conditions during deposition and post-deposition. Transformation of purple and green coloring trace element was caused by late hydrothermal invasion and baking. Brecciated flints resulted from tectonic brecciation of structural breakup zone formed by the soft and hard difference and crack deformation between the upper and lower strata of the quasi-lamellar siliceous chalcedony layer due to the strong tectonic movements of the Qinling Mountains.
Fund:Co-funded by the National Key Research Project of China(No.2016YFC0601003),the National Natural Science Foundation of China(No.41172101),and the National Science and Technology Major Project(No.2016ZX05026-007)
About author: Qu Hong-Jun,born in 1967,is a professor and doctoral supervisor in Northwest University. He is engaged in sedimentology. E-mail: hongjun@nwu.edu.cn.
Cite this article:
Qu Hong-Jun,Li Wen-Hou,Yao Tian-Xing et al. Characteristics,origin and significance of strata-bound chalcedonization siliceous rocks of the Jixianian Luonan Group in Luonan Country,Shaanxi Province[J]. JOPC, 2021, 23(4): 651-667.
Qu Hong-Jun,Li Wen-Hou,Yao Tian-Xing et al. Characteristics,origin and significance of strata-bound chalcedonization siliceous rocks of the Jixianian Luonan Group in Luonan Country,Shaanxi Province[J]. JOPC, 2021, 23(4): 651-667.
[1] 常华进,储雪蕾,冯连君,黄晶,张启锐. 2008. 湖南安化留茶坡硅质岩的REE地球化学特征及其意义. 中国地质, 35(5): 879-887. [Chang H J,Chu X L,Feng L J,Huang J,Zhang Q R.2008. REE geochemistry of the Liuchapo chert in Anhua,Hunan. Geology in China, 35(5): 879-887] [2] 邓宏文,钱凯. 1993. 沉积地球化学与环境分析. 甘肃兰州: 甘肃科学技术出版社,1-262. [Deng H W,Qian K.1993. Sedimentary Geochemistry and Environmental Analysis. Gansu Lanzhou: Gansu Science and Technology Press,1-262] [3] 丁林,钟大赉. 1995. 滇西昌宁—孟连带古特提斯洋硅质岩稀土元素和铈异常特征. 中国科学(B辑), 25(1): 93-100. [Ding L,Zhong D L.1995. Abnormal characteristics of Ce and rare earth elements in the cherts from Changning-Menglian Paleo-Tethys suture zone. Science in China(Series B), 25(1): 93-100] [4] 杜贵超,仓辉,胡双全,曹卿荣,高鹏鹏. 2017. 泰国呵叻盆地二叠系碳酸盐岩元素地球化学特征与古环境意义. 世界地质, 36(1): 135-143. [Du G C,Cang H,Hu S Q,Cao Q R,Gao P P.2017. Geochemical characteristics and its paleo-environmental significance of Permian carbonate rocks in Khorat Basin,Thailand. Global Geology, 36(1): 135-143] [5] 杜远生,朱杰,顾松竹. 2006a. 北祁连肃南—带奥陶纪硅质岩沉积地球化学特征及其多岛洋构造意义. 地球科学: 中国地质大学学报, 31(1): 101-109. [Du Y S,Zhu J,Gu S Z.2006a. Sedimentary geochemistry and tectonic significance of Odovician cherts in Sunan,North Qilian Mountains. Earth Science: Journal of China University of Geosciences, 31(1): 101-109] [6] 杜远生,朱杰,顾松竹. 2006b.北祁连永登石灰沟奥陶纪硅质岩地球化学特征及大地构造意义. 地质论评, 52(2): 184-189. [Du Y S,Zhu J,Gu S Z.2006b. Sedimentary geochemistry of cherts from the Middle-Upper Ordovician in Shihuigou Area,North Qilian Orogenic Belt and its tectonic implications. Geological Review, 52(2): 184-189] [7] 杜远生,朱杰,顾松竹,徐亚军,杨江海. 2007. 北祁连造山带寒武系—奥陶系硅质岩沉积地球化学特征及其对多岛洋的启示. 中国科学, 37(10): 1314-1329. [Du Y S,Zhu J,Gu S Z,Xu Y J,Yang J H.2007. Sedimentary geochemistry of cherts from the Cambrian-Ordovician in North Qilian Orogenic Belt and its implications for the multi-island ocean. Science in China(Series D), 37(10): 1314-1329] [8] 杜远生. 2009. 北祁连造山带加里东—早海西沉积地质学研究. 武汉: 中国地质大学出版社,2-32. [Du Y S.2009. The Study of Early Hercynian Sedimentary Geology Research of Northern Qilian Orogenic Belt during Caledonian-Early Hercynian. Wuhan: China University of Geosciences Press,2-32] [9] 关保德,耿午辰,戎治权,杜慧英. 1988. 河南东秦岭北坡中—上元古界. 郑州: 河南科学技术出版社,41-49. [Guan B D,Geng W C,Rong Z Q,Du H Y.1988. The Middle-Upper Proterozoic in the North Slope of the East Qinling Mountains,Henan Province. Zhengzhou: Henan Science and Technology Press,41-49] [10] 胡国辉,赵太平,周艳艳,王世炎. 2013. 华北克拉通南缘中—新元古代沉积地层对比研究及其地质意义. 岩石学报, 29(7): 2491-2507. [Hu G H,Zhao T P,Zhou Y Y,Wang S Y.2013. Meso-Neoproterozoic sedimentary formation in the southern margin of the North China Carton and its geological implications. Acta Petorlogica Sinica, 29(7): 2491-2507] [11] 翦万筹,胡云绪,华洪,刘洪福. 1993. 一个中元古代具壳后生动物群—“洛南生物群”的初步报道. 西北大学学报(自然科学版),33(1): 77-81. [Jian W C,Hu Y X,Hua H,Liu H F.1993. “Luonan Fauna”: a Middle Proterozoic shell-bearing Metazoan assemblage. Journal of Northwest University(Natural Science Edition),33(1): 77-81] [12] 李进龙,陈东敬. 2003. 古盐度定量研究方法综述. 油气地质与采收率, 10(5): 1-3,5. [Li J L,Chen D J.2003. Summary of quantified research method on paleosalinity. Petroleum Geology and Recovery Efficiency, 10(5): 1-3,5] [13] 李钦仲. 1985. 华北地台南缘(陕西部分)晚前寒武纪地层研究. 陕西西安: 西安交通大学出版社,44-46. [Li Q Z.1985. Study on the Late Precambrian Strata in the Southern Margin of the North China Platform(Shaanxi Province). Shaanxi Xi’an: Xi’an Jiao Tong University Press,44-46] [14] 李钦仲. 1995. 中国南北方元古代地层之衔接部位─小秦岭元古界剖面特征. 陕西地质, 13(2): 72-77. [Li Q Z.1995. The joint portion of the Proterozoic Strata in the South and North of China. Geology in Shaanxi, 13(2): 72-77] [15] 李文厚. 1986. 陕西洛南县北部晚前寒武纪地层、岩石学特征及沉积学研究. 西北大学硕士毕业论文: 1-95. [Li W H.1986. Late Precambrian stratigraphy,petrology and sedimentological study in northern Luonan County,Shaanxi Province. Masteral dissertation of Northwest University: 1-95] [16] 李文厚. 1991. 华北地台南缘高山河群碎屑岩潮坪沉积. 沉积学报, 9(3): 98-105. [Li W H.1991. Clasolite Tidal flat deposits of Gaoshanhe Group in the southern margin of the North China Platform. Acta Sedimentologica Sinica, 9(3): 98-105] [17] 刘刚,周东升. 2007. 微量元素分析在判别沉积环境中的应用: 以江汉盆地潜江组为例. 石油实验地质, 29(3): 307-311. [Liu G,Zhou D S.2007. Application of microelements analysis in identifying sedimentary environment: taking Qianjiang Formation in the Jianghan Basin as an example. Petroleum Geology & Experiment, 29(3): 307-311] [18] 邱树玉,刘洪福. 1982. 小秦岭地区(陕西境内)晚前寒武纪的叠层石及其地层意义. 西北大学学报,前寒武纪地质专辑,12(增刊): 127-195. [Qiu S Y,Liu H F.1982. The Late Precambrian stromatolites in the Xiaoqinling area(Shaanxi Province)and their stratigraphic significance. Journal of Northwest University,Precambrian Geological Album,12(s1): 127-195] [19] 史忠生,陈开远,史军,柳保军,何胡军,刘刚. 2003. 运用锶钡比判定沉积环境的可行性分析. 断块油气田, 10(2): 12-16. [Shi Z S,Chen K Y,Shi J,Liu B J,He H J,Liu G.2003. Feasibility analysis of the application of the ratio of Strontium to Barium on the identifying sedimentary environment. Fault-Block Oil & Gas Field, 10(2): 12-16] [20] 苏文博. 2016. 华北及扬子克拉通中元古代年代地层格架厘定及相关问题探讨. 地学前缘, 23(6): 156-185. [Su W B.2016. Revision of the Mesoproterozoic chronostratigraphic subdivision both of North China and Yangtze Cratons and the relevant issues. Earth Science Frontiers, 23(6): 156-185] [21] 孙镇城,杨藩,张枝焕,李守军,李东明,彭立才,曾学鲁,徐钰林,茅绍智,王强. 1997. 中国中新生代咸化湖泊沉积环境与油气生成. 北京: 石油工业出版社,1-194. [Sun Z C,Yang F,Zhang Z H,Li S J,Li D M,Peng L C,Zeng X L,Xu Y L,Mao S Z,Wang Q.1997. Sedimentary Environment and Oil and Gas Generation in the Mesozoic-Cenozoic Saline Lake in China. Beijing: Petroleum Industry Press,1-194] [22] 张锋军,杜少喜,王淼,杨运军. 2017. 洛南紫绿玛瑙地质特征及其综合开发利用. 地球科学前沿, 7(4): 513-525. [Zhang F J,Du S X,Wang M,Yang Y J.2017. Luonan purple green agate geological characteristics and their comprehensive exploitation and utilization. Advances in Geosciences, 7(4): 513-525] [23] 张克信,何卫红,徐亚东,宋博文,骆满生. 2017. 中国沉积岩建造与沉积大地构造. 北京: 地质出版社,221-222. [Zhang K X,He W H,Xu Y D,Song B W,Luo M S.2017. Sedimentary Rock Formation and Sedimentary Tectonics in China. Beijing: Geological Publishing House,221-222] [24] 张正伟,杨怀洲,朱炳泉. 2003. 东秦岭沉积建造演化与成矿. 地球学报, 24(4): 293-298. [Zhang Z W,Yang H Z,Zhu B Q.2003. The development sedimentary buildups and mineralization in the Eastern Qinling Mountain. Acta Geoscientia Sinica, 24(4): 293-298] [25] 赵太平,金成伟,翟明国,夏斌,周美夫. 2002. 华北陆块南部熊耳群火山岩的地球化学特征与因. 岩石学报, 18(1): 59-69. [Zhao T P,Jin C W,Zhai M G,Xia B,Zhou M F.2002. Geochemistry and petrogenesis of the Xiong’er Group in the Southern Regions of the North China Craton. Acta Petorlogica Siniea, 18(1): 59-69] [26] 赵太平,翟明国,夏斌,李惠民,张毅星,万渝生. 2004. 熊耳群火山岩锆石 SHRIMP 年代学研究: 对华北克拉通盖层发育初始时间的制约. 科学通报, 49(22): 2342-2349. [Zhao T P,Zhai M G,Xia B,Li H M,Zhang Y X,Wan Y S.2004. Zircon SHRIMP geochronology of Xiong’er Group volcanic rocks: constraints on the initial time of the caprock development in North China Craton. Chinese Science Bulletin, 49(22): 2342-2349] [27] 周鼎武,李文厚,张云翔. 2002. 区域地质综合研究的方法与实践. 北京: 科学出版社,70-71. [Zhou D W,Li W H,Zhang Y X.2002. Methods and Practice of Comprehensive Research on Regional Geology. Beijing: Science Press,70-71] [28] 朱赖民,张国伟,郭波,李犇. 2009. 华北地块南缘钼矿床黄铁矿流体包裹体氦、氩同位素体系及其对成矿动力学背景的示踪. 科学通报, 54(12): 1725-1735. [Zhu L M,Zhang G W,Guo B,Li B.2009. He-Ar isotopic system of fluid inclusions in pyrite from the molybdenum deposits in south margin of North China Block and its trace to metallogenetic and geodynamic background. Chinese Science Bulletin, 54(12): 1725-1735] [29] 朱士兴,邢裕盛,张鹏远. 1994. 华北地台中、上元古界生物地层序列. 北京: 地质出版社,192-200. [Zhu S X,Xing Y S,Zhang P Y.1994. Sequences of Biostratigraphy of the Middle and Upper Proterozoic in the North China Platform. Beijing: Geological Publishing House,192-200] [30] Adachi M,Yamamoto K,Sugisaki R.1986. Hydrothermal chert and associated siliceous rocks from the Northern Pacific: their geological significance as indication of ocean ridge activity. Sedimentary Geology, 47(1): 125-148. [31] Beauchamp B,Boud A.2002. Growth and demise of Permian biogenic chert along Northwest Pangea: evidence for End Permian Collapse of thermohaline circulation. Palaeogeography, Palaeoclimatology,Palaeoecology, 184(1-2): 37-63. [32] Boström K,Kraaemer T,Gartner S.1973. Provenance and accumulation rates of opaline silica,Al,Ti,Fe,Mn,Cu,Ni,and Co in pacific pelagic sediments. Chemical Geology, 11(2): 123-148. [33] Boström K,Peterson M N A.1969. The origin of aluminum-poor ferromanganoan sediments in areas of high heat flow on the East Pacific Rise. Marine Geology, 7(5): 427-447. [34] Deng X H,Chen Y J,Santosh M,Yao J M.2013. Genesis of the 1.76 Ga Zhaiwa Mo-Cu and its link with the Xiong’er volcanics in the North China Craton: implications for accretionary growth along the margin of the Columbia supercontinent. Precambrian Research,227(S1): 337-348. [35] Dong Y P,Yang Z,Liu X M,Zhang X N,He D F,Li W,Zhang F F,Sun S S,Zhang H F,Zhang G W.2014. Neoproterozoic amalgamation of the Northern Qinling terrain to the North China craton: constraints from geochronology and geochemistry of the Kuanping ophiolite. Precambrian Research, 255: 77-95. [36] Dong Y P,Santosh M.2016. Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt,Central China. Gondwana Research, 29: 1-40. [37] Dong Y P,Sun S S,Yang Z,Liu X M,Zhang F F,Li W,Cheng B,He D F,Zhang G W.2017. Neoproterozoic subduction-accretionary tectonics of the South Qinling Belt,China. Precambrian Research, 293: 73-90. [38] Emilio C.2002. Aquifer overexploitation: what does it mean?Hydrogeology Journal, 10(2): 254-277. [39] Friedman G M.1962. Comparison of moment measures for sieving and thin-section data in sedimentary petrological studies. Journal of Sedimentary Research, 32(1): 15-25. [40] German C R,Klinkhamer G P,Edmond J M,Mura A,Elderfield H.1990. Hydrothermal scavenging of rare earth elements in the ocean. Nature, 345: 516-518. [41] Girty G H,Ridge D L,Knaack C,Johnson D,AL-Riyami R K.1996. Provenance and depositional setting of Paleozoic chert and argillite,Sierra Nevada,California. Journal of Sedimentary Research, 66(1): 107-118. [42] Hara H,Kurihara T,Kuroda J.2010. Geological and geochemical aspects of A Devonian siliceous succession in Northern Thailand: implications for the opening of the Paleo-Tethys.Palaeogeography, Palaeoclimatology,Palaeoecology, 297(2): 452-464. [43] He B,Xu Y G,Zhong Y T,Guan J P.2010. The Guadalupian-Lopingian boundary mudstones at Chaotian(SW China)are clastic rocks rather than acidic tuffs: implication for a temporal coincidence between the End-Guadalupian mass extinction and the Emeishan volcanism. Lithos, 119(1-2): 10-19. [44] Hu G,Zhao T,Zhou Y.2014. Depositional age,provenance and tectonic setting of the Proterozoic Ruyang Group,southern margin of the North China Craton. Precambrian Research, 246(6): 296-318. [45] Maliva R G,Knoll A H,Simonson B M.2005. Secular change in the Precambrian silica cycle: insights from chert petrology. Geological Society of America Bulletin, 117(7): 835. [46] Marin-Carbonne J,Chaussidon M,Boiron M C,Robert F.2011. A combined in situ oxygen,silicon isotopic and fluid inclusion study of a chert sample from Onverwacht Group(3.35 Ga,South Africa): new constraints on fluid circulation. Chemical Geology, 286(3-4): 59-71. [47] Marin-Carbonne J,Chaussidon M,Robert F.2012. Micrometer-scale chemical and isotopic criteria(O and Si)on the origin and history of Precambrian cherts: implications for paleotemperature reconstructions. Geochimica et Cosmochimica Acta, 92(9): 129-147. [48] McLennan S M.1989. Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. Reviews in Mineralogy and Geochemistry, 21(1): 169-200. [49] Meng Y,Zuo P,Zheng D,Sun F,Wang P,Wang Z,Li Y.2018. The earliest clastic sediments overlying the Xiong’er volcanic rocks: implications for the Mesoproterozoic tectonics of the southern North China Craton. Precambrian Research, 305: 268-282. [50] Murray R W,Buchholtz Ten Brink M R,Gerlach D C,Jones D L.1991. Rare earth,major,and trace element in chert from franciscan complexand monterey group: assessing REE Source to fine-grained marine sediments. Geochimica et Cosmochimica Acta, 55(7): 1875-1895. [51] Murray R W,Marilyn R,Buchholtz Ten Brink M R.1992. Interoceanic variation in the rare earth,major,and trace element depositional chemistry of chert: perspectives gained from the DSDP and ODP Record. Geochimica et Cosmochimica Acta, 56(5): 1897-1913. [52] Murray R W.1994. Chemical criteria to identify the depositional environment of chert: general principles and application. Sedimentary Geology, 90(3-4): 213-232. [53] Nie H,Yao J,Wan X,Zhu X Y,Siebel W,Chen F K.2016. Precambrian tectonothermal evolution of South Qinling and its affinity to the Yangtze Block: evidence from zircon ages and Hf-Nd isotopic compositions of basement rocks. Precambrian Research, 286: 167-179. [54] Rais W R,Buckley F.1988. Degree of pyritization of iron as a palaeoenvironmental indicator of bottom water oxygenation. Journal of Sedimentary Petrology, 58(5): 812-819. [55] Robert F,Marc C.2006. A palaeotemperature curve for the Precambrian oceans based on silicon isotopes in cherts. Nature, 443: 969-972. [56] Shimizu H,Masuda A.1977. Cerium in chert as indication of marine environment of its formation. Nature,266: 346-348. [57] Taylor S R,McLennan S M.1985. The Continental Crust: Its Composition and Evolution. Oxford: Blackwell Scientific Publications,9-56. [58] Wang H,Wu Y B,Gao S,Liu X C,Liu Q,Qin Z W,Xie S W,Zhou L,Yang S H.2013. Continental origin of eclogites in the North Qinling terrane and its tectonic implications. Precambrian Research, 23: 13-30. [59] Yamamoto K.1987. Geochemical characteristics and depositional environments of cherts and associated rocks in the Franciscan and Shimanto. Sedimentary Geology, 52(1-2): 65-108. [60] Zhang H F,Zhang J,Zhang G W,Santosh M,Yu H,Yang Y H,Wang J L.2016. Detrital zircon U-Pb,Lu-Hf,and O isotopes of the Wufoshan Group: implications for episodic crustal growth and reworking of the southern North China craton. Precambrian Research, 273: 112-128. [61] Zhao G C,He Y H,Sun M.2009. The Xiong’er volcanic belt at the southern margin of the North China Craton: petrographic and geochemical evidence for its outboard position in the Paleo-Mesoproterozoic Columbia Supercontinent. Gondwana Research, 16(2): 170-181.