Turbidite deposition in Manila Trench since 1.4 ka B.P. and its controlling factors
Xu Wei1, Liu Xiao-Hang1, Liu Meng2, Hu Li-Sha1, Xu Jing-Ping2, Wang Zhi-Wen1
1 College of Marine Geosciences,Ocean University of China,Shandong Qingdao 266100,China; 2 Department of Ocean Science and Engineering,Southern University of Science and Technology,Guangdong Shenzhen 518055,China
Abstract Turbidity current is an important way for long-distance sediment transport. Submarine turbidity current widely develops in submarine canyons or trenches. The Manila Trench is located at the western Pacific marginal subduction zone and with abundant tectonic activities(earthquake)and extreme climatic events(e.g.,Typhoon),which easily generate turbidity. Because of the complicated abyss topography of the Manila Trench,turbidity currents are rarely reported. In this study,we choose a core collected from 3747 m depth water in northern Manila Trench during 2018 South China Sea Cruise by NSFC for turbidite analyses. The maximum depositional age is 1405 a B.P. High-precision particle size analysis(25 mm per analysis)and sedimentary characteristics show that GEO6 core records at least eleven turbidity flow deposits(T1-T11). Most turbidity deposits show a gradually finning upward grain size,and an erosional surface in the bottom of each turbidite. Only T8 shows an inversely graded sequence,which may be the hyperpycnal flow deposit. Combined with the regional geological data,we found that frequent typhoons in the study area have brought a large amount of terrestrial loose sediments to the upper reaches of the Manila Trench(Gaoping Canyon)since 1.4 ka B.P. These loose deposits collapsed and were transported downstream due to frequent earthquakes,forming recurring turbidity deposits in the Manila Trench.
Fund:National Natural Science Foundation of China(Nos. 42072120,41720104001)
Corresponding Authors:
Hu Li-Sha,born in 1987,is an associate professor in College of Marine Geosciences,Ocean University of China. She is mainly engaged in marine sedimentology. E-mail: hulisha2127@ouc.edu.cn.
About author: Xu Wei,born in 1997,is a master degree candidate in College of Marine Geosciences,Ocean University of China,and is mainly engaged in marine sedimentology. E-mail: 21190411024@stu.ouc.edu.cn.
Cite this article:
Xu Wei,Liu Xiao-Hang,Liu Meng et al. Turbidite deposition in Manila Trench since 1.4 ka B.P. and its controlling factors[J]. JOPC, 2022, 24(3): 449-460.
Xu Wei,Liu Xiao-Hang,Liu Meng et al. Turbidite deposition in Manila Trench since 1.4 ka B.P. and its controlling factors[J]. JOPC, 2022, 24(3): 449-460.
[1] 高红灿,郑荣才,魏钦廉,陈发亮,陈君,朱登锋,刘云. 2012. 碎屑流与浊流的流体性质及沉积特征研究进展. 地球科学进展, 27(8): 13. [Gao H C,Zheng R C,Wei Q L,Chen F L,Chen J,Zhu D F,Liu Y.2021. Reviews on fluid properties and sedimentary characteristics of debris flows and turbidity current. Advances in Earth Sciences, 27(8): 13] [2] 韩喜彬,李家彪,龙江平,初凤友,丁巍伟,张绍勇,许东,杨海丽. 2010. 我国海底峡谷研究进展. 海洋地质动态, 26(2): 41-48. [Han X B,Li J B,Long J P,Chu F Y,Ding W W,Zhang S Y,Xu D,Yang H L.2010. Development of research on submarine canyon in China. Marine Geology Letters, 26(2): 41-48] [3] 何幼斌,高振中,罗顺社. 1998. 等深流沉积的特征及其鉴别标志. 江汉石油学院学报, 20(4): 3-8. [He Y B,Gao Z Z,Luo S S.1998. Features of coutourites and their discrimination. Journal of Jianghan Petroleum Institute, 20(4): 3-8] [4] 李粹中. 1993. 南海海盆北部平原受台湾西南陆坡浊流影响的证据. 海洋通报, 12(1): 103-105. [Li C Z.1993. Evidence of the northern plain of South China Sea Basin affected by the turbulence of the southwestern Taiwan slope. Marine Scicence Bulletin, 12(1): 103-105] [5] 李三忠,索艳慧,朱俊江,戴黎明,张瑞昕,刘欣颖,乔璐璐,刘吉文,张晓华. 2020. 海沟系统研究的进展与前沿. 中国科学: 地球科学, 50(12): 1874-1892. [Li S Z,Suo Y H,Zhu J J,Dai L M,Zhang R X,Liu X Y,Qiao L L,Liu J W,Zhang X H.2020. Advance and frontier of the research on trench system. SCIENCE CHINA Earth Sciences, 50(12): 1874-1892] [6] 时小军,余克服,陈特固. 2007. 南海周边中全新世以来的海平面变化研究进展. 海洋地质与第四纪地质, 27(5): 121-132. [Shi X J,Yu K F,Chen T G.2007. Progress in researches on sea-level changes in South China Sea since Mid-Holocene. Marine Geology & Quaternary Geology, 27(5): 121-132] [7] 王海荣,王英民,邱燕,彭学超,黄奇志. 2008. 南海东北部台湾浅滩陆坡的浊流沉积物波的发育及其成因的构造控制. 沉积学报, 26(1): 39-45. [Wang H R,Wang Y M,Qiu Y,Peng X C,Huang Q Z.2008. Development and its tectonic activity's origin of turbidity current sediment wave in Manila Trench,the South China Sea. Acta Sedimentologica Sinica, 26(1): 39-45] [8] 徐景平. 2014. 海底浊流研究百年回顾. 中国海洋大学学报(自然科学版), 44(10): 98-105. [Xu J P.2014. Turbidity current research in the past century: an overview. Periodical of Ocean University of China, 44(10): 98-105] [9] 尹延鸿. 1988. 试探马尼拉海沟的成因. 海洋地质与第四纪地质, 8(2): 37-45. [Yin Y H.1988. The origin of the Manila Trench. Marine Geology & Quaternary Geology, 8(2): 37-45] [10] 章伟艳,张富元,陈荣华,张霄宇. 2002. 南海深水区晚更新世以来沉积速率、沉积通量与物质组成. 沉积学报, 20(4): 668-674. [Zhang W Y,Zhang F Y,Chen R H,Zhang X Y.2002. Constituents of matter and sedimentation fluxes and sedimentation rates of deep-water sedimentation during the late pleistocene in the South China Sea. Acta Sedimentologica Sinica, 20(4): 668-674] [11] Azpiroz-Zabala M,Cartigny M J B,Talling P J,Parsons D R,Sumner E J,Clare M A,Simmons S M,Cooper C,Pope E L.2017. Newly recognized turbidity current structure can explain prolonged flushing of submarine canyons. Science Advances,3(10): 1-12. [12] Best J L,Kirkbride A D,Peakall J.2009. Mean Flow and Turbulence Structure of Sediment Laden Gravity Currents: New Insights Using Ultrasonic Doppler Velocity Profiling. Hoboken: John Wiley & Sons., 157-172. [13] Bouma A H.1962. Sedimentology of Some Flysch Deposits: a Graphic Approach to Facies Interpretation. Amsterdam: Elsevier Science Ltd., 1-168. [14] Bourget J,Zaragosi S,Ellouz-Zimmermann S,Ducassou E,Prins M A,Garlan T,Lanfumey V,Schneider J L,Rouillard P,Giraudeau J.2010. Highstand vs. lowstand turbidite system growth in the Makran active margin: imprints of high-frequency external controls on sediment delivery mechanisms to deep water systems. Marine Geology, 274(1): 187-208. [15] Bourget J,Zaragosi S,Ellouz-Zimmermann S,Mouchot N,Garlan T,Schneider J L,Lanfumey V,Lallemant S.2011. Turbidite system architecture and sedimentary processes along topographically complex slopes: the Makran convergent margin. Sedimentology, 58(2): 376-406. [16] Bourget J,Zaragosi S,Rodriguez M,Fournier M,Garlan T,Chamot-Rooke N.2013. Late Quaternary megaturbidites of the Indus Fan: origin and stratigraphic significance. Marine Geology, 336: 10-23. [17] Carter L,Gavey R,Talling P,Liu J.2014. Insights into submarine geohazards from breaks in subsea telecommunication cables. Oceanography, 27(2): 58-67. [18] Carter L,Milliman J D,Talling P J,Gavey R,Wynn R B.2012. Near-synchronous and delayed initiation of long run-out submarine sediment flows from a record-breaking river flood,offshore Taiwan. Geophysical Research Letters,39: 1-5. [19] Cattaneo A,Babonneau N,Ratzov G,Dan-Unterseh G,Yelles K,Bracène R,Mercier de Lépinay B,Boudiaf A,Déverchère J.2012. Searching for the seafloor signature of the 21 May 2003 Boumerdès earthquake offshore central Algeria. Natural Hazards and Earth System Sciences, 12(161): 2159-2172. [20] Chen C S,Chen Y L,Liu C L,Lin P L,Chen W C.2006. Statistics of heavy rainfall occurrences in Taiwan. Weather and Forecasting, 22(5): 981-1002. [21] Clare M A,Hughes Clarke J E,Talling P J,Cartigny M J B,Pratomo D G.2016. Preconditioning and triggering of offshore slope failures and turbidity currents revealed by most detailed monitoring yet at a fjord-head delta. Earth and Planetary Science Letters, 450: 208-220. [22] Damuth J E.1979. Migrating sediment waves created by turbidity currents in the northern South China Basin. Geology, 7(11): 520-523. [23] Dengler.1984. Turbidity currents generated by hurricane Iwa. Geo-Marine Letters, 4(1): 5-11. [24] Felix M.2010. Flow structure of turbidity currents. Sedimentology, 49: 397-419. [25] Gavey R,Carter L,Liu J T,Talling P J,Hsu R,Pope E,Evans G.2017. Frequent sediment density flows during 2006 to 2015,triggered by competing seismic and weather events: observations from subsea cable breaks off southern Taiwan. Marine Geology, 384: 147-158. [26] Goldfinger C.2011. Submarine paleoseismology based on turbidite records. Annual Review Marine Science, 3: 35-66. [27] Haughton P,Davis C,McCaffrey W,Barker S.2009. Hybrid sediment gravity flow deposits-classification,origin and significance. Marine and Petroleum Geology, 26(10): 1900-1918. [28] Hayes D E,Lewis S D.1984. A geophysical study of the Manila Trench,Luzon,Philippines: 1. crustal structure,gravity,and regional tectonic evolution. Journal of Geophysical Research,89(B11): 9171-9195. [29] Hsu S K,Kuo J,Lo C L,Tsai C H,Doo W B,Ku C Y,Sibuet J C.2008. Turbidity currents,submarine landslides and the 2006 Pingtung earthquake off SW Taiwan. Terrestrial,Atmospheric and Oceanic Sciences, 19(6): 767-772. [30] Huang H Q,Imran J,Pirmez C.2005. Numerical model of turbidity currents with a deforming bottom boundary. Journal of Hydraulic Engineering, 131(4): 283-293. [31] Jiang T,Zhang Y,Tang S,Zhang D,Zuo Q,Lin W,Wang Y,Sun H,Wang B.2014. CFD simulation on the generation of turbidites in deepwater areas: a case study of turbidity current processes in Qiongdongnan Basin,northern South China Sea. Acta Oceanologica Sinica, 33(12): 127-137. [32] Jorry S J,Jégou I,Emmanuel L,Jacinto R S,Savoye B.2011. Turbiditic levee deposition in response to climate changes: the Var Sedimentary Ridge(Ligurian Sea). Marine Geology, 279(1-4): 148-161. [33] Khripounoff A,Crassous P,Lo Bue N,Dennielou B,Silva Jacinto R.2012. Different types of sediment gravity flows detected in the Var submarine canyon(northwestern Mediterranean Sea). Progress in Oceanography, 106: 138-153. [34] Khripounoff A,Wagonergriesheim A,Babonneau N,Crassous P,Dennielou B,Savoye B.2003. Direct observation of intense turbidity current activity in the Zaire submarine valley at 4000 m water depth. Marine Geology, 194(3): 151-158. [35] Kneller B C,Bennett S J,McCaffrey W D.1999. Velocity structure,turbulence and fluid stresses in experimental gravity currents. Journal of Geophysical Research: Oceans,104(C3): 5381-5391. [36] Kuang Z G,Zhong G,Wang L,Guo Y.2014. Channel-related sediment waves on the eastern slope offshore Dongsha Islands,northern South China Sea. Journal of Asian Earth Sciences, 79: 540-551. [37] Li C F,Lin J,Denise K,Trevor W,Bao R,Anne B.2014. Opening of the South China Sea and its implications for southeast Asian tectonics,climates,and deep mantle processes since the late Mesozoic. Integrated Ocean Drilling Program: Preliminary Reports, 34: 1-109. [38] Liu J T,Kao S J,Huh C A,Hung C C.2013. Gravity flows associated with flood events and carbon burial: Taiwan as instructional source area. Annual Review of Marine Science, 5: 47-68. [39] Liu J G,Xiang R,Chen M,Chen Z,Yan W,Liu F.2011. Influence of the Kuroshio current intrusion on depositional environment in the Northern South China Sea: evidence from surface sediment records. Marine Geology, 285(1): 59-68. [40] Liu X T,Rendle-Bühring R,Henrich R.2016a. Climate and sea-level controls on turbidity current activity on the Tanzanian upper slope during the last deglaciation and the Holocene. Quaternary Science Reviews, 133: 15-27. [41] Liu Z F,Colin C,Li X,Zhao Y,Tuo S,Chen Z,Siringan F P,Liu J T,Huang C-Y,You C-F,Huang K-F.2010. Clay mineral distribution in surface sediments of the northeastern South China Sea and surrounding fluvial drainage basins: source and transport. Marine Geology, 277(1): 48-60. [42] Liu Z F,Stattegger K.2014. South China Sea fluvial sediments: an introduction. Journal of Asian Earth Sciences, 79: 507-508. [43] Liu Z F,Zhao Y,Colin C,Stattegger K,Wiesner M G,Huh C-A,Zhang Y,Li X,Sompongchaiyakul P,You C-F,Huang C-Y,Liu J T,Siringan F P,Le K P,Sathiamurthy E,Hantoro W S,Liu J,Tuo S,Zhao S,Zhou S,He Z,Wang Y,Bunsomboonsakul S,Li Y.2016b. Source-to-sink transport processes of fluvial sediments in the South China Sea. Earth-Science Reviews, 153: 238-273. [44] Lombo Tombo S,Dennielou B,Berné S,Bassetti M A,Toucanne S,Jorry S J,Jouet G,Fontanier C.2015. Sea-level control on turbidite activity in the Rhone canyon and the upper fan during the Last Glacial Maximum and Early deglacial. Sedimentary Geology, 323: 148-166. [45] McManus J. 1988. Grain size determination and interpretation. In: Tucker M E(ed). Techniques in Sedimentology. Oxford: Blackwell Scientific Publications, 63-85. [46] Meiburg E,Kneller B.2010. Turbidity currents and their deposits. Annual Review of Fluid Mechanics, 42: 135-156. [47] Middleton G V.1993. Sediment deposition from turbidity currents. Annual Review of Earth and Planetary Sciences, 21: 89-114. [48] Mulder T,Migeon S,Savoye B, Faugères J C.2001. Inversely graded turbidite sequences in the deep Mediterranean: a record of deposits from flood-generated turbidity currents? Geo-Marine Letters, 21(2): 86-93. [49] Passega R.1957. Texture as characteristic of clastic deposition. Bulletin of the American Association Petroleum Geology, 41(9): 1952-1984. [50] Passega R.1964. Grain size representation by CM patterns as a geologic tool. Journal of Sedimentary Research, 34(4): 830-847. [51] Shepard F P.1954. Nomenclature based on sand-silt-clay ratios. Journal of Sedimentary Research, 24: 151-158. [52] Stow D,Smillie Z.2020. Distinguishing between deep-water sediment facies: turbidites,contourites and hemipelagites. Geosciences,10(2): 68. [53] Sun Q L,Cartwright J,Xie X,Lu X,Yuan S,Chen C.2018. Reconstruction of repeated Quaternary slope failures in the northern South China Sea. Marine Geology, 401: 17-35. [54] Wang Z,Xu J,Talling P J,Cartigny M J B,Simmons S M,Gwiazda R,Paull C K,Maier K L,Parsons D R.2020. Direct evidence of a high-concentration basal layer in a submarine turbidity current. Deep sea Recearch Part I: Oceanographic Research Papers, 161: 103-300. [55] Wentworth C K.1922. A scale of grade and class terms for clastic sediments. Journal of Geology, 30(5): 377-392. [56] Xu J P,Noble M A,Rosenfeld L K.2004. In-situ measurements of velocity structure within turbidity currents. Geophysical Research Letters,31(9): 9931. [57] Xu J P,Sequeiros O E,Noble M A.2014. Sediment concentrations,flow conditions,and downstream evolution of two turbidity currents,Monterey Canyon,USA. Deep Sea Research Part I: Oceanographic Research Papers, 89: 11-34. [58] Yu H S,Chiang C S,Shen S M.2009. Tectonically active sediment dispersal system in SW Taiwan margin with emphasis on the Gaoping(Kaoping)Submarine Canyon. Journal of Marine Systems, 76(4): 369-382. [59] Zhang Y W,Liu Z,Zhao Y,Colin C,Zhang X,Wang M,Zhao S,Kneller B.2018. Long-term in situ observations on typhoon-triggered turbidity currents in the deep sea. Geology, 46(8): 675-678. [60] Zhong G F,Liang J,Guo Y,Kuang Z,Su P,Lin L.2017. Integrated core-log facies analysis and depositional model of the gas hydrate-bearing sediments in the northeastern continental slope,South China Sea. Marine and Petroleum Geology, 86: 1159-1172.