[1] 鲍志东,季汉成,梁婷,韦明洋,史燕青,李宗峰,鲁锴,向鹏飞,张华,严睿,郭玉鑫,李卓伦,万谱,杨志波,麻晓东,刘锐,刘灿星,钟旭临,郭晓琦,蔡忠贤,张水昌. 2019. 中新元古界原生白云岩: 以中国典型台地区为例. 古地理学报, 21(6): 869-884.
[Bao Z D,Ji H C,Liang T,Wei M Y,Shi Y Q,Li Z F,Lu K,Xiang P F,Zhang H,Y R,Guo Y X,Li Z L,Wan P,Yang Z B,Ma X D,Liu R,Liu C X,Zhong X L,Guo X Q,Cai Z X,Zhang S C. 2019. Primary dolostones of the Meso-Neoproterozoic: cases on typical platforms in China. Journal of Palaeogeography(Chinese Edition), 21(6): 869-884]
[2] 初航,陆松年,王惠初,相振群,刘欢. 2011. 山东长岛地区蓬莱群辅子夼组碎屑锆石年龄谱研究. 岩石学报, 27(4): 1017-1028.
[Chu H,Lu S N,Wang H C,Xiang Z Q,Liu H. 2011. U-Pb age spectrum of detrital zircons from the Fuzikuang Formation,Penglai Group in Changdao,Shandong Province. Acta Petrologica Sinica, 27(4): 1017-1028]
[3] 高计元. 1980. 白云岩的成岩作用. 地质地球化学, 8(4): 18-25.
[Gao J Y. 1980. Dolomite diagenesis. Geology-Geochemistry,8(4): 18-25]
[4] 高林志,丁孝忠,曹茜,张传恒. 2010. 中国晚前寒武纪年表和年代地层序列. 中国地质, 37(4):1014-1020.
[Gao L Z,Ding X Z,Cao Q,Zhang C H. 2010. New geological time scale of Late Precambrian in China and geochronology. Geology in China, 37(4): 1014-1020]
[5] 高林志,张传恒,陈寿铭,刘鹏举,丁孝忠,刘燕学,董春燕,宋彪. 2010. 辽东半岛细河群沉积岩碎屑锆石SHRIMP U-Pb年龄及其地质意义. 地质通报, 29(8): 1113-1122.
[Gao L Z,Zhang C H,Chen S M,Liu P J,Ding X Z,Liu Y X,Dong C Y,Song B. 2010. Detrital zircon SHRIMP U-Pb age from the Diaoyutai Formation,Xihe Group in Liaodong Peninsula,China and its geological significance. Geological Bulletin of China, 29(8): 1113-1122]
[6] 耿元生,旷红伟,杜利林,柳永清. 2020. 华北、华南、塔里木三大陆块中—新元古代岩浆岩的特征及其地质对比意义. 岩石学报, 36(8): 2276-2312.
[Geng Y S,Kuang H W,Du L L,Liu Y Q. 2020. The characteristics of Meso-Neoproterozoic magmatic rocks in North China,South China and Tarim blocks and their significance of geological correlation. Acta Petrologica Sinica, 36(8): 2276-2312]
[7] 贾志海. 2004. 淮南地区新元古代九里桥组沉积环境变化及其生物学响应研究. 合肥工业大学博士学位论文.
[Jia Z H. 2004. A research on the depositional environments changing and its biological responsing during the sedimentation of the Neoproterozoic Jiuliqiao Formation,Huainan region,Anhui Province,China. Doctoral dissertation of Hefei University of Technology]
[8] 贾志海,宁霄峰,洪天求,郑文武. 2011. 苏皖北部新元古界臼齿碳酸盐岩脉类型及其形成机理. 古地理学报, 13(6): 627-634.
[Jia Z H,Ning X F,Hong T Q,Zheng W W. 2011. The Neoproterozoic molar-tooth carbonate rock veins in northern Anhui and Jiangsu Provinces and their forming mechanism. Journal of Palaeogeography(Chinese Edition), 13(6): 627-634]
[9] 旷红伟. 2003. 吉辽地区新元古代臼齿(微亮晶)碳酸盐岩沉积学及其研究意义. 中国地质大学(北京)博士论文.
[Kuang H W. 2003. Neoproterozoic molar tooth(microspar)carbonate sedimentology and its signifcance in Jilin and Liaoning region. Doctoral dissertation of China University of Geosciences(Beijing)]
[10] 旷红伟,金广春,刘燕学,孟祥化,葛铭. 2004. 从地球化学角度看微亮晶臼齿碳酸盐岩形成的环境条件: 以吉辽地区新元古代微亮晶碳酸盐岩为例. 天然气地球科学, 15(2): 150-155.
[Kuang H W,Jin G C,Liu Y X,Meng X H,Ge M. 2004. The environmental conditions of the microsparite(molar tooth)carbonates opened out by geochemistry: an example from the microsparite carbonates of Neoproterozoic in Ji-Liao region,China. Natural Gas Geoscience, 15(2): 150-155]
[11] 旷红伟,孟祥化,葛铭. 2006. 臼齿碳酸盐岩成因探讨: 以吉林—辽宁地区新元古界为例. 古地理学报, 8(1): 63-73.
[Kuang H W,Meng X H,Ge M. 2006. Discussion on origin for Molar Tooth carbonate rocks: an example From the Neoproterozoic in Jilin-Liaoning Area. Journal of Palaeogeography(Chinese Edition), 8(1): 63-73]
[12] 旷红伟,金广春,刘燕学. 2008. 吉辽地区新元古代臼齿构造形态及其研究意义. 中国科学(D辑), 38(增Ⅱ): 123-130.
[Kuang H W,Jin G C,Liu Y X. 2008. Genesis types of the Neoproterozoic Molar tooth structures in the southeastern Jilin and eastern Liaoning Provinces and its research significances. Science China Series D-Earth Science, 38(Supp. 2): 123-130]
[13] 旷红伟,彭楠,罗顺社,岑超,李家华,陈铭培. 2009. 燕山中东部凌源地区雾迷山组MT构造的发现、地质特征及研究意义. 自然科学进展, 9(12): 1308-1318.
[Kuang H W,Peng N,Luo S S,Cen C,Li J H,Chen M P. 2009. Discovery of MT structure and its geological features and studying signifcance in the eastern Yanshan in Lingyuan,Liaoning Province. Progress in Natural Science, 19(12): 1308-1318]
[14] 旷红伟,柳永清,彭楠,刘燕学,李家华. 2011a. 再论臼齿碳酸盐岩成因. 古地理学报, 13(3): 253-261.
[Kuang H W,Liu Y Q,Peng N,Liu Y X,Li J H. 2011a. On origin of molar tooth carbonate rocks. Journal of Palaeogeography(Chinese Edition), 13(3): 253-261]
[15] 旷红伟,柳永清,彭楠,刘丽军. 2011b. 辽东大连新元古代臼齿碳酸盐岩地球化学特征及其地质意义. 地学前缘, 18(4): 25-40.
[Kuang H W,Liu Y Q,Peng N,Liu L J. 2011b. Geochemistry of the Neoproterozoic molar-tooth carbonates in Dalian,eastern Liaoning,China,and its geological implications. Earth Science Frontiers, 18(4): 25-40]
[16] 旷红伟,柳永清,耿元生,白华青,彭楠,范正秀,夏晓旭,王玉冲,陈骁帅. 2019. 中国中新元古代重要沉积地质事件及其意义. 古地理学报, 21(1): 1-30.
[Kuang H W,Liu Y Q,Geng Y S,Bai H Q,Peng N,Fan Z X,Xia X X,Wang Y C,Chen X S. 2019. Important sedimentary geological events of the Meso-Neoproterozoic and their significance. Journal of Palaeogeography(Chinese Edition), 21(1): 1-30]
[17] 李双应,岳书仓,杨建,贾志海. 2003. 皖北新元古代刘老碑组页岩的地球化学特征及其地质意义. 地质科学,(2): 241-253.
[Li S Y,Yue S C,Yang J,Jia Z H. 2003. Geochemical characteristics and implications of Neoproterozoic shales from the Liulaobei Formation in North Anhui. Scientia Geologica Sinica,(2): 241-253]
[18] 李双应,程成,王松,彭亮,稽在飞,杨栋栋. 2014. 华北地台南缘霍邱安阳山地区八公山群地层时代归属(青白口纪): 来自碎屑锆石年代学的制约. 地质科学, 49(2): 608-617.
[Li S Y,Cheng C,Wang S,Peng L,Ji Z F,Yang D D. 2014. Stratigraphy time of the Bagongshan Group in the Anyangshan area of Huoqiu County in the south margin of the North China Block(the Qingbaikou): constraints from the detrital zircon chronology. Chinese Journal of Geology(Scientia Geologica Sinica), 49(2): 608-617]
[19] 刘燕学,旷红伟,蔡国印,孟祥化,葛铭. 2003. 辽南新元古代营城子组臼齿灰岩的沉积环境. 地质通报, 22(6): 419-425.
[Liu Y X,Kuang H W,Cai G Y,Meng X H,Ge M. 2003. Depositional environments of molar-tooth limestones of the Neoproterozoic Yingchengzi Formation in southern Liaoning. Geological Bulletin of China, 22(6): 419-425]
[20] 柳永清,高林志,刘燕学. 2005a. 苏皖辽地区新元古代微亮晶构造碳酸盐岩的沉积岩相与环境约束. 沉积学报, 23(1): 49-60.
[Liu Y Q,Gao L Z,Liu Y X. 2005a. Microspar structure carbonate and constrain of sedimentary facies and environments in Jiangsu,An hui and Liaoning Provinces of the northern China. Acta Sedimento logica Sinica, 23(1): 49-60]
[21] 柳永清,高林志,刘燕学,宋彪,王宗秀. 2005b. 徐淮地区新元古代初期镁铁质岩浆事件的锆石U-Pb定年. 科学通报,(22): 2514-2521.
[Liu Y Q,Gao L Z,Liu Y X,Song B,Wang Z X. 2005b. Zircon U-Pb dating of early Neoproterozoic Mg-Fe magmatic events in the Xuhuai area. Chinese Science Bulletin,(22): 2514-2521]
[22] 柳永清,旷红伟,彭楠,刘燕学,江小均,许欢. 2010. 中国元古代碳酸盐岩微亮晶构造及形成的沉积环境约束. 岩石学报, 26(7): 2122-2130.
[Liu Y Q,Kuang H W,Peng N,Liu Y X,Jiang X J,Xu H. 2010. Proterozoic microspar and constraint of sedimentary environment in China. Acta Petrologica Sinica, 26(7): 2122-2130]
[23] 梅冥相. 2005. 天津蓟县剖面中元古界高于庄组臼齿状构造的层序地层位置及其成因的初步研究. 古地理学报, 7(4): 437-447.
[Mei M X. 2005. Preliminary study on sequence-stratigraphic position and origin for molar-tooth structure of the Gaoyuzhuang Formation of Mesoproterozoic at Jixian section in Tianjin. Journal of Palaeogeography(Chinese Edition), 7(4): 437-447]
[24] 梅冥相. 2012. 从生物矿化作用衍生出的有机矿化作用: 地球生物学框架下重要的研究主题. 地质论评, 58(5): 937-951.
[Mei M X. 2012. Organomineralization Derived from the Biomineralization;An Important Theme within the Framework of Geobiology. Geological Review, 58(5): 937-951]
[25] 梅冥相,孟庆芬,刘智荣. 2007. 微生物形成的原生沉积构造研究进展综述. 古地理学报, 9(4): 353-367.
[Mei M X,Meng Q F,Liu Z R. 2007. Overview of advances structures in studies of primary sedimentary formed by microbe. Journal of Palaeogeography(Chinese Edition), 9(4): 353-367]
[26] 孟祥化,葛铭,旷红伟,Nielsen J K. 2006. 微亮晶(臼齿)碳酸盐成因及其在元古宙地球演化中的意义. 岩石学报, 22(8): 2133-2143.
[Meng X H,Ge M,Kuang H W,Nielsen J K. 2006. Origin of microsparite carbonates and the siginifcance in the evolution of the Earth in Proterozoic. Acta Petrologica Sinica, 22(8): 2133-2143]
[27] 庞科,唐卿,万斌,李光金,陈雷,袁训来,周传明. 2021. 华北地台胶辽徐淮地区中—新元古代地层研究进展. 地层学杂志, 45(4): 467-492.
[Pang K,Tang Q,Wan B,Li G J,Chen L,Yuan X L,Zhou C M. 2021. Integrated meso-neoproterozoic stratigraphy in the Jiao-liao-xu-huai area of North China Craton: a review. Journal of Stratigraphy, 45(4): 467-492]
[28] 彭楠,旷红伟. 2010. 辽东大连金石滩新元古代碳酸盐岩臼齿构造形态及其沉积环境指示意义. 岩石矿物学杂志, 29(2): 189-198.
[Peng N,Kuang H W. 2010. Morphology of molar-tooth structures in Neoproterozoic and its indication signifcance for the depositional environment of Jinshitan area in Dalian,eastern Liaoning Province. Acta Petrologica et Mineralogica, 29(2): 189-198]
[29] 彭楠,柳永清,旷红伟. 2012. 沉积环境与臼齿构造(Molar-tooth)形态的关系: 以大连新元古代臼齿构造为例. 高校地质学报, 18(1): 180-188.
[Peng N,Liu Y Q,Kuang H W. 2012. Relation ship between depositional environment and morphology of Molar Tooth: Taking the Neoproterozoic molar-tooth in Dalian,China as an example. Geological Journal of China Universities, 18(1): 180-188]
[30] 乔秀夫,宋天锐,高林志,彭阳,李海兵,高劢,宋彪,张巧大. 1994. 碳酸盐岩振动液化地震序列. 地质学报, 68(1): 16-34.
[Qiao X F,Song T R,Gao L Z,Peng Y,Li H B,Gao M,Song B,Zhang Q D. 1994. Seismic sequence in carbonate rocks by vibrational liquefaction. Acta Geologica Sinica, 68(1): 16-34]
[31] 乔秀夫,高林志,彭阳,章雨旭. 1999. 内蒙古腮林忽洞群综合地层与白云鄂博矿床赋矿微晶丘. 地质学报, 71(3): 202-211.
[Qiao X F,Gao L Z,Peng Y,Zhang Y X. 1999. Composite stratigraphy of the Sailinhuodong Group and ore-bearing micrite mound in the bayan obo deposit,Inner Mongolia,China. Acta Geologica Sinica, 71(3): 202-211]
[32] 孙云鹏,郎咸国,欧阳晴,周传明. 2020. 安徽宿州新元古界望山组臼齿碳酸盐岩特征及成因讨论. 地层学杂志, 44(4): 386-400.
[Sun Y P,Lang X G,Ouyang Q,Zhou C M. 2020. Characteristics and origin of the Molar-tooth carbonates from the Neo-proterozoic Wangshan Formation in Suzhou,Anhui Province. Journal of Stratigraphy, 44(4): 386-400]
[33] 王德海,孟祥化,郭峰,任国选,葛铭. 2009. 天津蓟县高于庄组微亮晶(MT)碳酸盐岩的沉积环境及成因探讨. 吉林大学学报(地球科学版), 39(6): 1023-1030.
[Wang D H,Meng X H,Guo F,Ren G X,Ge M. 2009. Discussion on the Sedimentary Environment and Origin of the Microsparite Carbonates of Mesoproterozoic Gaoyuzhuang Formation in Jixian Area,Tianjin,China. Journal of Jilin University(Earth Science Edition), 39(6): 1023-1030]
[34] 王清海,杨德彬,许文良. 2011. 华北陆块东南缘新元古代基性岩浆活动: 徐淮地区辉绿岩床群岩石地球化学、年代学和Hf同位素证据. 中国科学: 地球科学, 41(6): 796-815.
[Wang Q H,Yang D B,Xu W L. 2011. Neoproterozoic basic magmatism in the southeast margin of North China Craton: evidence from whole-rock geochemistry,U-Pb and Hf isotopic study of zircons from diabase swarms in the Xuzhou-Huaibei area. Science China Earth Sciences, 41(6): 796-815]
[35] 王勇. 2006. “白云岩问题”与“前寒武纪之谜”研究进展. 地球科学进展, 21(8): 857-862.
[Wang Y. 2006. Dolomite problem and Precambrian enigma. Advances in Earth Science, 21(8): 857-862]
[36] 杨宝忠,张新勇,侯红星,于博滨. 2019. 北京南口长城系高于庄组硅质臼齿状构造的发现及成因. 地球科学, 44(11): 3871-3881.
[Yang B Z,Zhang X Y,Hou H X,Yu B B. 2019. Discovery of siliceous molar tooth structure and its genesis in Gaoyuzhuang Formation at Nankou,Beijing. Earth Science, 44(11): 3871-3881]
[37] 杨德彬,许文良,徐义刚,王清海,裴福萍. 2011. 苏北—辽南新元古界碎屑锆石的物源: 对郯庐断裂带构造属性的制约. 中国矿物岩石地球化学学会第13届学术年会论文集, 广州: 572.
[Yang D B,Xu W L,Xu Y G,Wang Q H,Pei F P. 2011. Physical origin of Neoproterozoic detrital zircons in the Subei-Liaonan: constraints on the tectonic properties of the Tanlu Fault Zone. In: Proceedings of the 13th Annual Conference of the Chinese Society of Mineral and Rock Geochemistry,Guangzhou: 572]
[38] 张会昌,王成. 2007. “臼齿构造”谜: 争论与进展. 甘肃科技, 23(6): 129-131.
[Zhang H C,Wang C. 2007. “Molar-tooth structure”puzzle: debate and progress. Gansu Science and Technology, 23(6): 129-131]
[39] 张水昌,王华建,王晓梅,叶云涛. 2022. 中元古代增氧事件. 中国科学: 地球科学, 52(1): 26-52.
[Zhang S C,Wang H J,Wang X M,Ye Y T. 2021. The Mesoproterozoic Oxygenation Event. Science China Earth Sciences, 52(1): 26-52]
[40] 周光照,陈雷,李光金,庞科,汉春梅,阳乐,孙康,尹磊明,杨锋杰. 2019. LA-ICP-MS碎屑锆石U-Pb年龄与微体化石组合对鲁西地区佟家庄组沉积时代的约束. 地层学杂志, 43(3): 229-242.
[Zhou G Z,Chen L,Li G J,Pang K,Han C M,Yang L,Sun K,Yin L M,Yang F J. 2019. Constraints on the depositional age of the Tongjiazhuang Formation by LA-ICP-MS detrital zircon U-Pb age and microfossil assemblage. Journal of Stratigraphy, 43(3): 229-242]
[41] Azmy K,Kendall B,Creaser R A,Heaman L,De Oliveira T F. 2008. Global correlation of the Vazante Group,São Francisco Basin,Brazil: Re-Os and U-Pb radiometric age constraints. Precambrian Research, 164: 160-172.
[42] Baker P A,Kastner M. 1981. Constraints on the formation of Sedimentary dolomite. Science, 213: 214-216.
[43] Bartley J K,Kah L C. 2004. Marine carbon reservoir,Corg-Ccarb coupling,and the evolution of the Proterozoic carbon cycle. Geology, 32: 129-132.
[44] Bauerman H. 1885. Report on the geology of the country near the forth-ninth parallel of North latitude West of the Rocky Mountains. Canada Geological Survey Report Program,1882-1884, B: 1-42.
[45] Bishop J M,Sumner D Y. 2006. Molar tooth structures of the Neoarchean Monteville Formation,Transvaal Supergroup,South Africa: Ⅰ.constraints on microcrystalline CaCO3 precipitation. Sedimentology, 53: 1049-1068.
[46] Bishop J M,Sumner D Y,Huerta N J. 2006. Molar tooth structures of the Neoarchean Monteville Formation,Transvaal Supergroup,South Africa: Ⅱ.a wave-induced fluid flow model. Sedimentology, 53: 1069-1082.
[47] Bourillot R,Vennin E,Pace A,Anthony B,Thibault,Patricia P,Olivier B,Christophe D, Pieter T V. 2018. Looking for environmental- and bio-signatures in hypersaline microbialites: a comparison of ancient and modern sedimentary systems. Proceedings of the 20th International Sedimentological Congress. Quebec City, Canada.
[48] Brasier M D,Lindsay J F. 1998. A billion years of environmental stability and the emergence of eukaryotes: new data from northern Australian. Geology, 26(6): 555-558.
[49] Campbell I H,Allen C M. 2008. Formation of supercontinents linked to increases in atmospheric oxygen. Nature Geoscience, 1(8): 554-558.
[50] Chen X S,Kuang H W,Liu Y Q,Wang Y C,Yang Z R,Wagonerdyk T M,Le Heron D P,Wang S Y,Geng Y S,Bai H Q,Peng N,Xia X X. 2020. Subglacial bedforms and landscapes formed by an ice sheet of Ediacaran-Cambrian age in west Henan,North China. Precambrian Research, 344: 105727.
[51] Cowan C A,James N P. 1992. Diastasis cracks: Mechanically Generated synaeresis-like cracks in Upper Cambrian shallow water oolite and ribbon carbonates. Sedimentology, 39: 1101-1118.
[52] Cox G M,Jarrett A,Edwards D,Crockford P W,Halverson G P,Collins A S,Poirier A,Li Z X. 2016. Basin redox and primary productivity within the Mesoproterozoic Roper Seaway. Chemical Geology, 440: 101-114.
[53] Daly R A. 1912. Geology of the North American Cordillera at the forty-ninth Paralel. Canada Geological Survey,Memoir, 38: 1-3.
[54] Eyles N. 2008. Glacio-epochs and the supercontinent cycle after ~3.0 Ga: tectonic boundary conditions for glaciation. Palaeogeography,Palaeoclimatology,Palaeoecology, 258: 89-129.
[55] Fairchild I J,Einsele G,Song T. 1997. Possible seismic origin of molar tooth structures in Neoproterozoic carbonate ramp deposits,North China. Sedimentology, 44: 611-636.
[56] Fenton C L,Fenton M A. 1937. Belt series of the north;stratigraphy,sedimentation,paleontology. Geological Society of America Bulletin, 48: 1873-1969.
[57] Folk R L. 1959. Practical petrographic classification of limestones. AAPG Bulletin, 43(1): 1-38.
[58] Frank T D,Lyons T W. 1998. “Molar-tooth”structures: a geochemical perspective on a Proterozoic enigma. Geology(Boulder), 26(8): 683-686.
[59] Furniss G,Rittle J F,Winston D. 1998. Gas bubble and expansion crack origin of “molar tooth”calcite structures in the Middle Proterozoic Belt Supergroup. Western Montana. Journal of Sedimentary Research, 68(1): 104-114.
[60] Gao L Z,Zhang C H,Liu P J,Tang F,Song B,Ding X Z. 2009. Reclassification of the Meso-and Neoproterozoic Chronostratigraphy of North China by SHRIMP Zircon Ages. Acta Geologica Sinica-English Edition, 83(6): 1074-1084.
[61] Given R K,Wilkinson B H. 1976. Dolomite abundance and stratigraphic age: Constraints on rates and mechanisms of Phanerozoic dolostone formation. Journal of Sedimentary Petrology, 57: 1068-1078.
[62] Goodman E E. 2007. Laboratory precipitation and geochemical investigation of unstable CaCO3 polymorphs: implications for the origin of Precambrian “molar-tooth”microspar. Masteral dissertation of the University of Tennessee: 1-107.
[63] Grotzinger J P. 1989. Facies and evolution of Precambrian carbonate depositional systems: emergence of the modern platform archetype. In: Crevello P D,Wilson J L,Sarg J F,Read J F(eds). Controls on Carbonate Platform and Basin Development. Society for Sedimentary Geology(SEPM)Special Publication, 44: 79-106.
[64] Han Z Z, Qi P L, Zhao Y Y, Guo N, Yan H X, Tucker M E, Li D, Wang J J, Zhao H. 2022. High Mg/Ca molar ratios promote protodolomite precipitation induced by the extreme halophilic bacterium vibrio harveyi QPL2. Frontiers in Microbiology. 13:821968. doi: 10.3389/fmicb.2022.821968.
[65] Hodgskiss M W,Kunzmann M,Poirier A,Halverson G P. 2018. The role of microbial iron reduction in the formation of Proterozoic molar tooth structures. Earth and Planetary Science Letters, 482: 1-11.
[66] Hoffman K H,Condon D,Bowring S,Crowley J. 2004. U-Pb zircon date from the Neoproterozoic Ghaub Formation,Namibia: constraints on Marinoan glaciations. Geology, 32: 817-821.
[67] Holland H D. 2006. The oxygenation of the atmosphere and oceans. Philosophical Transactions of the Royal Society B, 361: 903-915.
[68] Horodyski R J. 1976. Stromatolites of the upper Siyeh Limestone(Middle Proterozoic),Belt Supergroup,Glacier National Park,Montana. Precambrian Research, 3: 517-536.
[69] Hu B,Zhai M G,Li T S,Li Z,Peng P,Guo J H,Kusky T M. 2012. Mesoproterozoic magmatic events in the eastern North China Craton and their tectonic implications: geochronological evidence from detrital zircons in the Shandong Peninsula and North Korea. Gondwana Research, 22(3): 828-842.
[70] Hurley S J,Wing B A,Jasper C E,Hill N C,Cameron J C. 2021. Carbon isotope evidence for the global physiology of Proterozoic cyanobacteria. Science Advances, 7: eabc8998.
[71] Jaffrés J B D,Shields G A,Wallmann K. 2007. The oxygen isotope evolution of seawater: a critical review of a long-standing controversy and an improved geological water cycle model for the past 3.4 billion years. Earth-Science Reviews, 83(1-2): 83-122.
[72] James N P,Narbonne G M,Sherman A G. 1998. Molar tooth carbonates: shallow subtidal facies of the Mid to Late Proterozoic. Journal of Sedimentary Research, 68(5): 716-722.
[73] Kacamarek S E,Sibley D F. 2007. A comparison of nanometer scale growth and dissolution features on natural and synthetic dolomite crystals: implication for the origin of dolomite. Journal of Sedimentary Research, 77: 424-432.
[74] Kah L C,Bartley J K. 2021. Carbonate fabric diversity and environmental heterogeneity in the late Mesoproterozoic Era. Geological Magazine, 159(2): 220-246. https://doi.org/10.1017/S0016756821000406.
[75] Kasting J F. 1987. Theoretical constraints on oxygen and carbon dioxide concentrations in the Precambrian atmosphere. Precambrian Research, 34: 205-229.
[76] Killingsworth B A,Sansjofre P,Philippot P,Cartigny P,Thomazo C,Lalonde S V. 2019. Constraining the rise of oxygen with oxygen isotopes. Nature Communications, 10: 4924.
[77] Knoll A H,Swett K. 1990. Carbonate deposition during the Late Proterozoic era: An example from Spitsbergen. American Journal of Science, 290(A): 104-132.
[78] Kriscautzky A,Kah L C,Bartley J K. 2022. Molar-tooth structure as a window into the deposition and diagenesis of Precambrian carbonate. Annual Review of Earth and Planetary Sciences, 50: 205-230.
[79] Kuang H W,Li Y X,Zeng Y T,Meng X H,Ge M. 2004. Biomarkers in the Molar Tooth(MT)-bearing limestones in the Jilin-Liaoning Area of China. Chinese Journal of Geochemistry, 23(4): 334-341.
[80] Kuang H W. 2014. Review of molar tooth structure research. Journal of Palaeogeography, 3(4): 359-383.
[81] Land L S. 1998. Failure to precipitate dolomite at 25 degrees C from dilute solution despite 1000-fold oversaturation after 32 years. Aquatic Geochemistry, 4: 361-368.
[82] Li Z X,Bogdanova S V,Collins A S,Davidson A,De Waele B,Ernst R E,Fitzsimons I C W,Fuck R A,Gladkochub D P,Jacobs J,Karlstrom K E,Lu S,Natapov L M,Pease V,Pisarevsky S A,Thrane K,Vernikovsky V. 2008. Assembly,configuration,and break-up history of Rodinia: a synthesis. Precambrian Research,Testing the Rodinia Hypothesis: Records in its Building Blocks, 160(1): 179-210.
[83] Liu X M,Kah L C,Knoll A H,Cui H,Wang C,Bekker A,Hazen R M. 2021. A persistently low level of atmospheric oxygen in Earth's middle age. Nature Communications, 12: 351.
[84] Liu Y Q,Gao L Z,Liu Y X. 2005. Neoproterozoic molar-tooth structure and constraint of depositional facies and environment in the North China Platform in Jiangsu,Anhui and Liaoning,eastern China. Acta Geologica Sinica, 79(4): 533-539.
[85] Long D G F. 2007. Tomographic study of Paleoproterozoic carbonates as key to understanding the formation of molar-tooth structure. Gondwana Research, 12: 566-570.
[86] Luo Y,Sun M,Zhao G C,Li S Z,Xu P,Ye K,Xia X P. 2004. LA-ICP-MS U-Pb zircon ages of the Liaohe Group in the Eastern Block of the North China Craton: constraints on the evolution of the Jiao-Liao-Ji Belt. Precambrian Research, 134(3): 349-371.
[87] Lyons T W,Reinhard C T,Planavsky N J. 2014. The rise of oxygen in Earth's early ocean and atmosphere. Nature, 506(7488): 307-315.
[88] Lyons T W,Diamond C W,Planavsky N J,Reinhard C T,Li C. 2021. Oxygenation,life,and the planetary system during Earth's middle history: an overview. Astrobiology, 21: 906-923.
[89] Marshall D,Anglin C D. 2004. CO2—clathrate destabilization: a new model of formation for molar-tooth structures. Precambrian Research, 129: 325-341.
[90] Maruyama S,Santosh M. 2008. Models of Snowball Earth and Cambrian explosion: a synopsis. Gondwana Research, 14: 22-32.
[91] Mazzullo S J. 2000. Organogenic dolomitization in peritidal to deep-sea sediments. Journal of Sedimentary Research, 70(1): 10-23.
[92] Meert J G,Lieberman B S. 2008. The Neoproterozoic assembly of Gondwana and its relationship to the Ediacarne Cambrian radiation. Gondwana Research, 14: 5-21.
[93] Meng X H,Ge M. 2002. The sedimentary features of Proterozoic microspar(molar-tooth)carbonates in China and their signifcance. Episodes, 25(3): 185-195.
[94] Naka K,Chujo Y. 2001. Control of crystal nucleation and growth of calcium carbonate by synthetic substrates. Chemistry of Materials, 13(10): 3245-3259.
[95] Naka K,Tanaka Y,Chujo Y,Ito Y. 1999. The effect of an anionic starburst dendrimer on the crystallization of CaCO3 in aqueous solution. Chemical Communications,(19):1931-1932.
[96] O'Connor M P. 1972. Classification and environmental interpretation of the cryptalgal organosedimentary “molar-tooth” structure from the late Precambrian Belt-Purcell Supergroup. Journal of Geology, 80(5): 592-610.
[97] Petrov P Y. 2016. Molar tooth structures and origin of peloids in proterozoic carbonate platforms(Middle Riphean of the Turukhansk Uplift,Siberia). Lithology and Mineral Resources, 51(4): 290-309.
[98] Pflug H D. 1968. Gesteinbildende organismen aus Molar Tooth Limestone der Beltserie(Praekambrium),Palaeontographica Abteilung B. Palaeophytologie, 121: 134-141.
[99] Pollock M D,Kah L C,Bartley J K. 2006. Morphology of molar-tooth structures in Precambrian carbonates: influence of substrate rheology and implacation for genesis. Journal of Sedimentary Research, 76: 310-323.
[100] Pratt B R. 1992. Shrinkage features(“molar tooth” structure)in Proterozoic limestones;new model for their origin through synsedimentary earthquake-induced dewatering. In: Geological Society of America,1992 annual meeting. Abstracts with Programs-Geological Society of America, 24(7): 53.
[101] Pratt B R. 1998a. Molar-tooth structure in Proterozoic carbonate rocks: Origin from synsedimentary earthquakes,and implications for the nature and evolution of basins and marine sediment. GSA Bulletin, 110(8): 1028-1045.
[102] Pratt B R. 1998b. Syneresis cracks: subaqueous shrinkage in argillaceous sediments caused by earthquake-induced dewatering. Sedimentary Geology, 117: 1-10.
[103] Pu J P,Bowring S A,Ramezani J,Myrow P,Raub T D,Landing E,Mills A,Hodgin E,Macdonald F A. 2016. Dodging snowballs: geochro-nology of the Gaskiers glaciation and the first appearance of the Ediacaran biota. Geology, 44(11): 955-958.
[104] Reinhard C T,Planavsky N J,Lyons T W. 2013. Long-term sedimentary recycling of rare sulphur isotope anomalies. Nature, 497: 100-103.
[105] Rezak R. 1957. Stromatolites of the belt series in glacier national park and Vicinity,Montana, U.S. Geological Survey Professional Paper, 294-D: 127-154.
[106] Riding R. 2006. Microbial carbonate abundance compared with fluctuations in metazoan diversity over geological time. Sedimentary Geology, 185: 229-238.
[107] Robert F,Chaussidon M. 2006. A palaeotemperature curve for the Precambrian oceans based on silicon isotopes in cherts. Nature, 443: 969-972.
[108] Roberts N M W. 2013. The boring billion?-Lid tectonics,continental growth and environmental change associated with the Columbia supercontinent. Geoscience Frontiers, 4(6): 681-691.
[109] Rossetti D F,Goes A M. 2000. Deciphering the sedimentological imprint of paleoseismic events an example from the Aptian Codo formation,northern Brazil. In: Shiki T,Cita M B,Gorsline D S(eds). Seismothrbidites,Seismites and Tsunamiites. Sedimentary Geology, 135(1-4): 137-156.
[110] Saha D,Patranabis-Deb S,Collins A S. 2016. Proterozoic Stratigraphy of Southern Indian Cratons and Global Context. Stratigraphy & Timescales: 1-59.
[111] Saha S,Dutt S,Barkat R. 2021. Enigmatic molar-tooth structures(MTS)from Mesoproterozoic Deoban limestone,NW-Lesser Himalaya: evidence for microbial decay and in-situ precipitation. Journal of Earth System Science, 130: 99.
[112] Sam Boggs. 2001. Principles of Sedimentology and Stratigraphy. Upper Saddle River: Prentice Hall, 1-726.
[113] Sumner D Y. 1997. Carbonate precipitation and oxygen stratification in late Archean seawater as deduced from facies and stratigraphy of the Gamohaan and Frisco Formations,Transvaal Supergroup,South Africa. American Journal of Science, 297: 455-487.
[114] Shen B,Dong L,Xiao S,Lang X,Huang K,Peng Y,Zhou C,Ke S,Liu P. 2016. Molar tooth carbonates and benthic methane fluxes in Proterozoic oceans. Nature Communications, 7: 10317.
[115] Shields G A. 1999. Working towards a new stratigraphic cabibration Scheme for the Neoproterozoic-Cambrian. Eclogae Geologicae,Helvetiae, 92: 221-233.
[116] Shields G A. 2002. “Molar-tooth microspar”: a chemical explanation for its disappearance-750 Ma. Terra Nova, 14: 108-113.
[117] Shields G A. 2007. A normalised seawater strontium isotope curve: possible implications for Neoproterozoic-Cambrian weathering rates and the further oxygenation of the Earth. eEarth, 2(2): 35-42.
[118] Shields G A,Hill A C,Macgabhann B A. 2012. Chapter 17-The Cryogenian Period. In: Gradstein F M,Ogg J G,Schmitz M D,Ogg G M(eds). The Geologic Time Scale.Boston: Elsevier,393-411.
[119] Shields G A,Strachan R A,Porter S M,Halverson G P,Macdonald F A,Plumb K A,de Alvarenga C J,Banerjee D M,Bekker A,Bleeker W,Brasier A,Chakraborty P P,Collins A S,Condie K,Das K,Evans D A D,Ernst R,Fallick A E,Frimmel H,Fuck R,Hoffman P F,Kamber B S,Kuznetsov A B,Mitchell R N,Poiré D G,Poulton S W,Riding R,Sharma M,Storey C,Stueeken E,Tostevin R,Turner E,Xiao S,Zhang S,Zhou Y,Zhu M. 2021. A template for an improved rock-based subdivision of the pre-Cryogenian timescale. Journal of the Geological Society. https://doi.org/10.1144/jgs2020-222.
[120] Smith A G. 1968. The origin and deformation of some“Molar-tooth”structure in the Precambrian Belt-Purcell supergroup. Journal of Geology, 76: 426-433.
[121] Smith A G. 2016. A review of molar-tooth structures with some speculations on their origin. The Geological Society of America Special Papers, 522: 71-99.
[122] Squire R J,Campbell I H,Allen C A,Wilson C J L. 2006. Did the Transgondwanan Supermountain trigger the explosive radiation of animals on Earth?Earth and Planetary Science Letters, 250: 116-133.
[123] Strachan R,Murphy J B,Darling J,Storey C,Shields G. 2020. Precambrian(4.56-1 Ga). In: Geologic Time Scale 2020. Elsevier: 481-493.
[124] Sun F,Peng P,Zhou X Q,Magalhães A J C,Guadagnin F,Zhou X T,Zhang Z,Su X. 2020. Provenance analysis of the late Mesoproterozoic to Neoproterozoic Xuhuai Basin in the southeast North China Craton: implications for paleogeographic reconstruction. Precambrian Research, 337: 105554.
[125] Swanson-Hysell N L,Maloof A C,Condon D J,Jenkin G R T,Alene M,Tremblay M M,Tesema T,Rooney A D,Haileab B. 2015. Stratigraphy and geochronology of the Tambien Group,Ethiopia: evidence for globally synchronous carbon isotope change in the Neoproterozoic. Geology, 43: 323-326.
[126] Tang M,Chu X,Hao J,Shen B. 2021. Orogenic quiescence in Earth's middle age. Science, 371: 728-731.
[127] Turker M E,Wright V P. 1992. Carbonate sedimentology. London: Blackwell Scientific Publications, 482.
[128] Vasconcelos C,Mckenzie J A. 2009. Dolomite as a Biomineral and Possible Implications. Revista de la Sociedad Española de Mineralogía, 9: 21-22.
[129] Visscher P T,Pace A,Bouton A Duteil T,Roche A,Bourillot R,Vennin E,Bundeleva I,Braissant O,Gallagher K L,Dupraz C. 2018. Microbial mechanisms of mineral precipitation: old wine in new bottles. Proceedings of the 20th International Sedimentological Congress. Quebec City, Canada.
[130] Wang Q,Yang D,Xu W. 2012. Neoproterozoic basic magmatism in the southeast margin of North China Craton: evidence from whole-rock geochemistry,U-Pb and Hf isotopic study of zircons from diabase swarms in the Xuzhou-Huaibei area of China. Science China Earth Sciences, 55(9): 1461-1479.
[131] Winston D. 1990. Evidences for intracratonic,fluvial and lacustrine setting of Middle to Late Proterozoic Laurentia-Baltica. Geological Association of Canada Special Paper, 38: 535-564.
[132] Wu H,Wang G H,Ding X Z,Wang H. 2020. Geochemistry of the Neoproterozoic Molar Tooth Carbonate in the Benxi Area,North China Craton: The Paleo-Ocean Environment. Journal of Coastal Research, 115: 446-450.
[133] Yang D B,Xu W L,Xu Y G,Wang Q H,Pei F P,Wang F. 2012. U-Pb ages and Hf isotope data from detrital zircons in the Neoproterozoic sandstones of northern Jiangsu and southern Liaoning Provinces,China: implications for the Late Precambrian evolution of the southeastern North China Craton. Precambrian Research, 216-219: 162-176.
[134] Yang K F,Fan H R,Santosh M,Hu F F,Wilde S A,Lan T G,Lu L N,Liu Y S. 2012. Reactivation of the Archean lower crust: implications for zircon geochronology,elemental and Sr-Nd-Hf isotopic geochemistry of late Mesozoic granitoids from northwestern Jiaodong Terrane,the North China Craton. Lithos, 146-147: 112-127.
[135] Zhai M G,Hu B,Zhao T,Peng P,Meng Q R. 2015. Late Paleoproterozoic-Neoproterozoic multi-rifting events in the North China Craton and their geological significance: a study advance and review. Tectonophysics, 662: 153-166.
[136] Zhang S H,Zhao Y,Ye H,Hu G H. 2016. Early Neoproterozoic emplacement of the diabase sill swarms in the Liaodong Peninsula and pre-magmatic uplift of the southeastern North China Craton. Precambrian Research, 272: 203-225.
[137] Zhang W,Liu F,Liu C. 2021a. Provenance transition from the North China Craton to the Grenvillian orogeny-related source: evidence from late Mesoproterozoic-early Neoproterozoic strata in the Liao-Ji area. Precambrian Research, 362: 106281.
[138] Zhang W,Liu F L,Liu C H. 2021b. Detrital zircon U-Pb ages of the late Mesoproterozoic-Neoproterozoic Qiaotou Formation in the Liao-Ji area of the North China Craton: implications for Rodinia reconstruction. International Geology Review, 63: 1311-1330.
[139] Zhang Z,Peng P,Feng L J,Gong Z,Ross N M,Li Y L. 2021. Oldest-known Neoproterozoic carbon isotope excursion: earlier onset of Neoproterozoic carbon cycle volatility. Gondwana Research, 94: 1-11.
[140] Zhao H,Zhang S H,Ding J,Chang L,Ren Q,Li H,Yang T,Wu H. 2020. New geochronologic and paleomagnetic results from early Neoproterozoic mafic sills and late Mesoproterozoic to early Neoproterozoic successions in the eastern North China Craton,and implications for the reconstruction of Rodinia. GSA Bulletin, 132(3-4): 739-766.
[141] Zhao H Q,Zhang S H,Ding J K,Chang L X,Ren Q,Li H Y,Yang T S,Wu H C. 2019. New geochronologic and paleomagnetic results from early Neoproterozoic mafic sills and late Mesoproterozoic to early Neoproterozoic successions in the eastern North China Craton,and implications for the reconstruction of Rodinia. GSA Bulletin, 132(3-4): 739-766.
[142] Zhou Y. 2018. Early Neoproterozoic‘molar⁃tooth’ carbonate: its origin and significance. Geophysical Research Abstracts,20: EGU2018-17105-1.
[143] Zhou Y,Pogge von Strandmann P A E,Zhu M,Ling H,Manning C,Li D,He T,Shields G A. 2020. Reconstructing Tonian seawater87Sr/86Sr using calcite microspar. Geology, 48: 462-467. |