[1] 任国选,孟祥化,葛铭,王德海,郭峰. 2008. 蓟县地区雾迷山组硅质岩成因研究. 沉积学报, 26(1): 71-75.
[Ren G X,Meng X H,Ge M,Wang D H,Guo F.2008. The origin of siliceous rock in Wumishan Formation,Jixian,Tianjin. Acta Sedimentologica Sinica, 26(1): 71-75]
[2] 杨宗玉,罗平,刘波,王珊,白莹,周明. 2017. 塔里木盆地阿克苏地区下寒武统玉尔吐斯组硅质岩分类及成因. 地学前缘, 24(5): 245-264.
[Yang Z Y,Luo P,Liu B,Wang S,Bai Y,Zhou M.2017. Analysis of petrological characteristic and origin of siliceous rocks during the earliest Cambrian Yurtus Formation in the Aksu area of the Tarim Basin in Northwest China. Earth Science Frontiers, 24(5): 245-264]
[3] 刘英俊,曹励明,李兆麟,王鹤年,储同庆,张景荣. 1984. 元素地球化学. 北京: 科学出版社: 50-371.
[Liu Y J,Cao L M,Li Z L,Wang H N,Chu T Q,Zhang J R.1984. Element Geochemistry. Beijing: Science Press,50-371]
[4] 钱一雄,储呈林,李曰俊,王毅,张仲培,杨鑫,李万鹏,马红强,陈跃,邵志兵,庄新兵. 2021.浅变质泥页岩的基本特征及环境分析: 以阿尔金红柳沟Ⅰ号剖面新元古界冰沟南组为例. 石油实验地质,43(2):193-207.
[Qian Y X,Chu C L,Li Y J,Wang Y,Zhang Z P,Yung X,Li W P,Ma H Q,Chen Y,Shao Z B,Zhuang X B.2021. Characteristics and environment indication of mud shale undergone low temperature metamorphism: a case study of Neoproterozoic Binggounan Formation,at Hongliugou Ⅰ section, Altyn Tagh fault. Petroleum Geology & Experiment,43(2):193-207]
[5] 彭军,徐望国. 2001. 湘西上震旦统层状硅质岩沉积环境的地球化学标志. 地球化学, 30(3): 293-298.
[Peng J,Xu W G.2001. Geochemical characteristic of depositional environment of the Upper Sinian bedded siliceous rocks in Western Hunan. Geochimica, 30(3): 293-298]
[6] 吕炳全,瞿建忠. 1989. 下扬子地区早二叠世海进和上升流形成的缺氧环境的沉积. 科学通报, 34(22): 1721-1724.
[Lu B Q,Qu J Z.1989. Deposition of anoxic environment formed by transgression and upwelling of Early Permian in the lower Yangtze region. Chinese Scientific Bulletin, 34(22): 1721-1724]
[7] 新疆维吾尔自治区地质矿产局. 1993. 新疆维吾尔自治区区域地质志. 北京: 地质出版社,12-15.
[Bureau of Geology and Mineral Resources of Xinjiang Uygur Autonomous Region. 1993. Regional Geology of Xinjiang Uygur Autonomous Region. Beijing: Geological Publishing House,12-15]
[8] 青海省地质矿产局. 1982. 青海省区域地质志. 地质出版社: 北京, 15-21.
[Bureau of Geology and Mineral Resources of Qinghai Province. 1982. Regional Geology of Qinghai Province. Beijing:Geological Press, 15-21]
[9] 新疆维吾尔自治区地质矿产局地质调查大队. 1982. 中华人民共和国地质图(巴什考供幅). 北京: 地质出版社.
[Geological Team,Bureau of Geology and Mineral Resources of Xinjiang Uygur Autonomous Region. 1982. Geological Map of the People’s Republic of China(Bashikao). Beijing: Geological Publishing House]
[10] Adachi M,Yamamoto K,Suigiske R.1986. Hydrothermal chert and associated sillicons rocks from the Northern Pacific: their geological significance as indication of ocean ridge activity. Sediment Geology, 47: 125-148.
[11] Alt J C.1988. The chemistry and sulfur isotope composition of massive sulfide and associated deposits on the Green seamount,Eastern Pacific. Economic Geology, 83: 1026-1033.
[12] Boström K,Peterson M N A.1969. The origin of Al-poor ferro-maganoan sediments in areas of high heat flow on the East pacific rise. Marine Geology, 7: 427-447.
[13] Boström K,Kraaemer T,Gartners.1973. Provenance and accumulation rates of opaline silica,Al,Ti,Fe,Mn,Cu,Ni and Co in Pacific pelagic sediments. Chemical Geology, 11: 132-148.
[14] Boström K,Rydell H,Joensuu O.1979. Langban: an exhalative sedimentary deposit?Economic Geology, 74: 1002-1011.
[15] Chen D Z,Wang J G,Qing H R,Yan D T,Li R W.2009. Hydrothermal venting activities in the Early Cambrian,South China: petrological,geochronological and stable isotopic constraints. Chemical Geology, 258: 168-181.
[16] Chen K,Lüa X X,Qian Y X,Wu S Q,Dong S F.2020. δ30Si and δ18O of multiple silica-phases in chert: implications for δ30Si sea water of Darriwilian sea water and seasurface temperatures.Palaeogeography,Palaeoclimatology,Palaeoecology,109584.
[17] Clayton R N,ONeil J R,Mayeda T K.1972. Oxygen isotope exchange between quartz and water. Journal of Geopjysical Research, 77: 3057-3067.
[18] Clayton R N.1986. High temperature isotope effects in the early solar system. In: Valley J W,Taylor Jr H P,ONeil J R(eds). Stable isotopes in high temperature geological processes. Review in Mineralogy,Chantilly,VA: Mineralogical Society of America, 16: 129-139.
[19] Douthitt C B.1982. The geochemistry of the stable isotopes of silicon. Geochimca et Cosmochimca Acta, 46(8): 1449-1458.
[20] Elizabeth J T,Stefurak E J T,Lower D R,Zentner D,Fischer W W.2015. Sedimentology and geochemistry of Archean silica granules.Geological Society of America Bulletin, 127(7): 1090-1107.
[21] Fournier R O.1977. Chemical geothermometers and mixing models for geotherm systems. Geothermics, 5: 41-50.
[22] Hesse R.1989. Silica diagenesis: origin of inorganic and replacement cherts. Earth-Science Reviews, 26(4): 253-284.
[23] Hoy I D.1993. Regional evolution of hydrothermal fluids in the Noranda district,Quebec: evidence from δ18O values from volcanogenic massive sulfide deposits. Economic Geology, 88: 1526-1541.
[24] Isabelle B D.2006. Si stable isotopes in the Earth’surface: a review. Journal of Geochemical exploration, 88: 252-256.
[25] Joydip M,Asru K C,Chanda S K.1999. Fabric development in Proterozoic bedded chert,Penganga group,Adilabad,India: sedimentologic implication. Journal of sedimentary Research, 69(3): 738-746.
[26] Kastner,Keene,Gieskes.1977. Diagenesis of siliceous oozes Ⅰchemical controls on the rate of opal-a to opal-CT transformation: an experimental study. Geochimca et Cosmochimca Acta, 41(8): 1041-1059.
[27] Knauth L P,Epstein S.1976. Hydrogen and oxygen isotope ratios in nodular and bedded cherts. Geochimca et Cosmochimca Acta, 40(9): 1095-1108.
[28] KawabeI. 1978. Calculation of oxygen isotope fractionation in quartz-water system with special reference to the low temperature fractionation. Geochimca et Cosmochimca Acta,42(6A): 613-622.
[29] Maliva R G,Knoll A H,Simonson B M.2005. Secular change in the Precambrian silica cycle: insights from chert petrology. Geological Society of America Bulletin,117(7/8): 835-845.
[30] Marin-Carbonne J,Robert F,Chaussidon M.2014. The silicon and oxygen isotope composition of Precambrian cherts: a record of oceanic paleo-temperatures?Precambrian Research, 247: 223-234.
[31] Murray R W,Buchholtz ten Brink M R,Jones D L,Gerlach D C,Russ G P.1990. Rare earth elements as indicators of different marine depositional environments in chert and shale. Geology, 18: 268-271.
[32] Murray R W,Buchholtz ten Brink M R,Jones D L,Gerlach D C,Russ G P,Jones D.1991. Rare earth,major and trace elements in chert from the Franciscan Complex and Monterey Group,California: assessing REE sources to fine-grained marine sediments. Geochimica Cosmochimica Acta, 55: 1875-1895.
[33] Murray R W.1994. Chemical criteria to identify the depositional environment of chert: general principles and applications. Sedimentary Geology, 90(3-4): 213-232.
[34] Packard J J,Ihsan Al-Aasm,Iain S,Zeev B,Jim D.2001. A Devonian hydrothermal chert reservoir: the 225 bcf Parkland Field,British Columbia,Canada. AAPG Bulletin, 85(1): 51-84
[35] Peng J,Yi H S,Xia W J.2000. Geochemical Criteria of the Upper Sinian cherts of hydrothermal origin on the southeast continental margin of the Yangtze Plate. Chinese Journal of Geochemistry, 19(3): 219-284.
[36] Rogers J P,Longman M W.2001. An introduction to chert reservoirs of North Amercia. AAPG Bulletin, 85(1): 1-5.
[37] Rona P A.1983. Hydrothermal Processes at Seafloors Spreading Centers. New York: Plenum Press,539-555.
[38] Stefurak E J T,Fischer W W,Lower D R.2015. Texture-specific Si isotope variations in Barberton Greenstone Belt cherts record low temperature fractionations in early Archeanseawater. Geochimica Cosmochimica Acta, 150: 26-52.
[39] Wagoner den Boorn S H,Wagoner Bergen M J,Nijman W,Vroon P Z.2007. Dual role of seawater and hydrothermal fluids in EarlyArchean chert formation: evidence from silicon isotopes.Geology, 35(10): 939-942.
[40] Wagoner den Boorn S H,Wagoner Bergen M J,Vroon P Z,De Vries S T,Nijman W.2010. Silicon isotope and trace element constraints on the origin of -3.5 Ga cherts: implications for early Archaean marine environments. Geochimica et Cosmochimica Acta, 74: 1077-1103.
[41] Veizer J,Ala D,Bruckschen P,Buhl D,Bruhn F,Carden G A F,Diener A,Ebneth S,Godderis Y,Jasper T,Korte C,Pawellek F,Podlaha O G,Strauss H.1999. 87Sr/86Sr,δ13C and δ18O evolution of Phanerozoic seawater. Chemical Geology, 161(1): 59-88.
[42] Yamamoto K.1987. Geochemical characteristics and depositional environment of cherts and associated rocks in the Franciscan and Shiment terranes. Sedimentary Geology, 52: 65-108. |