Advances on depositional systems tracts in large lake basins and shale oil and gas exploration in mid-western China
WU Yinye1,4, LI Guoxin2, WU Luofei3, XU Zhaohui1,2,4, LONG Guohui1,2, FANG Xiang1,4, FU Lei1, ZHANG Tianshu1, TAO Shizhen1
1 CNPC Research Institute of Petroleum Exploration and Development,Beijing 100083, China; 2 PetroChina Qinghai Oilfields Company Limited,Gansu Dunhuang 736202, China; 3 CNOOC R & D Center of CBM Company,Beijing 100011, China; 4 Research Center of Qaidam Basin,PetroChina,Gansu Dunhuang 736202, China
Abstract Detrital siliciclastics and carbonate deposits are widely distributed in China,and many new oil and gas fields have been discovered in petroliferous basins,especially in tight oil/shale oil exploration in recent years. It is suitable for studies of allo-cyclic sequences with genetic connections to explain the sequence stratigraphic unit according to the evolution of the sedimentary systems tract and accommodation changes. Through this approach,sequence evolution models could be built and oil and gas reservoirs could be predicted. The advances on systems tracts of deep-water systems are manifested in the introduction of the concept of forced regression(sea or lake),developing from the classical three-division systems tracts to the four systems tract and/or two systems tracts,and the distribution of internal relative comformity sequence and systems tract at different scales are closely related to naming. The falling stage systems tract(FSST)and forced regression wedge systems tract(FRW)are formed under different conditions. A-P-D parasequence stacking pattern analysis is used to analyze the Hyperpycnal and the sediment mechanism of normal fluid(Homopycnal and/or Hypopycnal),which improves the accuracy of systems tract identification and oil and gas reservoir prediction. Research examples of the Qaidam Basin and Sichuan Basin confirm that lacustrine transgressive systems tract develops as as lake level rises,shallow lake and semi-deep lake areas expand,the deltaic thin-bedded sands and deep-water turbidite fans and multi-cycle muddy shale-marl combinations are developed in depocenters. It is conducive to the development of shale oil and gas reservoirs and become the “sweet spots” of exploration target areas. Looking forward to the future,important progress will be made in the field of shale oil and gas exploration in the following aspects: (1)research on high-frequency cycle systems tract of deep-water depositional systems in salt lake basins; (2)study on mixed depositional systems of TST that are related to shale type and mixed sediment shale oil types; (3)sequence-paleogeographic studies at the scale of systems tract; (4)studies on source-sink systems and the distribution characteristics of ancient lakes under the framework of systems tract; (5)geochemical indexes analysis of paleo-water depth,paleo-climate and paleo-environment in lakes;(6)reservoir capacity of micro-nanoscale pore-fracture systems in organic-rich shales;(7)sedimentological research on the contribution rate of pure lacustrine mudstones and swamp mudstones to large-scale natural gas hydrocarbon resources.
Fund:Science and Technology Project of China National Petroleum Corp(No.2021hx0001b24198)and Major National Science and Technology Project of China(No.2016ZX05046)
About author: WU Yinye,born in 1964, Ph.D.,research professor,engaged in sedimentology,sequence stratigraphy and petroleum geology research. E-mail: wyy@petroChina.com.
Cite this article:
WU Yinye,LI Guoxin,WU Luofei et al. Advances on depositional systems tracts in large lake basins and shale oil and gas exploration in mid-western China[J]. JOPC, 2022, 24(4): 728-741.
WU Yinye,LI Guoxin,WU Luofei et al. Advances on depositional systems tracts in large lake basins and shale oil and gas exploration in mid-western China[J]. JOPC, 2022, 24(4): 728-741.
[1] 蔡希源,李思田. 2003. 陆相盆地高精度层序地层学: 基础理论篇. 北京: 地质出版社, 1-350. [Cai X Y,Li S T.2003. High-precision Sequence Stratigraphy of Continental Basins: Basic Theory. Beijing: Geological Publishing House, 1-350] [2] 操应长,徐琦松,王健. 2018. 沉积盆地“源-汇”系统研究进展. 地学前缘, 25(4): 116-131. [Cao Y C,Xu Q S,Wang J.2018. Progress in“Source-to-Sink”system research. Earth Science Frontiers, 25(4): 116-131] [3] 陈洪德,侯明才,林良彪,钟怡江,张成弓,隆轲. 2010. 不同尺度构造—层序岩相古地理研究思路与实践. 沉积学报, 28(5): 894-905. [Chen H D,Hou M C,Lin L B,Zhong Y J,Zhang C G,Long K.2010. Research idea and practice of tectonic-sequence lithofacies paleogeographic in diverse scales. Acta Sedimentologica Sinica, 28(5): 894-905] [4] 陈洪德,侯明才,郑荣才. 2013. 层序地层学理论与实践. 北京: 地质出版社, 1-330. [Chen H D,Hou M C,Zheng R C.2013. Theory and Practice of Sequence Stratigraphy.Beijing: Geological Publishing House, 1-330] [5] 邓宏文. 2009. 高分辨率层序地层学应用中的问题探析. 古地理学报, 11(5): 471-480. [Deng H W.2009. Problems in the application of high-resolution sequence stratigraphy. Journal of Palaeogeography(Chinese Edition), 11(5): 471-480] [6] 杜佳,朱光辉,吴洛菲,张政和,高计县,喻玉洁,马遵敬,张明. 2021. 临兴地区致密气“多层系准连续”成藏模式与大气田勘探实践. 天然气工业, 41(3): 58-71. [Du J,Zhu G H,Wu L F,Zhang Z H,Gao J X,Yu Y J,Ma Z J,Zhang M.2021. “Multi-series and quasi-continuous” tight gas accumulation pattern and giant gas field exploration practice in Linxing area. Natural Gas Industry, 41(3): 58-71] [7] 冯增昭. 2003. 中国古地理学的形成、发展、问题和共识. 古地理学报, 5(2): 129-141. [Feng Z Z.2003. Origin,development,problems and common viewpoint of palaeogeography of China. Journal of Palaeogeography(Chinese Edition), 5(2): 129-141] [8] 冯增昭. 2004. 单因素分析多因素综合作图法: 定量岩相古地理重建. 古地理学报, 6(1): 3-19. [Feng Z Z.2004. Single factor analysis and multifactor comprehensive mapping method: reconstruction of quantitative lithofacies palaeogeography. Journal of Palaeogeography(Chinese Edition), 6(1): 3-19] [9] 付蕾,吴洛菲,张天舒,曹彦,吴因业,陶士振. 2021. 层序地层学新方法助推中国陆相致密油气勘探开发. 石油知识, 57(6): 56-57. [Fu L,Wu L F,Zhang T S,Cao Y,Wu Y Y,Tao S Z.2021. A new method of sequence stratigraphy boosts the exploration and development of continental tight oil and gas in China. Petroleum Knowledge, 57(6): 56-57] [10] 龚承林,Ronald J S,彭旸,王英民,李东伟. 2021. 深海碎屑岩层序地层学50年(1970—2020)重要进展. 沉积学报,https://doi.org/10.14027/j.issn.1000-0550.2021.108. [Gong C L,Ronald J S,Peng Y,Wang Y M,Li D W.2021. 50 years(1970-2020)important progress of deep-sea clastic sequence stratigraphy. Acta Sedimentologica Sinica,https://doi.org/10.14027/j.issn.1000-0550.2021.108] [11] 国家市场监督管理总局,国家标准化管理委员会. 2020. 页岩油地质评价方法. 北京: 中国标准出版社, 1-20. [State Administration for Market Regulation,Standardization Administration of the People's Republic of China. 2020. Geological Evaluating Methods for Shale Oil. Beijing: Standards Press of China, 1-20] [12] 郭少斌. 2006. 陆相断陷盆地层序地层模式. 石油勘探与开发, 33(5): 548-552. [Guo S B.2006. Sequence stratigraphic model of continental rifted basins. Petroleum Exploration & Development, 33(5): 548-552] [13] 郭旭升,赵永强,张文涛,李宇平,魏祥峰,申宝剑. 2021. 四川盆地元坝地区千佛崖组页岩油气富集特征与主控因素. 石油实验地质, 43(5): 749-757. [Guo X S,Zhao Y Q,Zhang W T,Li Y P,Wei X F,Shen B J.2021. Oil and gas enrichment characteristics and main controlling factors of Qianfoya shale in Yuanba area,Sichuan Basin. Petroleum Geology & Experiment, 43(5): 749-757] [14] 姜在兴,梁超,吴靖,张建国,张文昭,王永诗,刘惠民,陈祥. 2013. 含油气细粒沉积岩研究的几个问题. 石油学报, 34(6): 1031-1039. [Jiang Z X,Liang C,Wu J,Zhang J G,Zhang W Z,Wang Y S,Liu H M,Chen X.2013. Several issues in sedimentological studies on hydrocarbon-bearing fine-grained sedimentary rocks. Acta Petrolei Sinica, 34(6): 1031-1039] [15] 金之钧,王冠平,刘光祥,高波,刘全有,王红亮,梁新平,王濡岳. 2021. 中国陆相页岩油研究进展与关键科学问题. 石油学报, 42(7): 821-835. [Jin Z J,Wang G P,Liu G X,Gao B,Liu Q Y,Wang H L,Liang X P,Wang R Y.2021. Research progress and key scientific issues of continental shale oil in China. Acta Petrolei Sinica, 42(7): 821-835] [16] 匡立春,董大忠,何文渊,温声明,孙莎莎,李树新,邱振,廖新维,李勇,武瑾,张磊夫,施振生,郭雯,张素荣. 2020. 鄂尔多斯盆地东缘海陆过渡相页岩气地质特征及勘探开发前景. 石油勘探与开发, 47(3): 435-446. [Kuang L C,Dong D Z,He W Y,Wen S M,Sun S S,Li S X,Qiu Z,Liao X W,Li Y,Wu J,Zhang L F,Shi Z S,Guo W,Zhang S R.2020. Geological characteristics and development potential of transitional shale gas in the east margin of the Ordos Basin,NW China. Petroleum Exploration & Development, 47(3): 435-446] [17] 李国欣,朱如凯. 2020. 中国石油非常规油气发展现状、挑战与关注问题. 中国石油勘探, 25(2): 1-13. [Li G X,Zhu R K.2020. Progress,challenges and key issues in the unconventional oil and gas development of CNPC. China Petroleum Exploration, 25(2): 1-13] [18] 李国欣,朱如凯,张永庶,陈琰,崔景伟,姜营海,伍坤宇,盛军,鲜成钢,刘合. 2022. 柴达木盆地英雄岭页岩油地质特征、评价标准及发现意义. 石油勘探与开发, 49(1): 18-31. [Li G X,Zhu R K,Zhang Y S,Chen Y,Cui J W,Jiang Y H,Wu K Y,Sheng J,Xian C G,Liu H.2022. Geological characteristics,evaluation criteria and discovery significance of Paleogene Yingxiongling shale oil in Qaidam Basin,NW China. Petroleum Exploration & Development, 49(1): 18-31] [19] 李增学,常象春,赵秀丽. 2010. 岩相古地理学. 北京: 地质出版社, 1-180. [Li Z X,Chang X C,Zhao X L.2010. Lithofacies Paleogeography.Beijing: Geological Publishing House, 1-180] [20] 李增学,李莹,刘海燕,王东东,王平丽,宋广增,李晓静,贾强,赵洪刚. 2021. 岩相古地理优势相方法及应用: 兼谈“广义”与“狭义”岩相古地理及若干新的研究方向. 古地理学报, 23(3): 489-504. [Li Z X,Li Y,Liu H Y,Wang D D,Wang P L,Song G Z,Li X J,Jia Q,Zhao H G.2021. Method and application of lithofacies palaeogeographic dominant facies: also discuss the lithofacies palaeogeography in broad and narrow sense and some new research directions. Journal of Palaeogeography(Chinese Edition), 23(3): 489-504] [21] 林畅松. 2019. 盆地沉积动力学: 研究现状与未来发展趋势. 石油与天然气地质, 40(4): 685-700. [Lin C S.2019. Sedimentary dynamics of basin: status and trend. Oil & Gas Geology, 40(4): 685-700] [22] 刘宝珺,曾允孚. 1985. 岩相古地理基础和工作方法. 北京: 地质出版社, 1-280. [Liu B J,Zeng Y F.1985. Lithofacies Paleogeography Basis and Working Methods. Beijing: Geological Publishing House, 1-280] [23] 刘桂珍,高伟,尉加盛,唐文. 2021. 混积层系沉积、层序特征: 以鄂尔多斯盆地高桥地区本溪组为例. 天然气地球科学, 32(3): 382-392. [Liu G Z,Gao W,Yu J S,Tang W.2021. Sedimentary characteristics and sequence stratigraphy in a mixed silicilastic-carbonate depositional system: case study of Benxi Formation in Gaoqiao area,Ordos Basin. Natural Gas Geoscience, 32(3): 382-392] [24] 刘莹,刘海燕,赵永福,李增学,王东东. 2020. 煤系细粒沉积纹层特点及与陆相湖泊细粒沉积对比. 中国煤炭地质, 32(8): 5-11. [Liu Y,Liu H Y,Zhao Y F,Li Z X,Wang D D.2020. Characteristics of fine grain sedimentary striae of coal measures and comparison with fine grain deposits of continental lakes. Coal Geology of China, 32(8): 5-11] [25] 马永生,陈洪德,王国力. 2009. 中国南方构造—层序岩相古地理图集: 震旦记—新近纪. 北京: 科学出版社, 1-360. [Ma Y S,Chen H D,Wang G L.2009. Atlas of Tectonic-lithofacies Paleogeography in South China(Sinian-Neogene).Beijing: Science Press, 1-360] [26] 潘树新,刘化清,Zavala Carlos,刘彩燕,梁苏娟,张庆石,白忠峰. 2017. 大型坳陷湖盆异重流成因的水道—湖底扇系统: 以松辽盆地白垩系嫩江组一段为例. 石油勘探与开发, 44(6): 860-870. [Pan S X,Liu H Q,Zavala C,Liu C Y,Liang S J,Zhang Q S,Bai Z F.2017. Sublacustrine hyperpycnal channel-fan system in a large depression basin: a case study of Nen 1 Member,Cretaceous Nenjiang Formation in the Songliao Basin,NE China. Petroleum Exploration & Development, 44(6): 860-870] [27] 蒲秀刚,金凤鸣,韩文中,时战楠,蔡爱兵,王爱国,官全胜,姜文亚,张伟. 2019. 陆相页岩油甜点地质特征与勘探关键技术: 以沧东凹陷孔店组二段为例. 石油学报, 40(8): 997-1012. [Pu X G,Jin F M,Han W Z,Shi Z N,Cai A B,Wang A G,Guan Q S,Jiang W Y,Zhang W.2019. Sweet spots geological characteristics and key exploration technologies of continental shale oil: a case study of Member 2 of Kongdian Formation in Cangdong sag. Acta Petrolei Sinica, 40(8): 997-1012] [28] 孙龙德,邹才能,贾爱林,位云生,朱如凯,吴松涛,郭智. 2019. 中国致密油气发展特征与方向. 石油勘探与开发, 46(6): 1015-1026. [Sun L D,Zou C N,Jia A L,Wei Y S,Zhu R K,Wu S T,Guo Z.2019. Development characteristics and orientation of tight oil and gas in China. Petroleum Exploration & Development, 46(6): 1015-1026] [29] 孙龙德,刘合,何文渊,李国欣,张水昌,朱如凯,金旭,孟思炜,江航. 2021. 大庆古龙页岩油重大科学问题与研究路径探析. 石油勘探与开发, 48(3): 453-463. [Sun L D,Liu H,He W Y,Li G X,Zhang S C,Zhu R K,Jin X,Meng S W,Jiang H.2021. An analysis of major scientific problems and research paths of Gulong shale oil in Daqing Oilfield,NE China. Petroleum Exploration & Development, 48(3): 453-463] [30] 王成善,林畅松. 2021. 中国沉积学近十年来的发展现状与趋势. 矿物岩石地球化学通报, 40(6): 1217-1229, 1448-1449. [Wang C S,Lin C S.2021. Development status and trend of sedimentology in china in recent ten years. Bulletin of Mineralogy,Petrology and Geochemistry, 40(6): 1217-1229, 1448-1449.] [31] 王成善,冯志强,王璞珺. 2016. 白垩纪松辽盆地松科1井大陆科学钻探工程. 北京: 科学出版社, 1-260. [Wang C S,Feng Z Q,Wang P J.2016. Cretaceous Continental Scientific Drilling Project of Well Songke 1 in Songliao Basin. Beijing: Science Press, 1-260] [32] 吴因业,靳久强,李永铁,江波,郭彬程,方向. 2003. 柴达木盆地西部古近系湖侵体系域及相关储集体. 古地理学报, 5(2): 232-243. [Wu Y Y,Jin J Q,Li Y T,Jiang B,Guo B C,Fang X.2003. Transgressive System Tracts and Related Reservoir Bodies of Paleogene in Western Qaidam Basin. Journal of Palaeogeography(Chinese Edition), 5(2): 232-243] [33] 吴因业,张志杰,张琴,杜业波,陈瑞银,侯宇安,译. Catuneanu O,著. 2009. 层序地层学原理. 北京: 石油工业出版社. [Wu Y Y,Zhang Z Z,Zhang Q,Du Y B,Chen R Y,Hou Y A.Tanslated from Catuneanu O. 2009. Principle of Sequence Stratigraphy. Beijing: Petroleum Industry Press] [34] 吴因业,张天舒,张志杰,崔化娟. 2010. 沉积体系域类型、特征及石油地质意义. 古地理学报, 12(1): 69-81. [Wu Y Y,Zhang T S,Zhang Z J,Cui H J.2010. Types and characteristics of depositional systems tract and its petroleum geological significance. Journal of Palaeogeography(Chinese Edition), 12(1): 69-81] [35] 吴因业,张天舒,陶士振,冯荣昌. 2013. 深水湖盆沉积砂体的层序地层分析: 以四川侏罗系为例. 沉积学报, 31(5): 798-806. [Wu Y Y,Zhang T S,Tao S Z,Feng R C.2013. Sequence stratigraphy of depositional sandbodies in the deep-water lake basin: a case from Jurassic Sichuan. Acta Sedimentologica Sinica, 31(5): 798-806] [36] 吴因业,顾家裕,郭彬程,吴洛菲,彭飞飞. 2015. 油气层序地层学. 北京: 石油工业出版社, 1-450. [Wu Y Y,Gu J Y,Guo B C,Wu L F,Peng F F.2015. Oil and Gas Sequence Stratigraphy. Beijing: Petroleum Industry Press, 1-450] [37] 余烨,张昌民,朱锐,杜家元,黄俨然,王莉. 2019. 强制海退体系域识别特征及其油气意义. 沉积学报, 37(2): 345-355. [Yu Y,Zhang C M,Zhu R,Du J Y,Huang Y R,Wang L.2019. Recognition characteristics and hydrocarbon significance of a falling stage systems tract. Acta Sedimentologica Sinica, 37(2): 345-355] [38] 郑秀娟,杜远生,朱筱敏,刘招君,胡斌,吴胜和,邵龙义,旷红伟,罗静兰,钟大康,李华,何登发,朱如凯,鲍志东. 2021. 中国古地理学近十年主要进展. 矿物岩石地球化学通报, 40(1): 94-114,4. [Zheng X J,Du Y S,Zhu X M,Liu Z J,Hu B,Wu S H,Shao L Y,Kuang H W,Luo J L,Zhong D K,Li H,He D F,Zhu R K,Bao Z D.2021. The main progress of Chinese paleogeography in the past decade. Bulletin of Mineralogy, Petrology and Geochemistry, 40(1): 94-114,4] [39] 朱筱敏,李顺利,潘荣,谈明轩,陈贺贺,王星星,陈锋,张梦瑜,侯冰洁,董艳蕾. 2016. 沉积学研究热点与进展: 第32届国际沉积学会议综述. 古地理学报, 18(5): 699-716. [Zhu X M,Li S L,Pan R,Tan M X,Chen H H,Wang X X,Chen F,Zhang M Y,Hou B J,Dong Y L.2016. Current hot topics and advances of sedimentology: a summary from 32nd IAS Meeting of Sedimentology. Journal of Palaeogeography(Chinese Edition), 18(5): 699-716] [40] 邹才能,董大忠,王玉满,李新景,黄金亮,王淑芳,管全中,张晨晨,王红岩,刘洪林,拜文华,梁峰,吝文,赵群,刘德勋,杨智,梁萍萍,孙莎莎,邱振. 2016. 中国页岩气特征、挑战及前景(二). 石油勘探与开发, 43(2): 166-178. [Zou C N,Dong D Z,Wang Y M,Li X J,Huang J L,Wang S F,Guan Q Z,Zhang C C,Wang H Y,Liu H L,Bai W H,Liang F,Lin W,Zhao Q,Liu D X,Yang Z,Liang P P,Sun S S,Qiu Z.2016. Shale gas in China: characteristics,challenges and prospects(Ⅱ). Petroleum Exploration & Development, 43(2): 166-178] [41] Aplin A C,Joe H S.2011. Mudstone diversity: origin and implications for source,seal,and reservoir properties in petroleum systems. Shale Heterogenity and Etrophysical Properties, 95(12): 2031-2059. [42] Brown L F Jr,Fisher W L. 1977. eismic stratigraphic interpretation of depositional systems: examples from Brazilian rift and pull apart basins. In: Payton C E(ed). Seismic Stratigraphy: Applications to Hydrocarbon Exploration. American Association of Petroleum Geologists Memoir, 26: 213-248. [43] Cross T A.1991. High-resolution stratigraphic correlation from the perspectives of base-level cycles and sediment accommodation. In: Dolson J(ed). Unconformity Related Hydrocarbon Exploration and Accumulation in Clastic and Carbonate Settings. Rocky Mountain Association of Geologists,Short Course Notes,28-41. [44] Embry A F,Johannessen E P.1992. T-R sequence stratigraphy,facies analysis and reservoir distribution in the uppermost Triassic-Lower Jurassic succession,western Sverdrup Basin,Arctic Canada. In: Vorren T O,Bergsager E,Dahl-Stamnes O A,Holter E,Johansen B,Lie E,Lund T B(eds). Arctic Geology and Petroleum Potential. Norwegian Petroleum Society(NPF),Special Publication, 2: 121-146. [45] Galloway W E.1989. Genetic stratigraphic sequences in basin analysis,I. Architecture and genesis of flooding-surface bounded depositional units. American Association of Petroleum Geologists Bulletin, 73: 125-142. [46] Hunt D,Tucker M E.1992. Stranded parasequences and the forced regressive wedge systems tract: deposition during base-level fall. Sedimentary Geology, 81: 1-9. [47] Mulder T,Syvitski J P.1995. Turbidity currents generated at river mouths during exceptional discharges to the world oceans. The Journal of Geology, 103(3): 285-299. [48] Mulder T,Chapron E.2011. Flood deposits in continental and marine environments: character and significance. In: Slatt R M,Zavala C(eds). Sediment Transfer from Shelf to Deep Water: Revisiting the Delivery System. Tulsa: AAPG,1-30. [49] Mulder T,Syvitski J P,Migeon S.2003. Marine hyperpycnal flows: initiation,behavior and related deposits: a review. Marine and Petroleum Geology, 20(6): 861-882. [50] Octavian C.2020. Sequence stratigraphy in the context of the‘modeling revolution’. Marine and Petroleum Geology. https://doi.org/10.1016/j.marpetgeo.2020.104309. [51] Posamentier H W,Vail P R.1988. Eustatic controls on clastic deposition Ⅱ-sequence and systems tract models. In: Wilgus C K,Hastings B S,Kendall C G St C,Posamentier H W,Ross C A,Wagoner Wagoner J C(eds). Sea Level Changes: An Integrated Approach. SEPM Special Publication, 42: 125-154. [52] Shanmugam G.2002. Ten turbidite myths. Earth Science Reviews, 58(3): 311-341. [53] Shanmugam G.2003. Deep-marine tidal bottom currents and their reworked sands in modern and ancient submarine canyons. Marine and Petroleum Geology, 20(5): 471-491. [54] Zavala C,Arcuri M,Gamero H, et al.2011. A genetic facies tract for the analysis of sustained hyperpycnal flow deposits. In: Slatt R M,Zavala C(eds). Sediment Transfer from Shelf to Deep Water: Revisiting the Delivery System. Tulsa: AAPG,31-51.