Abstract Large marine deltas are widely distributed and their sedimentary dynamics are complex. Their fine stratigraphic-sedimentary architecture and evolution are the focus of research in the field of sedimentology for a long term. By integrating core,logging and 3D seismic data,this paper combines the analysis methods of high-resolution seismic sequence stratigraphy and seismic sedimentology to make a comprehensive investigation of the sedimentary characteristics of the early-middle Miocene in the Enping area on the west side of the paleo Pearl River Delta. The main microfacies units of river-controlled deltas such as braided channels and meandering channels are identified,and the typical microfacies developed in wave-controlled deltas such as coastal sand ridge are also revealed. Under the constraint of high-frequency sequence framework,the evolution characteristics of the paleo Pearl River Delta in an individual typical sequence system are revealed: the lowstand systems tracts are dominated by river-controlled delta,with the occurrence of large intersecting braided channels;while within the transgressive and highstand systems tracts,channels are significantly smaller in scales,dominated by small-scale meandering channels,and have typical characteristics of wave movement such as coastal sand ridges. In addition,according to the systematic mapping and evolution analysis of the early Miocene sedimentary facies belt in the Enping area,six large river diversion phenomena were identified within ca. 6 Ma. It is speculated that the sedimentary evolution in the Enping area is obviously affected by the autogenic process.
Fund:Financially supported by the Research Project of CNOOC China Ltd.(Nos. CCL2019SZPS0327,CCL2021SZPS0113)
About author: Li Zhi-Gao,born in 1990,is an engineer in Shenzhen Branch of CNOOC China Ltd. He is mainly engaged in hydrocarbon exploration and geological research of the Pearl River Mouth Basin. E-mail: lizhg34@cnooc.com.cn.
Cite this article:
Li Zhi-Gao,Ding Lin,Li Xiao-Ping et al. Sedimentary characteristics and controlling factors of the western Zhu Ⅰ depression during the early-middle Miocene, Pearl River Mouth Basin[J]. JOPC, 2022, 24(1): 99-111.
Li Zhi-Gao,Ding Lin,Li Xiao-Ping et al. Sedimentary characteristics and controlling factors of the western Zhu Ⅰ depression during the early-middle Miocene, Pearl River Mouth Basin[J]. JOPC, 2022, 24(1): 99-111.
[1]陈雪芳,李洪博,高鹏,杨梦雄,杨亚娟,罗梅. 2012. 珠一坳陷浅层新领域油气勘探潜力条件分析. 石油天然气学报, 34(4): 52-56,166. [Chen X F,Li H B,Gao P,Yang M X,Yang Y J,Luo M.2012. Analysis of shallow hydrocarbon exploration potential in the new region of Zhu1 depression. Journal of Oil and Gas Technology, 34(4): 52-56,166] [2]董春梅,张宪国,林承焰. 2006. 地震沉积学的概念、方法和技术. 沉积学报, 24(5): 698-704. [Dong C M,Zhang X G,Lin C Y.2006. Conception,method and technology of the seismic sedimento logy. Acta Sedimento logica Sinica, 24(5): 698-704] [3]高阳东,张向涛,李智高,丁琳,李小平. 2021. 珠江口盆地恩平凹陷北带下—中中新统层序构型及其差异性分析: 对岩性圈闭发育的启示. 地球科学, 46(5): 1758-1770. [Gao Y D,Zhang X T,Li Z G, Ding L,Li X P.2021. Variability in sequence stratigraphic architectures of the Lower-Middle Miocene Pearl River Delta,northern Enping sag,Pearl River Mouth Basin: implications for litho logical trap development. Earth Science, 46(5): 1758-1770] [4]林畅松,施和生,李浩,何敏,张忠涛,宫越,张博,张曼莉,舒梁峰,马铭. 2017. 南海北部珠江口盆地陆架边缘斜坡带层序结构和沉积演化及控制作用. 地球科学, 43(10): 3407-3422. [Lin C S,Shi H S,Li H,He M,Zhang Z T,Gong Y,Zhang B,Zhang M L,Shu L F,Ma M.2017. Sequence architecture,depositional evolution and controlling processes of continental slope in Pearl River Mouth Basin,northern South China Sea. Earth Science, 43(10): 3407-3422] [5]林承焰,张宪国,董春梅. 2007. 地震沉积学及其初步应用. 石油学报, 28(2): 69-72. [Lin C Y,Zhang X G,Dong C M.2007. Concept of seismic sedimentology and its preliminary application. Acta Petrolei Sinica, 28(2): 69-72] [6]刘丽华,陈胜红,于水明,熊金玉,姜建,许新明,刘贤来,胡坤. 2011. 恩平凹陷成藏条件分析及商业性突破. 中国海上油气, 23(2): 76-80. [Liu L H,Chen S H,Yu S M,Xiong J Y,Jiang J,Xu X M,Liu X L,Hu K.2011. Analyzing conditions of hydrocarbon accumulationand: a commercial breakthrough in Enping sag,Pearl River Mouth Basin. China Offshore Oil and Gas, 23(2): 76-80] [7]米立军,张向涛,陈维涛,刘培,杜家元,姚佳利. 2018. 珠江口盆地珠一坳陷古近系油气富集规律及下一步勘探策略. 中国海上油气, 30(6): 1-13. [Mi L J,Zhang X T,Chen W T,Liu P,Du J Y,Yao J L.2018. Hydrocarbon enrichment law of Paleogene Zhu1 depression and its next exploration strategy in Pearl River Mouth Basin. China Offshore Oil and Gas, 30(6): 1-13] [8]秦国权. 2002. 珠江口盆地新生代晚期层序地层划分和海平面变化. 中国海上油气, 16(1): 1-10. [Qin G Q.2002. Late Cenozoic sequence stratigraphy and sea-level changes in Pearl River Mouth Basin,South China Sea. China Offshore Oil and Gas, 16(1): 1-10] [9]吴哲,王文勇,张忠涛,许新明,黄蝌,吴婷婷,王超. 2020. 张扭性断裂带的生长过程与油气穿断运移评价: 以珠江口盆地恩平凹陷为例. 海洋地质前沿, 36(1): 50-58. [Wu Z,Wang W Y,Zhang Z T,Xu X M,Huang K,Wu T T,Wang C.2020. Growth process of transtensional faults and its contribution to hydrocarbon lateral migration across the faults: a case from Enping sag of Pearl Mouth Basin. Marine Geology Frontiers, 36(1): 50-58] [10]熊万林,朱俊章,杨兴业,龙祖烈,翟普强,郑仰帝,秦成岗. 2020. 恩平凹陷北部隆起构造带油气成因来源及成藏过程研究. 中国海上油气, 32(1): 54-65. [Xiong W L,Zhu J Z,Yang X Y,Long Z L,Zhai P Q,Zheng Y D,Qin C G.2020. Study on the genetic sources and accumulation processes of oil and gas in the north uplift structural belt of Enping sag. China Offshore Oil and Gas, 32(1): 54-65] [11]许新明,陈胜红,王福国,胡坤,于水明,王绪诚,高中亮,刘贤来. 2014. 珠江口盆地恩平凹陷断层特征及其对新近系油气成藏的影响. 现代地质, 28(3): 543-550. [Xu X M,Chen S H,Wang F G,Hu K,Yu S M,Wang X C,Gao Z L,Liu X L.2014. Structural features and its impacts on hydrcarbon accumulation of Neogene in Enping sag,pearl Mouth Basin. Geoscience, 28(3): 543-550] [12]于开平,张功成,梁建设,何仕斌,丁放,陶宗普. 2011. 珠江口盆地恩平凹陷油气成藏条件研究. 石油实验地质, 33(5): 509-512. [Yu K P,Zhang G C,Liang J S,He S B,Ding F,Tao Z P.2011. Petroleum accumulation condition in Enping sag,Pearl River Mouth Basin. Petroleum Geology & Experiment, 33(5): 509-512] [13]岳大力,李伟,王军,王武荣,李健. 2018. 基于分频融合地震属性的曲流带预测与点坝识别: 以渤海湾盆地埕岛油田馆陶组为例. 古地理学报, 20(6): 941-950. [Yue D L,Li W,Wang J,Wang W R,Li J.2018. Prediction of meandering belt and point-bar recognition based on spectral-decomposed and fused seismic attributes: a case study of the Guantao Formation,Chengdao Oilfield,Bohai Bay Basin. Journal of Palaeogeography(Chinese Edition), 20(6): 941-950] [14]张向涛,刘培,王文勇,杜家元,陈维涛. 2020. 珠一坳陷古近系文昌期构造转变对油气成藏的控制作用. 地球科学, 46(5): 1797-1813. [Zhang X T,Liu P,Wang W Y,Du J Y,Chen W T.2020. Controlling effect of tectonic transformation in Paleogene Wenchang Formation on oil and gas accumulation in Zhu1 Depression. Earth Science, 46(5): 1797-1813] [15]朱筱敏,董艳蕾,曾洪流,黄捍东,刘强虎,秦祎,叶蕾. 2019. 沉积地质学发展新航程: 地震沉积学. 古地理学报, 21(2): 189-201. [Zhu X M,Dong Y L,Zeng H L,Huang H D,Liu Q H,Qin Y,Ye L2019. New development trend of sedimentary geology: seismic sedimentology. Journal of Palaeogeography(Chinese Edition), 21(2): 189-201] [16]Ashworth P J,Lewin J.2012. How do big rivers come to be different?Earth-Science Reviews, 114: 84-107. [17]Bourget J,Ainsworth R B,Thompson S.2014. Seismic stratigraphy and geomorphology of a tide or wave dominated shelf-edge delta(NW Australia): process-based classification from 3D seismic attributes and implications for the prediction of deep-water sands. Marine and Petroleum Geology, 57: 359-384. [18]Catuneanu O,Abreu V,Bhattacharya J P,Blum M D,Dalrymple R W,Eriksson P G,Fielding C R,Fisher W L,Galloway W E,Gibling M R,Giles K A,Holbrook J M,Jordan R,Kendall C G St C,Macurda B,Martinsen O J,Miall A D,Neal J E,Nummedal D,Pomar L,Posamentier H W,Pratt B R,Sarg J F,Shanley K W,Steel R J,Strasser A,Tucker M E,Winker C.2009. Towards the standardization of sequence stratigraphy. Papers in the Earth and Atmospheric Sciences,238. [19]Darmadi Y,Willis B J,Dorobek S L.2007. Three-dimensional seismic architecture of fluvial sequences on the low-gradient Sunda Shelf,offshore Indonesia. Journal of Sedimentary Research, 77: 225-238. [20]Dixon J F,Steel R J,Olariu C.2012 Shelf-edge deltaregime as a predictor of deep-water deposition. Journal of Sedimentary Research, 82: 681-687. [21]Ethridge F G,Schumm S A.2007. Fluvial seismic geomorphology: a view from the surface. In: Davies R J,Posamentier H W,Cartwright J A(eds). Seismic Geomorphology: Applications to Hydrocarbon Exploration and Production. London: Geological Society London,Special Publication, 277: 205-222. [22]Fielding C R.2007. Sedimentology and stratigraphy of large river deposits: recognition in the ancient record,and distinction from incised valley fills. In: Gupta A(ed). Large Rivers: Geomorphology and Management. Chichester: John Wiley and Sons,97-113. [23]Galloway W E.1975. Process framework describing the morphologic and stratigraphic evolution of deltaic depositional systems. In: Broussard M L(ed). Deltas,Models for Exploration. Houston: Houston Geological Society,87-98. [24]He M,Zhuo H T,Chen W T,Wang Y M,Du J Y,Liu L H,Wang L L,Wan H Q.2017. Sequence stratigraphy and depositional architecture of the Pearl River Delta system,northern South China Sea: an interactive response to sea level,tectonics and paleoceanography. Marine and Petroleum Geology, 84: 76-101. [25]Jackson C A L,Grunhagen H,Howell J A,Larsen A L,Andersson A,Boen F,Groth A.2010.3D seismic imaging of lower delta-plain beach ridges: lower Brent Group,northern North Sea. Journal of the Geological Society,London, 167: 1225-1236. [26]Jiang J,Shi H H,Lin C S,Zhang Z T,Wei A,Zhang B,Shu L F,Tian H X,Tao Z,Liu H Y.2017. Sequence architecture and depositional evolution of the Late Miocene to quaternary northeastern shelf margin of the South China Sea. Marine and Petroleum Geology, 81: 79-97. [27]Li W,Yue D,Wu S H,Wang W F,Li J,Wang W R,Tian T H.2019. Characterizing meander belts and point bars in fluvial reservoirs by combining spectral decomposition and genetic inversion. Journal of Petroleum Science and Engineering, 105: 168-184. [28]Miall A D.2002. Architecture and sequence stratigraphy of Pleistocene fluvial systems in the Malay Basin,based on seismic time-slice analysis. AAPG Bulletin, 86: 1201-1216. [29]Miall A D.2014. Fluvial Depositional Systems. Berlin: Springer-Verlag,316. [30]Milli S,D'Ambrogi C,Bellotti P,Calderoni G,Carboni M,Celant A,Di Bella L,Di Rita F,Frezza V,Magri D,Pichezzi R M,Ricci V.2013. The transition from wave-dominated estuary to wave-dominated delta: the Late Quaternary stratigraphic architecture of Tiber River deltaic succession(Italy). Sedimentary Geology, 284-285: 159-180. [31]Muto T.2001. Shoreline autoretreat substantiated in flume experiments. Journal of Sedimentary Research, 71: 246-254. [32]Otvos E G.2000. Beach ridges-definitions and significance. Geomorphology, 32: 83-108. [33]Porebski S J,Steel R J.2003. Shelf-margin deltas: their stratigraphic significance and relation to deepwater sands. Earth Science Review, 62: 283-326. [34]Posamentier H W,Allen G P.1999. Siliciclastic Sequence Stratigraphy: Concepts and Applications. Tulsa,Oklahoma. USA: SEPM Concepts in Sedimentology and Paleontology. [35]Tan M X,Zhu X M,Liu Qiang H,Zhang Z L,Liu W.2020. Multiple fluvial styles in Late Miocene post-rift successions of the offshore Bohai Bay Basin(China): Evidence from a seismic geomorphological study. Marine and Petroleum Geology, 113: 104173. [36]Wood L J.2007. Quantitative seismic geomorphology of Pliocene and Miocene fluvial systems in the Northern Gulf of Mexico,U.S.A. Journal of Sedimentary Research, 77: 713-730. [37]Zeng H L,Zhu X M,Liu Q H,Zhu H T,Xu C Q.2020. An alternative,seismic-assisted method of fluvial architectural-element analysis in the subsurface: Neogene,Shaleitian area,Bohai Bay Basin,China. Marine and Petroleum Geology, 118: 104435. [38]Zhuo H T,Wang Y M,Shi H S,He M,Chen W T,Li H,Wang Y,Yan W Y.2015. Contrasting fluvial styles across the mid-Pleistocene climate transition in the northern shelf of the South China Sea: evidence from 3D seismic data. Quaternary Science Reviews, 129: 128-146.