Prediction of high quality deep and ultra-deep dolostones reservoirs in Tarim Basin by well logs
Lai Jin1,2, Bao Meng2, Liu Shi-Chen2, Li Dong2, Wang Song2, Yang Ke-Fu3, Chen Xu3, Wang Gui-Wen1,2, Ding Xiu-Jian4
1 State Key Laboratory of Petroleum Resources and Prospecting,China University of Petroleum(Beijing),Beijing 102249,China; 2 College of Geosciences,China University of Petroleum(Beijing),Beijing 102249,China; 3 Research Institute of Petroleum Exploration and Development,Tarim Oilfield Company,CNPC,Xinjiang Korla 841000,China; 4 Key Laboratory of Deep Oil and Gas,China University of Petroleum(East China),Shandong Qingdao 266580,China
Abstract The Cambrian dolostone is one of the most important exploration targets of deep and ultra-deep strata in Tarim Basin. However,it has characteristics of ancient geological age,deep burial,and complex tectonic and diagenetic evolution. Therefore,it is of great significance to understand the genetic mechanism,and establish a matched well logs evaluation method for various kinds of dolostone. Based on the comprehensive observation of core,thin section,conventional and imaging logs,two types of dolostone i.e. ,“karst transformation type”and “sedimentary facies dominated”are recognized in the Tarim Basin. The karst transformation dolostone reservoir are controlled by karst facies belt and can be divided into four zones in the vertical direction,namely the surface karst zone,vertical vadose zone,horizontal hyporheic zone and deep slow flow zone. The reservoir quality of depositional facies controlled dolostone is evidently controlled by high energy depositional facies such as the grain bank. The recognition patterns of karst dissolution belt and sedimentary microfacies by conventional and imaging logs data and marked by core sample are established and applied in the comprehensive interpretation of dolostone reservoir in the single well and prediction of favorable development area. The high angle fractures and horizontal dissolution vugs in the vertical vadose zone,horizontal hyporheic zone are favorable for the formation of high quality karst transformation type dolostone with fracture-cave system. The high energy depositional facies(shoal and reef facies,and tidal flat)are favorable for the formation of primary pores and secondary pores in the sedimentary facies dominated dolostone,and therefore become the high quality reservoirs. The results will provide theoretical guidance and technical support for the prediction of the spatial distribution of favorable deep and ultra-deep dolostone reservoir.
Fund:National Natural Science Foundation of China(No.41872133),Natural Science Foundation of Beijing(No.8204069),the Opening Fund of Key Laboratory of Deep Oil & Gas(No.20CX02116A),Science Foundation of China University of Petroleum(Beijing)(No.2462021YXZZ003)
Corresponding Authors:
Wang Gui-Wen,born in 1966,Ph.D.,professor,doctoral supervisor,is mainly engaged in sedimentology,reservoir geology and well logging geology.E-mail: wanggw@cup.edu.cn.
About author: Lai Jin,born in 1988,Ph.D.,associate professor,doctoral supervisor,is mainly engaged in sedimentology,reservoir geology and well logging geology.E-mail: laijin@cup.edu.cn.
Cite this article:
Lai Jin,Bao Meng,Liu Shi-Chen et al. Prediction of high quality deep and ultra-deep dolostones reservoirs in Tarim Basin by well logs[J]. JOPC, 2021, 23(6): 1225-1242.
Lai Jin,Bao Meng,Liu Shi-Chen et al. Prediction of high quality deep and ultra-deep dolostones reservoirs in Tarim Basin by well logs[J]. JOPC, 2021, 23(6): 1225-1242.
[1] 陈代钊,钱一雄. 2017. 深层—超深层白云岩储集层: 机遇与挑战. 古地理学报, 19(2): 187-196. [Chen D Z,Qian Y X.2017. Deep or super-deep dolostone reservoirs: opportunities and challenges. Journal of Palaeogeography(Chinese Edition), 19(2): 187-196] [2] 达丽亚,张新涛,徐春强,边立恩,张捷. 2019. 渤海海域奥陶系碳酸盐岩岩溶储层特征及主控因素: 以石臼坨凸起427构造带为例. 中国海上油气, 31(4): 36-45. [Da L Y,Zhang X T,Xu C Q,Bian L E,Zhang J.2019. Characteristics and controlling factors of Ordovician Karst reservoirs in Bohai Sea: a case study of 427 tectonic belt in Shijiutuo uplift. China Offshore Oil and Gas, 31(4): 36-45] [3] 杜金虎,潘文庆. 2016. 塔里木盆地寒武系盐下白云岩油气成藏条件与勘探方向. 石油勘探与开发, 43(3): 327-339. [Du J H,Pan W Q.2016. Accumulation conditions and play targets of oil and gas in the Cambrian subsalt dolomite,Tarim Basin,NW China. Petroleum Exploration and Development, 43(3): 327-339] [4] 冯强汉,许淑梅,池鑫琪,舒鹏程,孔家豪,崔慧琪,马慧磊. 2021. 鄂尔多斯盆地西部下古生界风化壳优质储集层发育规律及成因机制: 以桃2区块马家沟组马五1-4亚段为例. 古地理学报, 23(4): 837-854. [Feng Q H,Xu S M,Chi X Q,Shu P C,Kong J H,Cui H Q,Ma H L.2021. Development regularity and genetic mechanism of weathering crust reservoirs in the western Ordos Basin: take the sub-members 1-4 of Member 5 of Majiagou Formation in Tao 2 block as an example. Journal of Palaeogeography(Chinese Edition), 23(4): 837-854] [5] 冯增昭,鲍志东,吴茂炳,金振奎,时晓章. 2006. 塔里木地区寒武纪岩相古地理. 古地理学报, 8(4): 427-439. [Feng Z Z,Bao Z D,Wu M B,Jin Z K,Shi X Z.2006. Lithofacies palaeogeography of the Cambrian in Tarim area. Journal of Palaeogeography(Chinese Edition), 8(4): 427-439] [6] 焦伟伟,吕修祥,周园园,韩剑发,熊方明,赵越. 2011. 塔里木盆地塔中地区奥陶系碳酸盐岩储层主控因素. 石油与天然气地质, 32(2): 199-206. [Jiao W W,Lü X X,Zhou Y Y,Han J F,Xiong F M,Zhao Y.2011. Main controlling factors of the Ordovician carbonate reservoirs in Tazhong area,the Tarim Basin. Oil & Gas Geology, 32(2): 199-206] [7] 何小胡,李俊良,李国军,梁全胜,刘新宇. 2011. 成像测井沉积学研究在南海西部油田的应用. 测井技术, 35(4): 363-370. [He X H,Li J L,Li G J,Liang Q S,Liu X Y.2011. Sedimentology research on imaging well logging and its application to western South China Sea Oilfield. Well Logging Technology, 35(4): 363-370] [8] 何江,方少仙,侯方浩,阎荣辉,赵忠军,姚坚,唐秀军,吴国荣. 2013. 风化壳古岩溶垂向分带与储集层评价预测: 以鄂尔多斯盆地中部气田区马家沟组马五5—马五1亚段为例. 石油勘探与开发, 40(5): 534-542. [He J,Fang S X,Hou F H,Yan R H,Zhao Z J,Yao J,Tang X J,Wu G R.2013. Vertical zonation of weathered crust ancient karst and the reservoir evaluation and prediction: a case study of M55-M51 sub-members of Majiagou Formation in gas fields,central Ordos Basin,NW China. Petroleum Exploration and Development, 40(5): 534-542] [9] 华晓莉,李慧勇,孙希家,陶莉,胡贺伟. 2020. 渤中凹陷碳酸盐岩潜山岩溶分带特征与优质储层分布规律研究. 高校地质学报, 26(3): 333-338. [Hua X L,Li H Y,Sun X J,Tao L,Hu H W.2020. Distribution pattern of high-quality reservoirs and karst zoning feature of carbonate rocks in buried hills: a case study from the Bozhong Sag,Bohai Bay Basin,China. Geological Journal of China Universities, 26(3): 333-338] [10] 黄擎宇,胡素云,潘文庆,刘伟,张艳秋,石书缘,王坤. 2016. 塔里木盆地巴楚地区寒武系储层特征及主控因素. 天然气地球科学, 27(6): 982-993. [Huang Q Y,Hu S Y,Pan W Q,Liu W,Zhang Y Q,Shi S Y,Wang K.2016. Characteristics and controlling factors of Cambrian carbonate reservoirs in Bachu area,Tarim Basin,NW China. Natural Gas Geoscience, 27(6): 982-993] [11] 赖锦,韩能润,贾云武,季玉山,王贵文,庞小娇,贺智博,王松. 2018. 基于测井资料的辫状河三角洲沉积储层精细描述. 中国地质, 45(2): 304-318. [Lai J,Han N R,Jia Y W,Ji Y S,Wang G W,Pang X J,He Z B,Wang S.2018. Detailed description of the sedimentary reservoir of a braided delta based on well logs. Geology in China, 45(2): 304-318] [12] 赖锦,刘秉昌,冯庆付,庞小娇,赵太平,王贵文,王抒忱,陈晶. 2020. 鄂尔多斯盆地靖边气田马家沟组五段白云岩沉积微相测井识别与评价. 地质学报, 94(5): 1551-1567. [Lai J,Liu B C,Feng Q F,Pang X J,Zhao T P,Wang G W,Wang S C,Chen J.2020. Well logging identification and evaluation of depositional microfacies in dolostones from the 5th Member of the Ordovician Majiagou Formation in the Jingbian gas field,Ordos Basin. Acta Geologica Sinica, 94(5): 1551-1567] [13] 赖锦,王贵文,庞小娇,韩宗晏,李栋,赵仪迪,王松,江程舟,李红斌,黎雨航. 2021. 测井地质学前世、今生与未来: 写在《测井地质学·第二版》出版之时. 地质论评, 67(6): 1804-1828. [Lai J,Wang G W,Pang X J,Han Z Y,Li D,Zhao Y D,Wang S,Jiang C Z,Li H B,Li Y H.2021. The past,present and future of well logging geology: to celebrate the publication of second edition of “Well Logging Geology”. Geological Review, 67(6): 1804-1828] [14] 李国欣,赵太平,石玉江,胡琮,陈阵,凡雪纯,李栋,赖锦. 2018. 鄂尔多斯盆地马家沟组碳酸盐岩储层成岩相测井识别评价. 石油学报, 39(10): 1141-1154. [Li G X,Zhao T P,Shi Y J,Hu C,Chen Z,Fan X C,Li D,Lai J.2018. Diagenetic facies logging recognition and evaluation of carbonate reservoirs in Majiagou Formation,Ordos Basin. Acta Petrolei Sinica, 39(10): 1141-1154] [15] 马永生,何登发,蔡勋育,刘波. 2017. 中国海相碳酸盐岩的分布及油气地质基础问题. 岩石学报, 33(4): 1007-1020. [Ma Y S,He D F,Cai X Y,Liu B.2017. Distribution and fundamental science questions for petroleum geology of marine carbonate in China. Acta Petrologica Sinica, 33(4): 1007-1020] [16] 倪新锋,田景春,陈洪德,夏青松,张锦泉,窦伟坦,姚泾利,宋江海. 2007. 应用测井资料定量识别沉积微相: 以鄂尔多斯盆地姬塬—白豹地区三叠系延长组为例. 成都理工大学学报(自然科学版), 34(1): 57-61. [Ni X F,Tian J C,Chen H D,Xia Q S,Zhang J Q,Dou W T,Yao J L,Song J H.2007. Quantitative discrimination of sedimentary micofacies by use of log data: taking the Triassic Yanchang Formation in Jiyuan-Baibao region of Ordos Basin for example. Journal of Chengdu University of Technology(Science & Technology Edition), 34(1): 57-61] [17] 倪新锋,沈安江,陈永权,关宝珠,俞广,严威,熊冉,李维岭,黄理力. 2015. 塔里木盆地寒武系碳酸盐岩台地类型、台缘分段特征及勘探启示. 天然气地球科学, 26(7): 1245-1255. [Ni X F,Shen A J,Chen Y Q,Guan B Z,Yu G,Yan W,Xiong R,Li W L,Huang L L.2015. Cambrian carbonate platform types,platform margin segmentation characteristics and exploration enlightenment in Tarim Basin. Natural Gas Geoscience, 26(7): 1245-1255] [18] 倪新锋,黄理力,陈永权,郑剑锋,熊益学,朱永进,杨鹏飞,李昌. 2017. 塔中地区深层寒武系盐下白云岩储层特征及主控因素. 石油与天然气地质, 38(3): 489-498. [Ni X F,Huang L L,Chen Y Q,Zheng J F,Xiong Y X,Zhu Y J,Yang P F,Li C.2017. Characteristics and main controlling factors of the Cambrian pre-salt dolomite reservoirs in Tazhong Block,Tarim Basin. Oil & Gas Geology, 38(3): 489-498] [19] 倪新锋,陈永权,王永生,熊冉,朱永峰,朱永进,张天付,俞广,黄理力. 2020. 塔里木盆地轮南地区深层寒武系台缘带新认识及盐下勘探区带: 基于岩石学、同位素对比及地震相的新证据. 海相油气地质, 25(4): 289-302. [Ni X F,Chen Y Q,Wang Y S,Xiong R,Zhu Y F,Zhu Y J,Zhang T F,Yu G,Huang L L.2020. Recognition of platform margin and subsalt exploration prospect of deep buried Cambrian in Lunnan area of Tarim Basin,Northwest China: new understanding based on evidence of petrology,isotope comparison and seismic facies. Marine Origin Petroleum Geology, 25(4): 289-302] [20] 乔占峰,沈安江,倪新锋,朱永进,严威,郑剑锋,黄理力,孙晓伟. 2019. 塔里木盆地下寒武统肖尔布拉克组丘滩体系类型及其勘探意义. 石油与天然气地质, 40(2): 392-402. [Qiao Z F,Shen A J,Ni X F,Zhu Y J,Yan W,Zheng J F,Huang L L,Sun X W.2019. Types of mound-shoal complex of the Lower Cambrian Xiaoerbulake Formation in Tarim Basin,Northwest China,and its implications for exploration. Oil & Gas Geology, 40(2): 392-402] [21] 孙鲁平,首皓,赵晓龙,李平. 2009. 基于微电阻率扫描成像测井的沉积微相识别. 测井技术, 33(4): 379-383. [Sun L P,Shou H,Zhao X L,Li P.2009. Sedimentary facies identification based on FMI imaging logging data. Well Logging Technology, 33(4): 379-383] [22] 沈安江,赵文智,胡安平,佘敏,陈娅娜,王小芳. 2015. 海相碳酸盐岩储集层发育主控因素. 石油勘探与开发, 42(5): 545-554. [Shen A J,Zhao W Z,Hu A P,She M,Chen Y N,Wang X F.2015. Major factors controlling the development of marine carbonate reservoirs. Petroleum Exploration and Development, 42(5): 545-554] [23] 沈安江,郑剑锋,陈永权,倪新锋,黄理力. 2016. 塔里木盆地中下寒武统白云岩储集层特征、成因及分布. 石油勘探与开发, 43(3): 340-349. [Shen A J,Zheng J F,Chen Y Q,Ni X F,Huang L L.2016. Characteristics,origin and distribution of dolomite reservoirs in Lower-Middle Cambrian,Tarim Basin,NW China. Petroleum Exploration and Development, 43(3): 340-349] [24] 田雷,崔海峰,刘军,张年春,石小茜. 2018. 塔里木盆地早、中寒武世古地理与沉积演化. 石油与天然气地质, 39(5): 1011-1021. [Tian L,Cui H F,Liu J,Zhang N C,Shi X Q.2018. Early-Middle Cambrian paleogeography and depositional evolution of Tarim Basin. Oil & Gas Geology, 39(5): 1011-1021] [25] 吴煜宇,张为民,田昌炳,宋本彪,高计县,高严. 2013. 成像测井资料在礁滩型碳酸盐岩储集层岩性和沉积相识别中的应用: 以伊拉克鲁迈拉油田为例. 地球物理学进展, 28(3): 1497-1506. [Wu Y Y,Zhang W M,Tian C B,Song B B,Gao J X,Gao Y.2013. Application of image logging in identifying lithologies and sedimental facies in reef-shoal carbonate reservoir: take Rumaila Oil Field in Iraq for Example. Progress in Geophysics, 28(3): 1497-1506] [26] 孙龙德,邹才能,朱如凯,张云辉,张水昌,张宝民,朱光有,高志勇. 2013. 中国深层油气形成、分布与潜力分析. 石油勘探与开发, 40(6): 641-649. [Sun L D,Zou C N,Zhu R K,Zhang Y H,Zhang S C,Zhang B M,Zhu G Y,Gao Z Y.2013. Formation,distribution and potential of deep hydrocarbon resources in China. Petroleum Exploration and Development, 40(6): 641-649] [27] 王珺,杨长春,许大华,迟秀荣,谭茂金. 2005. 微电阻率扫描成像测井方法应用及发展前景. 地球物理学进展, 20(2): 357-364. [Wang J,Yang C C,Xu D H,Chi X R,Tan M J.2005. Application and prospect of the formation microresistivity image well logging. Progress in Geophysics, 20(2): 357-364] [28] 王珊,曹颖辉,杜德道,王石,李洪辉,董洪奎,严威,白莹. 2018. 塔里木盆地柯坪—巴楚地区肖尔布拉克组储层特征与主控因素. 天然气地球科学, 29(6): 784-795. [Wang S,Cao Y H,Du D D,Wang S,Li H H,Dong H K,Yan W,Bai Y.2018. The characteristics and main controlling factors of dolostone reservoir in Lower Cambrian Xiaoerbulak Formation in Keping-Bachu area,Tarim Basin,NW China. Natural Gas Geoscience, 29(6): 784-795] [29] 肖承文,张承森,刘世伟,韩东春,吴兴能,张璋,居大海,单交义. 2015. 塔中寒武系深层白云岩储层测井评价技术. 天然气地球科学, 26(7): 1323-1333. [Xiao C W,Zhang C S,Liu S W,Han D C,Wu X N,Zhang Z,Ju D H,Shan J Y.2015. Logging evaluation technology of Cambrian Deep dolomite reservoir in Tazhong area. Natural Gas Geoscience, 26(7): 1323-1333] [30] 熊鹰,谭秀成,伍坤宇,王小芳. 2020. 碳酸盐岩储集层成岩作用中“孔隙尺寸控制沉淀”研究进展、地质意义及鄂尔多斯盆地实例. 古地理学报, 22(4): 744-760. [Xiong Y,Tan X C,Wu K Y,Wang X F.2020. Research advances,geological implication and application in Ordos Basin of the“pore-size controlled precipitation”in diagenesis of carbonate rock reservoir. Journal of Palaeogeography(Chinese Edition), 22(4): 744-760] [31] 严威,郑剑锋,陈永权,黄理力,周鹏,朱永进. 2017. 塔里木盆地下寒武统肖尔布拉克组白云岩储层特征及成因. 海相油气地质, 22(4): 35-43. [Yan W,Zheng J F,Chen Y Q,Huang L L,Zhou P,Zhu Y J.2017. Characteristics and genesis of dolomite reservoir in the Lower Cambrian Xiaoerblak Formation,Tarim Basin. Marine Origin Petroleum Geology, 22(4): 35-43] [32] 于洲,孙六一,吴兴宁,吴东旭,姚学辉,丁振纯. 2012. 鄂尔多斯盆地靖西地区马家沟组中组合储层特征及主控因素. 海相油气地质, 17(4): 49-56. [Yu Z,Sun L Y,Wu X N,Wu D X,Yao X H,Ding Z C.2012. Characteristics and controlling factors of the middle array of Ordovician Majiagou reservoirs to the west of Jingbian gas field,Ordos Basin. Marine Origin Petroleum Geology, 17(4): 49-56] [33] 张德民,鲍志东,郝雁,杨飞,陈敏,仲向云. 2016. 塔里木盆地牙哈—英买力寒武系潜山区优质储层形成模式. 天然气地球科学, 27(10): 1797-1807. [Zhang D M,Bao Z D,Hao Y,Yang F,Chen M,Zhong X Y.2016. Formation model of high-quality reservoirs within Cambrian buried hill in Yaha-Yingmaili area,Tarim Basin. Natural Gas Geoscience, 27(10): 1797-1807] [34] 张光亚,马锋,梁英波,赵喆,秦雁群,刘小兵,张可宝,客伟利. 2015. 全球深层油气勘探领域及理论技术进展. 石油学报, 36(9): 1156-1166. [Zhang G Y,Ma F,Liang Y B,Zhao Z,Qin Y Q,Liu X B,Zhang K B,Ke W L.2015. Domain and theory-technology progress of global deep oil & gas exploration. Acta Petrolei Sinica, 36(9): 1156-1166] [35] 郑剑锋,沈安江,刘永福,陈永权. 2012. 多参数综合识别塔里木盆地下古生界白云岩成因. 石油学报,33(S2): 145-153. [Zheng J F,Shen A J,Liu Y F,Chen Y Q.2012. Multi-parameter comprehensive identification of the genesis of Lower Paleozoic dolomite in Tarim Basin,China. Acta Petrolei Sinica,33(S2): 145-153] [36] 郑剑锋,沈安江,刘永福,陈永权. 2013. 塔里木盆地寒武系与蒸发岩相关的白云岩储层特征及主控因素. 沉积学报, 31(1): 89-98. [Zheng J F,Shen A J,Liu Y F,Chen Y Q.2013. Main controlling factors and characteristics of Cambrian dolomite reservoirs related to evaporite in Tarim Basin. Acta Sedimentologica Sinica, 31(1): 89-98] [37] 郑剑锋,沈安江,乔占峰,吴兴宁,张天付. 2014. 柯坪—巴楚露头区蓬莱坝组白云岩特征及孔隙成因. 石油学报, 35(4): 664-672. [Zheng J F,Shen A J,Qiao Z F,Wu X N,Zhang T F.2014. Characteristics and pore genesis of dolomite in the Penglaiba Formation in Keping-Bachu outcrop area. Acta Petrolei Sinica,35(4),664-672] [38] 郑剑锋,沈安江,陈永权,倪新锋,张先龙. 2015. 塔里木盆地下古生界白云岩储集空间特征及储层分类探讨. 天然气地球科学, 26(7): 1256-1267. [Zheng J F,Shen A J,Chen Y Q,Ni X F,Zhang X L.2015. Reservoir space and reservoir classification of Lower Paleozoic dolomite in the Tarim Basin. Natural Gas Geoscience, 26(7): 1256-1267] [39] 郑剑锋,陈永权,倪新锋,严威,黄理力,张艳秋. 2016. 基于CT成像技术的塔里木盆地寒武系白云岩储层微观表征. 天然气地球科学, 27(5): 780-789. [Zheng J F,Chen Y Q,Ni X F,Yan W,Huang L L,Zhang Y Q.2016. Microstructure characterization based on CT imaging technology of Cambrian dolomite reservoir in Tarim Basin. Natural Gas Geoscience, 27(5): 780-789] [40] 朱光有,曹颖辉,闫磊,杨海军,孙崇浩,张志遥,李婷婷,陈永权. 2018. 塔里木盆地8000m以深超深层海相油气勘探潜力与方向. 天然气地球科学, 29(6): 755-772. [Zhu G Y,Cao Y H,Yan L,Yang H J,Sun C H,Zhang Z Y,Li T T,Chen Y Q.2018. Petroleum exploration potential and favorable areas of ultra-deep marine strata deeper than 8000meters in Tarim Basin. Natural Gas Geoscience, 29(6): 755-772]. [41] 赵文智,沈安江,胡素云,潘文庆,郑剑锋,乔占峰. 2012. 塔里木盆地寒武—奥陶系白云岩储层类型与分布特征. 岩石学报, 28(3): 758-768. [Zhao W Z,Shen A J,Hu S Y,Pan W Q,Zheng J F,Qiao Z F.2012. Types and distributional features of Cambrian-Ordovician dolostone reservoirs in Tarim Basin,northwestern China. Acta Petrologica Sinica, 28(3): 758-768] [42] 赵文智,沈安江,周进高,王小芳,陆俊明. 2014. 礁滩储集层类型、特征、成因及勘探意义: 以塔里木和四川盆地为例. 石油勘探与开发, 41(3): 257-267. [Zhao W Z,Shen A J,Zhou J G,Wang X F,Lu J M.2014. Types, characteristics, origin and exploration significance of reef-shoal reservoirs: a case study of Tarim Basin, NW China and Sichuan Basin, SW China. Petroleum Exploration and Development, 41(3): 257-267] [43] 赵文智,沈安江,胡安平,周进高,倪新锋. 2015. 塔里木、四川和鄂尔多斯盆地海相碳酸盐岩规模储层发育地质背景初探. 岩石学报, 31(11): 3495-3508. [Zhao W Z,Shen A J,Hu A P,Zhou J G,Ni X F.2015. A discussion on the geological background of marine carbonate reservoirs development in Tarim,Sichuan and Ordos Basins,China. Acta Petrologica Sinica, 31(11): 3495-3508] [44] Aschwanden L,Diamond L W,Adams A.2019. Effects of progressive burial on matrix porosity and permeability of dolostones in the foreland basin of the Alpine Orogen,Switzerland. Marine and Petroleum Geology, 100: 148-164. [45] Donselaar M E,Schmidt J M.2005. Integration of outcrop and borehole image logs for high-resolution facies interpretation: example from a fluvial fan in the Ebro Basin,Spain. Sedimentology, 52: 1021-1042. [46] Jiang L,Cai C,Worden R H,Crowley S F,Jia L,Zhang K,Duncan I J.2016. Multiphase dolomitization of deeply buried Cambrian petroleum reservoirs,Tarim Basin,north-west China. Sedimentology, 63: 2130-2157. [47] Jones G D,Xiao Y.2005. Dolomitization,anhydrite cementation,and porosity evolution in a reflux system: insights from reactive transport models. AAPG Bulletin, 89(5): 577-601. [48] Keeton G,Pranter M,Cole R D,Gustason E R.2015. Stratigraphic architecture of fluvial deposits from borehole images,spectral-gamma-ray response,and outcrop analogs,Piceance Basin,Colorado. AAPG Bulletin, 99(10): 1929-1956. [49] Lai J,Wang G,Fan Z,Wang Z,Chen J,Zhou Z,Wang S,Xiao C.2017. Fracture detection in oil-based drilling mud using a combination of borehole image and sonic logs. Marine and Petroleum Geology, 84: 195-214. [50] Lai J,Wang G,Wang S,Cao J,Li M,Pang X,Han C,Fan X,Yang L,He Z,Qin Z.2018. A review on the applications of image logs in structural analysis and sedimentary characterization. Marine and Petroleum Geology, 95: 139-166. [51] Lai J,Wang S,Wang G,Shi Y,Zhao T,Pang X,Fan X,Qin Z,Fan X.2019. Pore structure and fractal characteristics of Ordovician Majiagou carbonate reservoirs in Ordos Basin,China. AAPG Bulletin, 103(11): 2573-2596. [52] Lai J,Wang S,Zhang C,Wang G,Song Q,Chen X,Yang K,Yuan C.2020. Spectrum of pore types and networks in the deep Cambrian to Lower Ordovician dolostones in Tarim Basin,China. Marine and Petroleum Geology, 112: 104081. [53] Lai J,Liu S,Xin Y,Wang S,Xiao C,Song Q,Chen X,Wang G,Qin Z,Ding X.2021a. Geological-petrophysical insights in the deep Cambrian dolostone reservoirs in Tarim Basin,China. AAPG Bulletin, 105(11): 2263-2296. [54] Lai J,Chen K,Xin Y,Wu X,Chen X,Yang K,Song Q,Wang G,Ding X.2021b. Fracture characterization and detection in the deep Cambrian dolostones in the Tarim Basin,China: insights from borehole image and sonic logs. Journal of Petroleum Science and Engineering, 196: 107659. [55] Li Q,Jiang Z,Hu W,You X,Hao G,Zhang J,Wang X.2016. Origin of dolomites in the Lower Cambrian Xiaoerbulak formation in the Tarim basin,NW China: implications for porosity development. Journal of Asian Earth Sciences, 115: 557-570. [56] Loucks R G.1999. Paleocave carbonate reservoirs: origins,burial-depth modifications,spatial complexity,and reservoir implications. AAPG Bulletin, 83(11): 1795-1834. [57] Tian F,Luo X,Zhang W.2019. Integrated geological-geophysical characterizations of deeply buried fractured-vuggy carbonate reservoirs in Ordovician strata,Tarim Basin. Marine and Petroleum Geology, 99: 292-309. [58] Wang S,Wang G,Lai J,Li D,Liu S,Chen X,Yang K,Song L.2020a. Logging identification and evaluation of vertical zonation of buried hill in Cambrian dolomite reservoir: a study of Yingmai-Yaha buried hill structural belt,northern Tarim basin. Journal of Petroleum Science and Engineering, 195: 107758. [59] Wang G,Lai J,Liu B,Fan Z,Liu S,Shi Y,Zhang H,Chen J.2020b. Fluid property discrimination in dolostone reservoirs using well logs. Acta Geologica Sinica, 94(3): 831-846. [60] Xu C.2007. Interpreting shoreline sands using borehole images: a case study of the Cretaceous Ferron sands in Utah. AAPG Bulletin, 91: 1319-1338. [61] Zhu D,Meng Q,Jin Z,Hu W.2015. Fluid environment for preservation of pore spaces in a deep dolomite reservoir. Geofluids, 15: 527-545.