Recognition and prediction of fluvial sand-bodies and their responses to paleoclimatic fluctuations: a case study in the Lower Member of Ming-huazhen Formation in southern Shijiutuo uplift,Bozhong Depression
LI Dongwei1, GONG Chenglin1,2, WANG Jun3, LI Yichao1, LI Hong3, GE Daoyao1
1 College of Geosciences,China University of Petroleum(Beijing),Beijing 102249,China; 2 State Key Laboratory of Petroleum Resources and Prospecting,China University of Petroleum(Beijing),Beijing 102249,China; 3 CNOOC China Limited Tianjin Branch,Tianjin 300459,China
Abstract The recognition and prediction of fluvial sand bodies and their responses to paleoclimatic fluctuations represent a hot topic of concern in fluvial sedimentology. Based on the seismic sedimentology approach,a three-step workflow used for delineation of fluvial sand bodies has been proposed(i.e.,seismic-well tie used for establishment of sequence stratigraphic framework,90° phase rotation to correlate with lithology to seismic events,and stratal slices used to identify sand bodies). This workflow was utilized to delineate fluvial sand bodies in the Lower Member of Neogene Minghuazhen Formation,southern Shijiutuo uplift,Bozhong Depression,Bohai Bay Basin,leading to the recognition of six main types of fluvial sand bodies(e.g.,straight and sinuous channel sandstones,channel-levee complexes,point bars,oxbows,river mouth bars,and crevasse splay). Paleoclimates during the deposition of the Lower Member of the Minghuazhen Formation were reconstructed,based on mudstone colours and records of algae species and sporopollens. Our results suggest that the early,middle,and late evolutionary stages of the Lower Member of the Minghuazhen Formation underwent humid-arid transition,dominantly humid,and predominantly arid conditions,respectively. The paleoclimatic evolution towards a humid condition led to the decrease in sandbody widths and channel sinuosity,and to the better development isolated channel fills characterized by ribbon-shape distribution patterns. The paleoclimatic evolution towards an arid condition led to the increase in sandbody widths and channel sinuosities,and to the better development of channel-levee complexes and river mouth bars characterized by band-shaped distribution patterns. The database and observations of this study provide reference for the recognition and prediction of fluvial sand bodies in other rift basins,and have practical implications for hydrocarbon exploration of fluvial sand bodies in the shrinking evolution period of lacustrine basins characterized by weak tectonic activities.
Corresponding Authors:
GONG Chenglin,born in 1983,is a professor at the China University of Petroleum(Beijing). He is mainly engaged in teaching and research on seismic interpretation, deep-water sedimentology, and sequence stratigraphy. E-mail: chenglingong@cup.edu.cn.
About author: LI Dongwei,born in 1997,is a Ph.D. candidate at the China University of Petroleum(Beijing). His research interests mainly focus on sedimentology and stratigraphy of shallow-to deep-water systems. E-mail: dongweilip2p@hotmail.com.
Cite this article:
LI Dongwei,GONG Chenglin,WANG Jun et al. Recognition and prediction of fluvial sand-bodies and their responses to paleoclimatic fluctuations: a case study in the Lower Member of Ming-huazhen Formation in southern Shijiutuo uplift,Bozhong Depression[J]. JOPC, 2022, 24(4): 742-758.
LI Dongwei,GONG Chenglin,WANG Jun et al. Recognition and prediction of fluvial sand-bodies and their responses to paleoclimatic fluctuations: a case study in the Lower Member of Ming-huazhen Formation in southern Shijiutuo uplift,Bozhong Depression[J]. JOPC, 2022, 24(4): 742-758.
[1] 陈彬滔,于兴河,王磊,史忠生,马轮,薛罗,史江龙,白洁,赵艳军. 2021. 河流相沉积的河型转换特征与控制因素及其油气地质意义: 以南苏丹Melut盆地Ruman地区坳陷期Jimidi组为例. 沉积学报, 39(2): 424-433. [Chen B T,Yu X H,Wang L,Shi Z S,Ma L,Xue L,Shi J L,Bai J,Zhao Y J.2021. Features and controlling factors of river pattern transition in fluvial deposition and its significance for petroleum geology: an insight from the Jimidi Formation in the Ruman area,Melut Basin,south Sudan. Sedimentologica Sinica, 39(2): 424-433] [2] 何仕斌,朱伟林,李丽霞. 2001. 渤中坳陷沉积演化和上第三系储盖组合分析. 石油学报, 22(2): 38-43, 121-122. [He S B,Zhu W L,Li L X.2001. Sedimentary evolution and Neogene reservoir cap assemblage analysis in Bozhong depression. Acta Petrolei Sinica, 22(2): 38-43, 121-122] [3] 赖维成. 2011. 渤海海域第三系层序地层模式及地震储层预测技术. 中国地质大学(北京)博士学位论文: 30-37, 85-86. [Lai W C.2011. Sequence stratigraphy model and geo-seismic reservoir prediction method in Tertiary of Bohai offshore. Doctoral dissertation of China University of Geosciences(Beijing): 30-37, 85-86] [4] 赖维成,程建春,周心怀,李建平,代黎明,张云慧. 2009. 湖盆萎缩期准平原沉积层序划分与砂体特征研究: 以黄河口地区新近系明下段为例. 中国海上油气, 21(3): 157-161. [Lai W C,Cheng J C,Zhou X H,Li J P,Dai L M,Zhang Y H.2009. Stratigraphic sequence division and sandbody characteristics of peneplain deposits during lacustrine basin shrinking: a case study of Lower Memember of Neogene Minghuazhen Formition in the area of Yellow River mouth. China Offshore Oil and Gas, 21(3): 157-161] [5] 黎祺,胡明毅. 2014. 地震沉积学在河流—三角洲沉积相及有利砂体预测方面的应用. 天然气地球科学, 25(9): 1341-1349. [Li Q,Hu M Y.2014. Application of seismic sedimentology in river-delta facies and sandstone body prediction. Natural Gas Geoscience, 25(9): 1341-1349] [6] 李虹,张新涛,郭涛,张藜,王军. 2020. 渤海石南斜坡带东二下段湖底扇沉积特征、微相分布及相模式. 中国海上油气, 32(5): 54-62. [Li H,Zhang X T,Guo T,Zhang L,Wang J.2020. Sedimentary characteristics,microfacies distribution and facies model of the sublacustrine fan in E3d2L of the Shinan slope zone of Bohai sea. China Offshore Oil and Gas, 32(5): 54-62] [7] 李伟,岳大力,胡光义,范廷恩,方晓刚. 2017. 分频段地震属性优选及砂体预测方法: 秦皇岛32-6油田北区实例. 石油地球物理勘探, 52(1): 121-130, 17-18. [Li W,Yue D L,Hu G Y,Fan T E,Fang X G.2017. Frequency-segmented seismic attribute optimization and sandbody distribution prediction: an example in North Block,Qinhuangdao 32-6 Oilfield. Oil Geophysical Prospectiong, 52(1): 121-130, 17-18] [8] 李相博,刘化清,邓秀芹,王雅婷,龙礼文,魏立花,郝斌. 2021. 干旱环境河流扇概念与鄂尔多斯盆地延长组“满盆砂”成因新解. 沉积学报, 39(5): 1208-1221. [Li X B,Liu H Q,Deng X Q,Wang Y T,Long L W,Wei L H,Hao B.2021. The concept of fluvial fans in an arid environment: a new explanation of the origin of “sand-filled basins”in the Yanchang Formation,Ordos Basin. Sedimentologica Sinica, 39(5): 1208-1221] [9] 牛博,赵家宏,付平,李军建,鲍志东,胡勇,苏进昌,高兴军,张弛,于登飞,臧东升,李敏. 2019. 曲流河废弃河道走向判定与单砂体构型表征: 以渤海湾盆地埕宁隆起石臼坨凸起西部新近系明化镇组下段为例. 石油勘探与开发, 46(5): 891-901. [Niu B,Zhao J H,Fu P,Li J J,Bao Z D,Hu Y,Su J C,Gao X J,Zhang C,Yu D F,Zang D S,Li M.2019. Trend judgment of abandoned channels and fine architecture characterization in meandering river reservoirs: a case study of Neogene Minhuazhen Formation NmⅢ2 layer in Shijiutuo bulge,Chengning uplift,Bohai Bay Basin,East China. Petroleum Exploration and Development, 46(5): 891-901] [10] 孙容艳. 2015. 石臼坨凸起中段明化镇组极浅水三角洲特征及构造耦合分析. 成都理工大学硕士学位论文: 25-26. [Sun R Y.2015. Characteristics and structure coupling analysis for Minghuazhen Group in the raised Middle of Shijiutuo island. Masteral dissertation of Chengdu University of Technology: 25-26] [11] 孙志强. 2011. 渤海海域石南斜坡区古近系东营组层序地层及沉积体系研究. 成都理工大学硕士学位论文: 9-10. [Sun Z Q.2015. Study on the Paleogene Dongying Formation sequence stratigraphy and depositional system in Shinan slope of Bohai sea. Masteral dissertation of Chengdu University of Technology: 9-10] [12] 谈明轩,朱筱敏,刘强虎,刘伟,李顺利,赵芳. 2019. 渤海沙垒田地区新近系明下段多河型地震地貌学特征. 石油实验地质, 41(3): 411-419. [Tan M X,Zhu X M,Liu Q H,Liu W,Li S L,Zhao F.2019. Seismic geomorphological characteristics of multiple fluvial patterns in the Neogene Lower Minghuazhen Member in the Shaleitian area,Bohai Sea. Petroleum Geology & Experiment, 41(3): 411-419] [13] 谈明轩,朱筱敏,张自力,刘强虎,石文龙. 2020. 断陷盆地拗陷期河流层序样式及其地貌响应: 以渤海湾盆地沙垒田凸起区新近系明化镇组下段为例. 古地理学报, 22(3): 428-439. [Tan M X,Zhu X M,Zhang Z L,Liu Q H,Shi W L.2020. Fluvial sequence pattern and its response of geomorphy in depression phase of rift basin: a case study of the Lower Member of Neogene Minghuazhen Formation in Shaleitian Uplift area,Bohai Bay Basin. Journal of Palaeogeography(Chinese Edition), 22(3): 428-439] [14] 王德英,余宏忠,于海波,揣媛媛. 2012. 渤海海域新近系层序地层格架约束下岩性圈闭发育特征分析及精细刻画: 以石臼坨凸起明下段为例. 中国海上油气,24(S1): 23-28. [Wang D Y,Yu H Z,Yu H B,Chuai Y Y.2012. An analysis and refined depiction of lithologic trap development under the framework of Neogene sequence stratigraphic in Bohai water: a case of Lower Member of Minghuazhen Formation in Shijiutuo Rise. China Offshore Oil and Gas, 24(S1): 23-28] [15] 王英民. 2007. 对层序地层学工业化应用中层序分级混乱问题的探讨. 岩性油气藏,(1): 9-15. [Wang Y M.2007. Analysis of the mess in sequence hierarchy applied in the industrialized application of the sequence of the sequence stratigraphy. Lithologic Reservoirs,(1): 9-15] [16] 吴胜和,岳大力,刘建民,束青林,范峥,李宇鹏. 2008. 地下古河道储层构型的层次建模研究. 中国科学(D辑: 地球科学),38(S1): 111-121. [Wu S H,Yue D L,Liu J M,Shu Q L,Fan Z,Li Y P.2008. Hierarchical modeling of underground paleochannel reservoir configuration. Scientia Sinica Terrae,38(S1): 111-121] [17] 吴胜和,岳大力,冯文杰,张佳佳,徐振华. 2021. 碎屑岩沉积构型研究若干进展. 古地理学报, 23(2): 245-262. [Wu S H,Yue D L,Feng W J,Zhang J J,Xu Z H.2021. Research progress of depositional architecture of clastic systems. Journal of Palaeogeography(Chinese Edition), 23(2): 245-262] [18] 吴因业,张天舒,张志杰,崔化娟. 2010. 沉积体系域类型、特征及石油地质意义. 古地理学报, 12(1): 69-81. [Wu Y Y,Zhang T S,Zhang Z J,Cui H J.2010. Types and characteristics of depositional systems tract and its petroleum geological significance. Journal of Palaeogeography(Chinese Edition), 12(1): 69-81] [19] 徐安娜,穆龙新,裘怿楠. 1998. 中国不同沉积类型储集层中的储量和可动剩余油分布规律. 石油勘探与开发, 25(5): 57-60. [Xu A N,Mu L X,Qiu Y N.1998. Sequence stratigraphic framework and sedimentary facies prediction in Dongying Formation of Nanpu Sag. Petroleum Exploration and Development, 25(5): 57-60] [20] 徐振华,吴胜和,刘钊,赵军寿,耿红柳,吴峻川,张天佑,刘照玮. 2019. 浅水三角洲前缘指状砂坝构型特征: 以渤海湾盆地渤海BZ25油田新近系明化镇组下段为例. 石油勘探与开发, 46(2): 322-333. [Xu Z H,Wu S H,Liu Z,Zhao J S,Geng H L,Wu J C,Zhang T Y,Liu Z W.2019. Sandbody architecture of the bar finger within shoal water delta front: insights from the Lower Member of Minghuazhen Formation,Neogene,Bohai BZ25 Oilfield,Bohai Bay Basin,East China. Petroleum Exploration and Development, 46(2): 322-333] [21] 薛永安,王飞龙,汤国民,李新琦. 2020. 渤海海域页岩油气地质条件与勘探前景. 石油与天然气地质, 41(4): 696-709. [Xue Y A,Wang F L,Tang G M,Li X Q.2020. Geological condition and exploration prospect of shale oil and gas in the Bohai Sea. Oil & Gas Geology, 41(4): 696-709] [22] 余宏忠. 2009. 黄河口凹陷新近系层序地层及构造对沉积充填的控制作用. 中国地质大学(北京)博士学位论文: 22-23, 59-60. [Yu H Z.2009. The control of sequence stratigraphy and tectonic on sediment filling of Neogene in Huanghekou depression. Doctoral dissertation of China University of Geosciences(Beijing): 22-23, 59-60] [23] 于兴河,李胜利,赵舒,陈建阳,侯国伟. 2008. 河流相油气储层的井震结合相控随机建模约束方法. 地学前缘, 15(4): 33-41. [Yu X H,Li S L,Zhao S,Chen J Y,Hou G W.2008. The constraining method on stochastic modeling for fluvial petroleum reservoir controlled by depositional facies integrating wells with seismic data. Earth Science Frontiers, 15(4): 33-41] [24] 岳大力,李伟,王军,王武荣,李健. 2018. 基于分频融合地震属性的曲流带预测与点坝识别: 以渤海湾盆地埕岛油田馆陶组为例. 古地理学报, 20(6): 941-950. [Yue D L,Li W,Wang J,Wang W R,Li J.2018. Prediction of meandering belt and point-bar recognition based on spectral-decomposed and fused seismic attributes: a case study of the Guantao Formation,Chengdao Oilfield,Bohai Bay Basin. Journal of Palaeogeography(Chinese Edition). 20(6): 941-950] [25] 曾洪流,朱筱敏,朱如凯,张庆石. 2012. 陆相坳陷型盆地地震沉积学研究规范. 石油勘探与开发, 39(3): 275-284. [Zeng H L,Zhu X M,Zhu R K,Zhang Q S.2012. Guidelines for seismic sedimentologic study in non-marine postrift basins. Petroleum Exploration and Development, 39(3): 275-284] [26] 张新涛,周心怀,李建平,牛成民. 2014. 敞流沉积环境中“浅水三角洲前缘砂体体系”研究. 沉积学报, 32(2): 260-269. [Zhang X T,Zhou X H,Li J P,Niu C M.2014. Unconfined flow deposits in front sandbodies of shallow water deltaic distributary systems. Sedimentologica Sinica, 32(2): 260-269] [27] 朱筱敏,董艳蕾,曾洪流,黄捍东,刘强虎,秦祎,叶蕾. 2019. 沉积地质学发展新航程: 地震沉积学. 古地理学报, 21(2): 189-201. [Zhu X M,Dong Y L,Zeng H L,Huang H D,Liu Q H,Qin Y,Ye L.2019. New development trend of sedimentary geology: seismic sedimentology. Journal of Palaeogeography(Chinese Edition), 21(2): 189-201] [28] Ahamd M,Rowell P.2012. Application of spectral decomposition and seismic attributes to understand the structure and distribution of sand reservoirs within Tertiary rift basins of the Gulf of Thailand. Leading Edge, 31(6): 630. [29] Catuneanu O.2006. Principles of Sequence Stratigraphy. Amsterdam: Elsevier, 246-253. [30] Chen P,Xian B Z,Li M J,Liang X W,Wu Q R,Zhang W M,Wang J H,Wang Z,Liu J P.2021. A giant lacustrine flood-related turbidite system in the Triassic Ordos Basin,China: sedimentary processes and depositional architecture. Sedimentology, 68: 3279-3306. [31] Chopra S,Marfurt K J.2012. Seismic attribute expression of differential compaction. The Leading Edge, 31(12): 1418-1422. [32] Gong C L,Sztanó O,Steel R J,Xian B Z,Galloway W E,Bada G.2019. Critical differences in sediment delivery and partitioning between marine and lacustrine basins: a comparison of marine and lacustrine aggradational to progradational clinothem pairs. GSA Bulletin, 131(5-6): 766-781. [33] Hart B S.2008. Channel detection in 3D seismic data using sweetness. AAPG Bulletin, 92(6): 733-742. [34] Li W,Yue D L,Wu S H,Wang W F.2019. Characterizing meander belts and point bars in fluvial reservoirs by combining spectral decomposition and genetic inversion. Marine and Petroleum Geology, 105: 168-184. [35] Liu J P,Xian B Z,Ji Y L,Gong C L,Wang J H,Wang Z,Chen P,Song D L,Wei W Z,Zhang X M,Dou L X.2019. Alternating of aggradation and progradation dominated clinothems and its implications for sediment delivery to deep lake: the eocene dongying depression,bohai bay basin,east China. Marine and Petroleum Geology, 114: 104197. [36] Miall A D.2002. Architecture and sequence stratigraphy of Pleistocene fluvial systems in the Malay Basin,based on seismic time-slice analysis. AAPG Bulletin, 86(7): 1201-1216. [37] Olsen T,Steel R J,Hogseth K,Skar T,Roe S L.1995. Sequential architecture in a fluvial succession: sequence stratigraphy in the Upper Cretaceous Mesaverde Group,Prince Canyon,Utah. Journal of Sedimentary Research,65(2b): 265-280. [38] Raef A E,Meek T N,Totten M W.2016. Applications of 3D seismic attribute analysis in hydrocarbon prospect identification and evaluation: verification and validation based on fluvial palaeochannel cross-sectional geometry and sinuosity,Ness County,Kansas,USA. Marine and Petroleum Geology, 73: 21-35. [39] Reynolds A D.1999. Dimensions of paralic sandstone bodies. AAPG, 83(3): 211-229 [40] Shanley K W,McCabe P J.1994. Perspectives on the sequence stratigraphy of continental strata. AAPG Bulletin, 78(4): 544-568. [41] Zeng H L.2018. What is seismic sedimentology?A tutorial. Interpretation, 6(2): SD1-SD12. [42] Zeng H L,Hentz T F.2004. High-frequency sequence stratigraphy from seismic sedimentology: applied to Miocene,Vermilion Block 50,Tiger Shoal area,offshore Louisiana. AAPG Bulletin, 88: 153-174. [43] Zeng H L,Xu L G,Wang G Z,Pu X G.2016. Prediction of ultrathin lacustrine sandstones by joint investigation of tectonic geomorphology and sedimentary geomorphology using seismic data. Marine and Petroleum Geology, 78: 759-765. [44] Zhu H T,Yang X H,Zhou X H,Liu K Y.2014. Three-dimensional facies architecture analysis using sequence stratigraphy and seismic sedimentology: example from the Paleogene Dongying Formation in the BZ3-1 block of the Bozhong sag,Bohai Bay basin,China. Marine and Petroleum Geology, 51: 20-33.