Abstract Characteristics of clay minerals in the Holocene Qiantang River incised-valley fill was systematically analyzed by X-ray diffraction. Results show that clay minerals in the Holocene Qiantang River incised-valley fill mainly consist of illite,chlorite,kaolinite,and smectite;Illite has a good degree of crystallization;Chemical index of illite is generally higher than 0.5,indicating clay minerals had undergone strong chemical weathering and the degree decreased gradually from bottom to top. By comparing the clay mineral composition of main rivers in southeastern China,we suggest that the sediments of section Ⅰ(i.e. the paleo-estuary and fluvial)in the Qiantang River incised valley are mainly derived from the Qiantang River drainage basin characteristic of high amount of kaolinite;whereas the sediments of section Ⅱ(present-day estuary and shallow marine)comprise numerous Changjiang sediments with smectite as diagnostic mineral except the Qiantang River deposits. Additionally,kaolinite could act as a good indicator of climate: kaolinite content reached the highest value in the middle Holocene,indicating a humid and hot climate and the highest chemical weathering degree;in the late Holocene,with the decrease of kaolinite content,the climate gradually became colder with a gradually decreasing chemical weathering degree.
Fund:National Natural Science Foundation of China(No.13001074)
Corresponding Authors:
Zhang Xia,born in 1985,is an associate professor. She is mainly engaged in sedimentology. E-mail: zhangxiananjing@163.com.
About author: Li Xin,born in 1998,is a master degree candidate. She is mainly engaged in Quaternary sedimentology. E-mail: starli@smail.nju.edu.cn.
Cite this article:
Li Xin,Zhang Xia,Lin Chun-Ming et al. Characteristics and its significance of clay minerals in the Holocene deposits of core SE2 in Qiantang River incised valley[J]. JOPC, 2022, 24(2): 332-343.
Li Xin,Zhang Xia,Lin Chun-Ming et al. Characteristics and its significance of clay minerals in the Holocene deposits of core SE2 in Qiantang River incised valley[J]. JOPC, 2022, 24(2): 332-343.
[1] 范德江,杨作升,毛登,郭志刚. 2001. 长江与黄河沉积物中粘土矿物及地化成分的组成. 海洋地质与第四纪地质,21(4): 7-12. [Fan D J,Yang Z S,Mao D,Guo Z G. 2001. Clay minerals and geochemistry of the sediments from the Yangtze and Yellow rivers. Marine Geology and Quaternary Geology,21(4): 7-12] [2] 范德江,杨作升,孙效功,张东奇,郭志刚. 2002. 东海陆架北部长江、黄河沉积物影响范围的定量估算. 青岛海洋大学学报(自然科学版), 32(5): 748-756. [Fan D J,Yang Z S,Sun X G,Zhang D Q,Guo Z G. 2002. Quantitative evaluation of sediment provenance on the North Area of the East China Sea Shelf. Jounral of Ocean University of QingDao, 32(5): 748-756] [3] 何梦颖,郑洪波,黄湘通,贾军涛,李玲. 2011. 长江流域沉积物黏土矿物组合特征及物源指示意义. 沉积学报, 29(3): 544-551. [He M Y,Zheng H B,Huang X T,Jia J T,Li L. 2011. Clay mineral assemblages in the Yangtze drainage and provenance implications. Acta Sedimentology Sinica, 29(3): 544-551] [4] 靳华龙,万世明,张晋,宋泽华,赵德博,黄杰,于兆杰,李安春. 2019. 北部湾表层黏土矿物分布特征及物源研究. 海洋科学, 43(1): 75-84. [Jin H L,Wan S M,Zhang J,Song Z H,Zhao D B,Huang J,Yu Y J,Li A C. 2019. Distribution and provenance of clay minerals in surface sediments of the Beibu Gulf,the South China Sea. Marine Science, 43(1): 75-84] [5] 李从先,范代读,杨守业,蔡进功. 2008. 中国河口三角洲地区晚第四纪下切河谷层序特征和形成. 古地理学报, 10(1): 87-97. [Li C X,Fan D D,Yang S Y,Cai J G. 2008. Characteristics and formation of the Late Quaternary incised-vally sequences in estuary and delta area in China. Journal of Palaeogeography(Chinese Edition), 10(1): 87-97] [6] 梁小龙,杨守业,印萍,赵云. 2015. 黄海与东海周边河流及泥质区沉积物黏土矿物的分布特征和控制因素. 海洋地质与第四纪地质, 35(6): 1-15. [Liang X L,Yang S Y,Yin P,Zhao Y. 2015. Distribution of clay mineral assemblages in the rivers entering Yellow Sea and East China Sea and the muddy shelves deposits and control factors. Marine Geology & Quaternary Geology, 35(6): 1-15] [7] 刘志飞, Colin C,黄维,陈忠,Trentesaux A,陈建芳. 2007. 珠江流域盆地表层沉积物的黏土矿物及其对南海沉积物的贡献. 科学通报, 52(4): 448-456. [Liu Z F, Colin C,Huang W,Chen Z,Trentesaux A,Chen J F. 2007. Clay minerals in the surface sediments of the Pearl River Basin and their contribution to the sediments in the South China Sea. Chinese Science Bulletin, 52(4): 448-456] [8] 石学法,乔淑卿,杨守业,李景瑞,万世明,邹建军,熊志方,胡利民,姚政权,董林森,王昆山,刘升发,刘焱光. 2021. 亚洲大陆边缘沉积学研究进展(2011-2020). 矿物岩石地球化学通报, 40(2): 319-336. [Shi X F,Qiao S Q,Yang S Y,Li J R,Wan S M,Zou J J,Xiong Z F,Hu L M,Yao Z Q,Dong L S,Wang K S,Liu S F,Liu Y G. 2021. Progress in sedimentology research of the Asian Continental Margin(2011-2020). Bulletin of Mineralogy,Petrology and Geochemistry, 40(2): 319-336] [9] 师育新,戴雪荣. 2015. 钱塘江流域河流沉积物粘土矿物组成及其物源指示. 见: 第十六届海峡两岸地形学研讨会论文集. 台北:97-100. [Shi Y X,Dai X R. 2015. Clay mineral composition and provenance indication of river sediment in Qiantang River Basin. In: Proceedings of the 16th Cross-strait Symposium on Topography. Taipei:97-100] [10] 汤艳杰,贾建业,谢先德. 2002. 粘土矿物的环境意义. 地学前缘, 9(2): 337-344. [Tang Y J,Jia J Y,Xie X D. 2002. Environment significance of clay minerals. Earth Science Frontiers, 9(2): 337-344] [11] 万琳琪. 2020. 黄土高原2.6 Ma以来伊利石结晶度变化及其古环境意义. 浙江师范大学硕士学位论文:49-51. [Wan L Q. 2020. Variation of illite crystallization and its paleoenvironmental significance in the Loess Plateau Since 2.6 Ma. Masteral dissertation of Zhejiang Normal University:49-51] [12] 魏飞. 2013. 渤海湾西部表层沉积物粒度和黏土矿物特征及物源分析. 中国海洋大学硕士学位论文:36-46. [Wei F. 2013. Surface sediment grain size and clay mineral characteristics and provenance analysis in Western Bohai Bay. Masteral dissertation of Ocean University of China:36-46] [13] 文宝萍,陈海洋,朱明忠. 2008. 基于伊利石结晶度的大型深层滑坡活动模式分析. 见: 中国地质学会工程地质专业委员会. 第八届全国工程地质大会论文集. 上海:132-137. [Wen B P,Chen H Y,Zhu M Z. 2008. Sliding mechanisms of large-scale and deep-seated landslides: Constraints from illite crystallinity of landslides' materials. In: Engineering Geology Committee of the Geological Society of China. Proceedings of the Eighth National Conference on Engineering Geology. Shanghai:132-137] [14] 吴华林,沈焕庭,严以新,王永红. 2006. 长江口入海泥沙通量初步研究. 泥沙研究,31(6): 75-81. [Wu H L,Shen H T,Yan Y X,Wang Y H. 2006. Preliminary study on sediment flux into the sea from Changjiang Estuary. Sediment Research,31(6): 75-81] [15] 席雅娟. 2015. 钱塘江主要支流及干流沉积物的粘土矿物空间分布特征与影响因素研究. 华东师范大学硕士学位论文:52-65. [Xi Y J. 2015. The research of clay mineral spatial distribution characteristics and influencing factors in the main tributaries and mainstream of Qiantang River. Masteral dissertation of East China Normal University:52-65] [16] 席雅娟,师育新,戴雪荣,刘朝,吴紫阳. 2016. 杭州湾潮滩沉积物黏土矿物空间差异与物源指示. 沉积学报, 34(2): 315-325. [Xi Y J,Shi Y X,Dai X R,Liu C,Wu Z Y. 2016. Spatial difference and provenance of clay minerals as tracers of intertidal sediments in Hangzhou Bay. Acta Sedimentology Sinica, 34(2): 315-325] [17] 萧家仪,郭平,王丹,张瑞虎,丁金龙. 2004. 太湖平原全新世中晚期古植被、古环境与古文化: 以苏州绰墩遗址为例. 南京师大学报(自然科学版),27(2): 91-97. [Xiao J Y,Guo P,Wang D,Zhang R H,Ding J L. 2004. Palaeovegetation and palaeoenvironment and palaeoculture at Chudun Site in Taihu Plain during Middle and Late Holocene: a case study of Chuodun Site in Suzhou. Journal of Nanjing Normal University(Natural Science Edition),27(2): 91-97] [18] 徐勇航,陈坚,王爱军,李云海,汪卫国,张晓飞,赖志坤. 2013. 台湾海峡表层沉积物中黏土矿物特征及物质来源. 沉积学报, 31(1): 120-129. [Xu Y H,Chen J,Wang A J,Li Y H,Wang W G,Zhang X F,Lai Z K. 2013. Clay minerals in surface sediments of the Taiwan Strait and their provenance. Acta Sedimentology Sinica, 31(1): 120-129] [19] 杨作升. 1988. 黄河、长江、珠江沉积物中粘土的矿物组合、化学特征及其与物源区气候环境的关系. 海洋与湖沼,19(4): 336-346. [Yang Z S. 1988. Mineral assemblages and chemical characteristics of clays in sediments from the Yellow River,Yangtze River and Pearl River and their relationship with provenance climate environment. Oceanologia et Limnologia Sinica,19(4): 336-346] [20] 俞国华,包超民,方炳兴,马武平,宋福泉,何圣策. 1995. 浙江省岩石地层清理成果简介. 浙江地质, 11(1): 1-14. [Yu G H,Bao C M,Fang B X,Ma W P,Song F Q,He S C. 1995. Brief introduction to the achievements on lithostratigraphic clearing in Zhejiang. Geology of Zhejiang, 11(1): 1-14] [21] 张桂甲,李从先. 1995. 钱塘江下切河谷充填及其层序地层学特征. 海洋地质与第四纪地质,15(4): 57-68. [Zhang G J,Li C X. 1995. Filling and sequence stratigraphy of the Qiantang River incised valley. Marine Geology & Quaternary Geology,15(4): 57-68] [22] 张军强,刘健,孔祥淮,薛春汀,刘新波,孙丽莎,岳保静,温春. 2011. 淮河中游沉积物中黏土矿物组合特征. 海洋地质与第四纪地质, 31(1): 21-29. [Zhang J Q,Liu J,Kong X H,Xue C D,Liu X B,Sun L S,Yue B J,Wen C. 2011. Clay mineral assemblage of sediments from Middle Reach of Huaihe River. Marine Geology & Quaternary Geology, 31(1): 21-29] [23] 张霞. 2013. 强潮型钱塘江河口湾及其下切河谷体系研究. 南京大学博士学位论文:1-153. [Zhang X. 2013. Sedimentary system of the macrotidal-dominated Qiantang River estuary and incised valley, eastern China. Doctoral dissertation of Nanjing University:1-153] [24] 张霞,林春明,杨守业,高抒,Robert W Dalrymple. 2018. 晚第四纪钱塘江下切河谷充填物物源特征. 古地理学报, 20(5): 877-892. [Zhang X,Lin C M,Yang S Y,Gao S,Robert W Dalrymple. 2018. Provenance for the late Quaternary Qiantang River incised-valley fill. Journal of Palaeogeography(Chinese Edition), 20(5): 877-892] [25] 赵杏媛. 1990. 粘土矿物在油气初次运移中作用的探讨. 沉积学报,8(2): 67-73. [Zhao X Y. 1990. Discussion on the role of clay minerals in primary migration of oil and gas. Acta Sedimentologica Sinica,8(2): 67-73] [26] 周子康,刘为纶. 1996. 杭州湾南岸全新世温暖期气候的基本特征. 杭州大学学报(自然科学版),23(1): 80-86. [Zhou Z K,Liu W L. 1996. Climatic characteristics of Holocene warm period in the south coast of Hangzhou Bay. Journal of Hangzhou University(Natural Sciences),23(1): 80-86] [27] Bao J,Song C,Yang Y,Fang X M,Meng Q Q,Feng Y,He P J. 2019. Reduced chemical weathering intensity in the Qaidam Basin(NE Tibetan Plateau)during the Late Cenozoic. Journal of Asian Earth Sciences,170: 155-165. [28] Bi L,Yang S,Li C,Guo Y L,Wang Q,Liu J T,Yin P. 2015. Geochemistry of river-borne clays entering the East China Sea indicates two contrasting types of weathering and sediment transport processes. Geochemistry,Geophysics,Geosystems, 16(9): 3034-3052. [29] Biscaye. 1965. Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geological Society of America Bulletin, 76(7): 803-832. [30] Chamley H. 1989. Clay Mineralogy.New York: McGraw-Hill,1-623. [31] Diekmann B,Kuhn G,Mackensen A,Petschick R,Fütterer D K,Gersonde R,Rühlemann C,Niebler H S. 1999. Kaolinite and chlorite as tracers of modern and late Quaternary deep water circulation in the South Atlantic and the adjoining Southern Ocean. In: Use of Proxies in Paleoceanography. Berlin: Heidelberg,285-313. [32] Eberl D D. 1984. Clay mineral formation and transformation in rocks and soils. Philosophical Transactions of the Royal Society A,Mathematical and Physical Sciences, 311(1517): 241-257. [33] Ehrmann W U,Melles M,Kuhn G,Grobe H. 1992. Significance of clay mineral assemblages in the Antarctic Ocean. Marine Geology, 107(4): 249-273. [34] Fagel N,Boski T,Likhoshway L,Oberhaensli H. 2003. Late Quaternary clay mineral record in central lake Baikal(Academician Ridge,Siberia). Palaeogeography,Palaeoclimatology,Palaeoecology, 193(1): 159-179. [35] Feuillet J P,Fleischer P. 1980. Estuarine circulation: controlling factor of clay mineral distribution in James River estuary,Virginia. Journal of Sedimentary Petrology, 50(1): 267-279. [36] Gingele F X. 1996. Holocene climatic optimum in Southwest Africa: evidence from the marine clay mineral record. Palaeogeography,Palaeoclimatology,Palaeoecology, 122(1-4): 77-87. [37] Gingele F X,Deckker P D,Hillenbrand C D. 2001. Clay mineral distribution in surface sediments between Indonesia and NW Australia: source and transport by ocean currents. Mar Geology, 179: 135-146. [38] Griffin J J,Windom H,Goldberg E D. 1968. The distribution of clay minerals in the world ocean. Deep Sea Research and Oceanographic Abstracts, 15(4): 433-459. [39] He M,Zheng H,Huang X,Jia J,Li L. 2013. Yangtze River sediments from source to sink traced with clay mineralogy. Journal of Asian Earth Sciences, 69: 60-69. [40] Kubler B. 1964. Les argiles,indicateurs de métamorphisme. Rev. Inst. Franc. Petrole., 19(10): 1093-1112. [41] Lin C M,Zhuo H C,Gao S. 2005. Sedimentary facies and evolution in the Qiantang River incised valley,Eastern China. Marine Geology, 219(4): 235-259. [42] Liu J P,Milliman J D,Gao S,Cheng P. 2004. Holocene development of the Yellow River's subaqueous delta,North Yellow Sea. Marine Geology, 209(1-4): 45-67. [43] Liu J P,Xu K H,Li A C,Milliman J D,Velozzi D M,Xiao S B,Yang Z S. 2007. Flux and fate of Yangtze River sediment delivered to the East China Sea. Geomorphology, 85(3-4): 208-224. [44] Liu X T,Li A C,Dong J,Lu J,Huang J,Wan S. 2018. Provenance discrimination of sediments in the Zhejiang-Fujian mud belt,East China Sea: implications for the development of the mud depocenter. Journal of Asian Earth Sciences, 151: 1-15. [45] Ma C,Chen J,Zhou Y,Wang Z H. 2010. Clay minerals in the major Chinese coastal estuaries and their provenance implications. Frontiers of Earth Science in China, 4(4): 449-456. [46] Nasnodkar M R,Nayak G N. 2019. Clay mineralogy and chemistry of mudflat core sediments from Sharavathi and Gurupur estuaries: source and processes. Indian Journal of Geo Marine Sciences, 48(3): 379-388 [47] Nesbitt H W,Young G M. 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299(5885): 715-717. [48] Petschick R,Kuhn G,Gingele F. 1996. Clay mineral distribution in surface sediments of the South Atlantic: sources,transport,and relation to oceanography. Marine Geology, 130(3-4): 203-229. [49] Ren X,Nie J,Saylor J E,Li H,Bush M A,Horton B K. 2019. Provenance control on chemical weathering index of fluvio-lacustrine sediments: evidence from the Qaidam Basin,NE Tibetan Plateau. Geochemistry,Geophysics,Geosystems, 20(7): 3216-3224. [50] Wang Q,Yang S. 2013. Clay mineralogy indicates the Holocene monsoon climate in the Changjiang(Yangtze River)Catchment,China. Applied Clay Science, 74: 28-36. [51] Wang R,Colombera L,Mountney N P. 2020. Quantitative analysis of the stratigraphic architecture of incised-valley fills: a global comparison of Quaternary systems. Earth Science Reviews, 200: 102988. [52] Xiong S F,Ding Z L,Zhu Y J,Zhou R,Lu H J. 2010. A~6 Ma chemical weathering history,the grain size dependence of chemical weathering intensity,and its implications for provenance change of the Chinese loess-red clay deposit. Quaternary Science Reviews, 29(15-16): 1911-1922. [53] Xu D Y. 1983. Mud Sedimentation on the East China Sea Shelf. In: Proceedings of International Symposium on Sedimentation on the Continental Shelf with Special Reference on the East China Sea. Hangzhou: China Ocean Press,506-516. [54] Xu K,Milliman J D,Li A,Liu J P,Kao S J,Wan S M. 2009. Yangtze-and Taiwan-derived sediments on the inner shelf of East China Sea. Continental Shelf Research, 29(18): 2240-2256. [55] Xu K H,Li A C,Liu J P,Milliman J D,Yang Z S,Liu C S,Kao S J,Wan S M,Xu F J. 2012. Provenance,structure,and formation of the mud wedge along inner continental shelf of the East China Sea: a synthesis of the Yangtze dispersal system. Marine Geology, 291: 176-191. [56] Zhang X,Lin C M,Dalrymple R W,Gao S,Li Y L. 2014. Facies architecture and depositional model of a macrotidal incised-valley succession(Qiantang River estuary,eastern China),and differences from other macrotidal systems. Bulletin, 126(3-4): 499-522. [57] Zhang X,Dalrymple R W,Yang S Y,Lin C M,Wang P. 2015. Provenance of Holocene sediments in the outer part of the Paleo-Qiantang River estuary,China. Marine Geology, 366: 1-15. [58] Zhang X,Lin C M,Dalrymple R W,Yang S Y. 2021. Source-to-sink analysis for the mud and sand in the late-Quaternary Qiantang River incised-valley fill and its implications for delta-shelf-estuary dispersal systems globally. Sedimentology,DOI: 10.1111/sed.12901. [59] Zhao Y,Zou X,Gao J,Wang C L,Li Y L,Yao Y L,Zhao W C,Xu M. 2018. Clay mineralogy and source-to-sink transport processes of Changjiang River sediments in the estuarine and inner shelf areas of the East China Sea. Journal of Asian Earth Sciences, 152: 91-102.