Variations in analytical results of commonly used major and trace elements and isotopic analyses in carbonate studies:a case study on the Lower Cambrian Longwangmiao Formation in central Sichuan Basin
Liu Da-Wei1, Cai Chun-Fang2,3, Hu Yong-Jie4, Jiang Lei2,3, Li Rui5, He Hong1, Wang Shi1, Peng Yan-Yan2,3, Wei Tian-Yuan2,3, Liu Qi-Yuan1
1 Petroleum Exploration and Production Research Institute,SINOPEC,Beijing 100083,China; 2 Key Laboratory of Cenozoic Geology and Environment,Institute of Geology and Geophysics,Chinese Academy of Sciences,Beijing 100029,China; 3 College of Earth and Planetary Sciences,University of Chinese Academy of Sciences,Beijing 100049,China; 4 International Petroleum Exploration and Production Corporation,SINOPEC,Beijing 100029,China; 5 School of Earth Sciences,China University of Geosciences(Wuhan),Wuhan 430074,China
Abstract There are multiple methods of analyzing trace elements and isotopes in studies on carbonate. Are there any differences in the actual geochemical information obtained by different methods?Are those results possibly to compare with each other?In this paper,we compare the results of the main trace element tests(electron probe micro-analyzer[EPMA], laser ablation-plasma mass spectrometry[LA-ICP-MS], and solution method trace[ICP-OES])and oxygen isotope measurements(in-situ ion probe[in-situ SIMS],and acid soluble powder)commonly used in carbonate studies. Taking the carbonates in the Lower Cambrian Longwangmiao Formation in central Sichuan Basin as an example,we reveal the variability in the results of different test methods,in order to provide references for reducing multi-resolution of geochemical information. The study reveals: (1)the variability among the test means(EPMA,LA-ICP-MS and ICP-OES)objectively exists,but the overall bias of the test results decreases with the increase of concentration of measured elements. For the major elements(>10%),the standard deviation of each test result is less than 2%;For the enriched trace elements(>1000 μg/g),the results are within the test error and the standard deviation of the results is less than 6%;For the concentration range of trace elements(100-1000 μg/g),the standard deviation of each test result increases significantly. The deviations of LA-ICP-MS and ICP-OES results are smaller than that of LA-ICP-MS and EPMA,with the deviations of the former increasing from 6% to 45% and those of the latter increasing from 9.1% to 151%. In the concentration range below 100 μg/g,the deviations of LA-ICP-MS and ICP-OES results can be several times different due to the heterogeneity within the minerals. (2)It was found that the deviation of the EPMA results from the LA-ICP-MS results in the adjacent detection line interval(ranging from 100 to 300 μg/g)gradually increases under the micro-area limitation,and it was speculated that this deviation was caused by the correction compensation mechanism for low content elements in the EPMA result correction process. (3)The in-situ SIMS oxygen isotope values reveal the differences in δ18O values at the micro-regional scale of minerals,but the overall test results are 0.5‰~2.5‰ V-PDB negative bias. Presumably,this deviation may come from the specimen correction conversion errors. (4)The cathodoluminescence characteristics of the samples are not related to the Fe or Mn contents,and thus it needs to explore the fluid source in conjunction with lithological and geochemical evidence.
Fund:Co-funded by the Key Project of National Natural Science Foundation of China(No.41730424)and International Cooperation Foundation of China(No.4181101560)
Corresponding Authors:
Cai Chun-Fang,born in 1966,Ph.D.,is a professor of Institute of Geology and Geophysics,Chinese Academy of Sciences. He is mainly engaged in organic geochemistry and paleoenvironment researches. E-mail: cai_cf@mail.iggcas.ac.cn.
About author: Liu Da-Wei,born in 1992,Ph.D.,is an assistant researcher of Sinopec Petroleum Exploration and Development Research Institute. He is mainly engaged in researches on sedimentology and reservoir geochemistry. E-mail: liudawei.syky@sinopec.com.
Cite this article:
Liu Da-Wei,Cai Chun-Fang,Hu Yong-Jie et al. Variations in analytical results of commonly used major and trace elements and isotopic analyses in carbonate studies:a case study on the Lower Cambrian Longwangmiao Formation in central Sichuan Basin[J]. JOPC, 2022, 24(3): 524-539.
Liu Da-Wei,Cai Chun-Fang,Hu Yong-Jie et al. Variations in analytical results of commonly used major and trace elements and isotopic analyses in carbonate studies:a case study on the Lower Cambrian Longwangmiao Formation in central Sichuan Basin[J]. JOPC, 2022, 24(3): 524-539.
[1] 黄思静. 1992. 碳酸盐岩矿物的阴极发光性与其Fe、Mn含量的关系. 矿物岩石, 12(4): 74-79. [Huang S J.1992. Relationship between cathodoluminescence and concentration of Iron and Manganese in carbonate minerals. Mineralogy and Petrology, 12(4): 74-79] [2] 黄思静. 2010. 碳酸盐岩的成岩作用. 北京: 地质出版社,108-111. [Huang S J.2010. Carbonate Diagenesis. Beijing: Geological Publishing House,108-111] [3] 李勇,邓美洲,李国荣,高恒逸,王琼仙,何赛. 2021. 川西龙门山前带雷口坡组四段古表生期大气水溶蚀作用对储层的影响. 石油实验地质, 43(1): 56-63. [Li Y,Deng M Z,Li G R,Gao H Y,Wang Q X,He S.2021. Palaeokarst characteristics and effects on reservoirs in the fourth member of Leikoupo Formation,Longmen Mountain front,western Sichuan Basin. Petroleum Geology and Experiment, 43(1): 56-63] [4] 林春明,张霞,赵雪培,李鑫,黄舒雅,江凯禧. 2021. 沉积岩石学的室内研究方法综述. 古地理学报, 23(2): 223-244. [Lin C M,Zhang X,Zhao X P,Li X,Huang S Y,Jiang K X.2021. Review of laboratory research methods for sedimentary petrology. Journal of Palaeogeography(Chinese Edition), 23(2): 223-244] [5] 刘大卫,蔡春芳,扈永杰,姜磊,彭燕燕,于瑞,覃勤. 2020. 深层白云岩多期白云石化及其对孔隙演化的影响: 以川中地区下寒武统龙王庙组为例. 中国矿业大学学报, 49(6): 1250-1265. [Liu D W,Cai C F,Hu Y J,Jiang L,Peng Y Y,Yu R,Qin Q.2020. Multi-stage dolomitization process of deep burial dolostones and its influence on pore evolution: a case study of Longwangmiao Formation in the Lower Cambrian of central Sichuan Basin. Journal of China University of Mining & Technology, 49(6): 1250-1265] [6] 刘文栋,钟大康,尹宏,孙海涛,梁雪祺,李荣容,卓骏驰,曾鑫耀,彭思桥. 2021. 川西北栖霞组超深层白云岩储层特征及主控因素. 中国矿业大学学报, 50(2): 342-362. [Liu W D,Zhong D K,Yin H,Sun H T,Liang X Q,Li R R,Zhuo J C,Zeng X Y,Peng S Q.2021. Development characteristics and main controlling factors of ultra-deep dolomite reservoirs of the Qixia Formation in the northwestern Sichuan Basin. Journal of China University of Mining & Technology, 50(2): 342-362] [7] 刘晔,柳小明,胡兆初,第五春荣,袁洪林,高山. 2007. ICP-MS测定地质样品中37个元素的准确度和长期稳定性分析. 岩石学报, 23(5): 1203-1210. [Liu Y,Liu X M,Hu Z C,Diwu C R,Yuan H L,Gao S.2007. Evalution of accuracy and long-term stability of determination of 37 trace elements in geological samples by ICP-MS. Acta Petrologica Sinica, 23(5): 1203-1210] [8] 马腾,谭秀成,李凌,曾伟,金民东,罗冰,洪海涛,杨雨. 2015. 四川盆地及邻区下寒武统龙王庙组颗粒滩沉积特征与空间分布. 古地理学报, 17(2): 213-228. [Ma T,Tan X C,Li L,Zeng W,Jin M D,Luo B,Hong H T,Yang Y.2015. Sedimentary characteristics and distribution of grain shoals in the Lower Cambrian Longwangmiao Formation of Sichuan Basin and its adjacent areas. Journal of Palaeogeography(Chinese Edition), 17(2): 213-228] [9] 田艳红,刘树根,赵异华,宋金民,宋林珂,孙玮,梁锋,张长俊,李俊良,尹柯惟,王晨霞,吴娟,林彤,白志强,彭瀚霖,陈会芝. 2014. 四川盆地中部龙王庙组储层成岩作用. 成都理工大学学报(自然科学版), 41(6): 671-683. [Tian Y H,Liu S G,Zhao Y H,Song J M,Song L K,Sun W,Liang F,Zhang C J,Li J L,Yin K W,Wang C X,Wu J,Lin T,Bai Z Q,Peng H L,Chen H Z.2014. Diagenesis of Lower Cambrian Longwangmiao Formation reservoirs in central area of Sichuan Basin,China. Journal of Chengdu University of Technology(Science & Technology Edition), 41(6): 671-683] [10] 许海龙,魏国齐,贾承造,杨威,周天伟,谢武仁,李传新,罗贝维. 2012. 乐山—龙女寺古隆起构造演化及对震旦系成藏的控制. 石油勘探与开发, 39(4): 406-416. [Xu H L,Wei G Q,Jia C Z,Yang W,Zhou T W,Xie W R,Li C X,Luo B W.2012. Tectonics evolution of the Leshan-Longnvsi paleo-uplift and its control on gas accumulation in the Sinian strata,Sichuan Basin. Petroleum Exploration and Development, 39(4): 406-416] [11] 杨威,谢武仁,魏国齐,刘满仓,曾富英,谢增业,金惠. 2012. 四川盆地寒武纪—奥陶纪层序岩相古地理、有利储层展布与勘探区带. 石油学报,33(S2): 21-34. [Yang W,Xie W R,Wei G Q,Liu M C,Zeng F Y,Xie Z Y,Jin H.2012. Sequence lithofacies paleogeography,favorable reservoir distribution and exploration zones of the Cambrian and Ordovician in Sichuan Basin,China. Acta Petroleum Sinica,33(S2): 21-34] [12] 杨雪飞,王兴志,杨跃明,李兴彦,姜楠,谢继荣,罗文军. 2015. 川中地区下寒武统龙王庙组白云岩储层成岩作用. 地质科技情报, 34(1): 35-41. [Yang X F,Wang X Z,Yang Y M,Li X Y,Jiang N,Xie J R,Luo W J.2015. Diagenesis of dolomite reservoir in Lower Cambrian Longwangmiao Formation in central Sichuan Basin. Geological Science and Technology Information, 34(1): 35-41] [13] 余浩元,蔡春芳,郑剑锋,黄理力,袁文芳. 2018. 微生物结构对微生物白云岩孔隙特征的影响: 以塔里木盆地柯坪地区肖尔布拉克组为例. 石油实验地质, 40(2): 233-243. [Yu H Y,Cai C F,Zheng J F,Huang L L,Yuan W F.2018. Influence of microbial texture on pore characteristics of micro dolomites: a case study of Lower Cambrian Xiaoerbulake Formation in Keping area,Tarim Basin. Petroleum Geology and Experiment, 40(2): 233-243] [14] 郑永飞,陈江峰. 2000. 稳定同位素地球化学. 北京: 科学出版社,6-8. [Zheng Y F,Chen J F.2000. Stable Isotope Geochemistry. Beijing: Science Press,6-8] [15] Albee A,Ray L.1970. Correction factors for electron probe microanalysis of silicates,oxides,carbonates,phosphates and sulfates. Analytical Chemistry, 42(12): 1408-1414. [16] Benson L,Achauer C,Matthews R.1972. Electron microprobe analyses of magnesium and iron distribution in carbonate cements and recrystallized sediment grains from ancient carbonate rocks. Journal of Sedimentary Petrology, 42(4): 803-811. [17] Cai C,He W,Jiang L,Li K,Xiang L,Jia L.2014. Petrological and geochemical constraints on porosity different between Lower Triassic sour-and sweet-gas carbonate reservoirs in the Sichuan Basin. Marine and Petroleum Geology, 56: 34-50. [18] Cai C,Li K,Liu D,John C M,John C M,Wang D,Fu B,Fakhraee M,He H,Feng L,Jiang L.2021. Anaerobic oxidation of methane by Mn oxides in sulfate-poor environments. Geology, 49(7): 761-766. [19] Coplen T B,Kendall C,Hopple J.1983. Comparison of stable isotope reference samples. Nature, 302: 236-238. [20] Griffin W L,Powell W J,Pearson N J, O'Reilly S Y. 2008. GLITTER: data reduction software for laser ablation ICP-MS(appendix). In: Syhrester P(ed). Laser Ablation ICP-MS in the Earth Sciences. Mineralogical Association of Canada, Short Course Series, 40: 308-311. [21] Grotzinger J P,Fike D A,Fischer W W.2011. Enigmatic origin of the largest-known carbon isotope excursion in Earth's history. Nature Geoscience, 4: 285-292. [22] Hecht L,Freiberger R,Gilg H A,Grundmann G,Kostitsyn Y A.1999. Rare earth element and isotope(C,O,Sr)characteristics of hydrothermal carbonates: genetic implications for dolomite-hosted talc mineralization at Gopfersgrun(Fichtelgebirge,Germany). Chemical Geology, 155: 115-130. [23] Hu Y J,Cai C,Pederson C L,Liu D,Immwnhauser A.2020. Dolomitization history and porosity evolution of a giant,deeply buried Ediacaran gas field(Sichuan Basin,China). Precambrian Research, 338: 105595. [24] Jarosewich E,Macintyre I G.1983. Carbonate reference samples for electron microprobe and scanning electron microscope analyses. Journal of Sedimentary Research, 53(2): 677-678. [25] Jiang L,Worden R H,Cai C F,Li K,Xiang L,Cai L,He X.2014. Dolomitization of gas reservoirs: the Upper Permian Changxing and Lower Trassic Feixianguan Formations,northeast Sichuan Basin,China. Journal of Sedimentary Reasarch, 84(10): 792-815. [26] Jiang L,Cai C,Worden R H,Crowley S F,Jia L,Zhang K,Duncan I J.2016. Multiphase dolomitization of deeply buried Cambrian petroleum reservoirs,Tarim Basin,northwest China. Sedimentology, 63(7): 2130-2157. [27] Jiang L,Worden R H,Cai C,Shen A,He X,Pan L.2018a. Contrasting diagenetic evolution patterns of platform margin dolostone and limestone in the Lower Triassic Feixianguan Formation,Sichuan Basin,China. Marine and Petroleum Geology, 92: 332-351. [28] Jiang L,Worden R H,Cai C,Shen A,Crowley S F.2018b. Diagenesis of an evaporate related carbonate reservoir in deeply buried Cambrian strata,Tarim Basin,northwest China. AAPG Bulletin, 102(1): 77-102. [29] Jiang L,Planavsky N,Zhao M,Liu W,Wang X.2019. Authigenic origin for a massive negative carbon isotope excursion. Geology, 47(2): 115-118. [30] Land L S.1980. The isotopic and trace element geochemistry of dolomite: the state of the art. In: Zenger D H,Dunham J B. Ethington R L(eds).Concepts and Models of Dolomitization. SEPM Special Publication, 28: 87-110. [31] Li C,Love G D,Lyons T W,Fike D A,Sessions A L,Chu X L.2010. A stratified redox model for the Ediacaran Ocean. Science, 328(5974): 80-83. [32] Li K,George S C,Cai C,Zhang X,Tan X.2020. Comparison of differential diagenesis of two oolites on the Lower Triassic platform margin,NE Sichuan Basin: implications for the co-evolution of rock structure and porosity. Marine and Petroleum Geology, 199: 104485. [33] Li X,Long W,Li Q,Liu Y,Zheng Y,Yang Y,Chamberlain K R,Wan D,Guo C,Wang X,Tao H.2010. Penglai zircon megacrysts: a potential new working reference material for microbeam determination of Hf-O isotopes and U-Pb age. Geostandards and Geoanalytical Research, 34(2): 117-134. [34] Liu D,Cai C,Hu Y,Peng Y,Jiang L.2021. Multistage dolomitization and formation of ultra-deep Lower Cambrian Longwangmiao Formation reservoir in Central Sichuan Basin,China. Marine and Petroleum Geology, 123: 104752. [35] Lüders V,Stedingk K,Franzke H J.1993. Review of geological setting and mineral paragenesis. In: Moller P,Lüders V(eds).Formation of Hydrothermal Vein Deposits: a Case Study of the Pb-Zn,Barite and Fluorite Deposits of the Harz Mountains. Monogr Ser Mineral Deposits, 30: 5-11. [36] Mclennan S M.1989. Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. Reviews in Mineralogy and Geochemistry, 21(1): 169-200. [37] Morgan R,Orberger B,Rosière C A,Wirth R, Carvalhoa C D M, Maria T B. 2013. The origin of coexisting carbonates in banded iron formations: a micro-mineralogicalmicro-mineralogical study of the 2.4 Ga Itabira Group,Brazil. Precambrian Research, 224: 491-511. [38] Pierson B J.1981. The control of cathodoluminescence in dolomite by iron and manganese. Sedimentology, 28(5): 601-610. [39] Qing H,Bosence D,Rose E P.2001. Dolomitization by penesaline sea water in Early Jurassic peritidal platform carbonates,Gibraltar,western Mediterranean. Sedimentology, 48(1): 153-163. [40] Simon A,Benjamin B,Jocelyn B,Reic L.2018. The complex diagenetic history of discontinuities in shallow-marine carbonate rocks: new insights from high-resolution ion microprobe investigation of δ18O and δ13C of early cements. Sedimentology, 65(2): 360-399. [41] Tang G,Li X,Li Q,Liu Y,Ling X.2020. A new Chinese national reference material(GBW04481)for calcite oxygen and carbon isotopic microanalysis. Surface and Interface Analysis, 52: 190-196. [42] Tang G,Li X,Li Q,Liu Y,Ling X,Yin Q.2015. Deciphering the physical mechanism of the topography effect for oxygen isotope measurements using a Camera IMS-1280 SIMS. Journal of Analytical Atomic Spectrometry, 30(4): 950-956. [43] Taylor S R,Mclennan S M.1985. The Continental Crustal: Its Composition and Evolution. Blackwell,Oxford: 311-312. [44] Vahrenkamp V C,Swart P K.1994. Late Cenozoic dolomites of the Bahamas: metastable analogues for the genesis of ancient platform dolomites. In: Purser B,Tucker M,Zenger D(eds). Dolomites. International Association of Sedimentologists(Special Publication), 21: 133-153. [45] Wu H,Jiang S,Palmer M R,Wei H,Yang J.2019. Positive cerium anomaly in the Doushantuo cap carbonates from the Yangtze platform,South China: implications for intermediate water column manganous conditions in the aftermath of the Marinoan glaciation. Precambrian Research, 320: 93-110. [46] Yang M,Yang Y,Evans N J,Xie L,Huang C,Wu S,Yang J,Wu F.2020. Precise and accurate determination of Lu and Hf contents and Hf isotopic compositions in Chinese rock reference materials by MC-ICP-MS. Geostandards and Geoanalytical Research, 44(3): 553-565. [47] Yang X,Tang H,Wang X,Wang Y,Yang Y.2017. Dolomitization by penesaline sea water in early cambrian Longwangmiao formation,central Sichuan Basin,China. Journal of Earth Science, 28(2): 305-314.