1 Key Laboratory of Cenozoic Geology and Environment,Institute of Geology and Geophysics,Chinese Academy of Sciences,Beijing 100029,China; 2 Innovation Academy for Earth Science,Chinese Academy of Sciences,Beijing 100029,China; 3 University of Chinese Academy of Sciences,Beijing 100049,China
Abstract Bioliths are the main research object of the new interdisciplinary biopetrology,are rocks formed by biological processes,including reef rocks,rocks composed of non-reef-building organisms and micrite,and rocks formed by microbial processes. Previously,reef rocks and microbialites were studied separately and not included in the same discipline. The classical classification system of reef rocks and microbialites only includes a part of reef rocks and microbialites,and some biolith types are not recognized and included. The incomplete classification of bioliths limited the research of bioliths. In this paper,a unified classification system of bioliths including reef rocks,non-reef-building skeletal carbonates,microbialites and other microbiogenic rocks is proposed. The new basic bioliths include biomicrite,microlithite,microbialite,microallolite,micromicrite,framelite,crustolite,wrapolite,and filalite. This classification of bioliths into 24 basic rock types in 4 levels may facilitate the study of bioliths. The author also modified and improved the definition of some rocks such as framestone and discussed some problems in the study of biolith.
Fund:Co-funded by the National Natural Science Foundation of China(No.41972320)and the Strategic Priority Research Program of Chinese Academy of Sciences(No.(B)XDB26000000)
About author: WU Yasheng,born in 1963,is an associate professor at Institute of Geology and Geophysics,Chinese Academy of Sciences,and a professor at University of Chinese Academy of Sciences. He is mainly engaged in research of biopetrology and paleontology of carbonates. E-mail: wys@mail.igcas.ac.cn.
Cite this article:
WU Yasheng. Classification of biolith(biogenic rocks)[J]. JOPC, 2023, 25(3): 511-524.
WU Yasheng. Classification of biolith(biogenic rocks)[J]. JOPC, 2023, 25(3): 511-524.
[1] 金振奎,邵冠铭. 2014. 石灰岩分类新方案. 新疆石油地质, 35(2): 235-242. [Jin Z K,Shao G M. 2014. New classification scheme of limestones. Xinjiang Petroleum Geology, 35(2): 235-242] [2] 李阳,吴亚生,姜红霞. 2018. 湖北利川二叠纪生物礁的埋藏学特征及其环境意义. 古生物学报, 57(2): 212-227. [Li Y,Wu Y S,Jiang H X. 2018. Taphonomic characteristics of a Permian calcisponge reef in Lichuan,Hubei Province and its paleoenvironmental significance. Acta Palaeontologica Sinica, 57(2): 212-227] [3] 王国忠. 2001. 南海珊瑚礁区沉积学. 北京: 海洋出版社,1-313. [Wang G Z. 2001. Sedimentology of Coral Reefs in the South China Sea. Beijing: Ocean Press,1-313] [4] 吴亚生. 1997. 生物礁岩分类方案. 地质论评, 43(3): 281-289. [Wu Y S. 1997. Classification of reef rocks. Geological Review, 43(3): 281-289] [5] 吴亚生. 1998. 浙江桐庐冷钨二叠纪生物礁的发育模式. 海相油气地质, 3(2): 11-15. [Wu Y S. 1998. Permian reef development model in Lengwu Tonglu,Zhejiang. Marine Origin Petroleum Geology, 3(2): 11-15] [6] 吴亚生,姜红霞,虞功亮,刘丽静. 2018. 微生物岩的概念和重庆老龙洞剖面P-T界线地层微生物岩成因. 古地理学报, 20(5): 737-775. [Wu Y S,Jiang H X,Yu G L,Liu L J. 2018. Conceptions of microbialites and origin of the Permian-Triassic boundary microbialites from Laolongdong,Chongqing,China. Journal of Palaeogeography(Chinese Edition), 20(5): 737-775] [7] 肖恩照,王皓,覃英伦,Khalid Latif,Muhammad Riaz. 2020. 寒武纪芙蓉统均一石沉积组构及环境特征: 以河北涞源长山组为例. 沉积学报, 38(1): 76-90. [Xiao E Z,Wang H,Qin Y L,Latif K,Riaz M. 2020. Sedimentary fabrics and environmental characteristics of leiolite in Cambrian: a case study from the Changshan Formation in Laiyuan city,Hebei Province. Acta Sedimentologica Sinica, 38(1): 76-90] [8] Aitken J D. 1967. Classification and environmental significance of cryptalgal limestones and dolomites,with illustrations from the Cambrian and Ordovician of southwestern Alberta. Journal of Sedimentary Research, 37: 1163-1178. [9] Braga J C,Martin J M,Riding R. 1995. Controls on microbial dome fabric development along a carbonate siliciclastic shelf-basin transect,Miocene,S.E. Spain. Palaios, 10: 347-361. [10] Burne R V,Moore L. 1987. Microbialites: organosedimentary deposits of benthic microbial communities. Palaios, 2: 241-254. [11] Dunham R J. 1962. Classification of carbonate rocks according to depositional texture. In: Ham W E(ed). Classification of Carbonate Rocks. AAPG Memoir, 1: 108-121. [12] Embry A,Klovan J E. 1971. A late Devonian reef tract on northeastern Banks Island,Northwest Territories. Bulletin of Canadian Petroleum Geology, 19: 730-781. [13] Folk R L. 1959. Practical petrographic classification of limestones. AAPG Bulletin, 43: 1-38. [14] Folk R L. 1962. Spectral subdivision of limestone types. AAPG Memoir, 1: 62-84. [15] Han Z Z,Zhang X L,Chi N J,Han M,Woo J S,Lee H S,Chen J T. 2015. Cambrian oncoids and other microbial-related grains on the North China Platform. Carbonates and Evaporites, 30: 373-386. [16] Kalkowsky E. 1908. Oolith und Stromatolith im norddeutschen Buntsandstein. Zeitschrift Deutschen geol. Gesellschaft, 60: 68-125. [17] Kovalevskii A L,Kovalevskaya O M,Prokopchuk S I. 1992. Microbioliths in plants. In: Biomineralization-92. Ukr. Mineral. Sot.,Lutzk Pedagog. Inst.,Lutsk: 71-72(in Russian). [18] Lee J H,Lee H S,Chen J T,Woo J,Chough S K. 2014. Calcified microbial reefs in Cambrian Series 2,North China Platform: implications for the evolution of Cambrian calcified microbes. Palaeogeography,Palaeoclimatology,Palaeoecology, 403: 30-42. [19] Li Y,Jiang H X,Wu Y S,Pan W Q,Zhang B S,Sun C H,Yang G. 2021. Macro-and microfeatures of Early Cambrian dolomitic microbialites from Tarim Basin,China. Journal of Palaeogeography, 10(1): 19-38. [20] Liu L J,Wu Y S,Yang H J,Riding R. 2016. Ordovician calcified cyanobacteria and associated microfossils from the Tarim Basin,Northwest China: systematics and significance. Journal of Systematic Palaeontology, 14(3): 183-210. [21] Liu L J,Wu Y S,Jiang H X,Wu N Q,Jia L Q. 2017. Paleoenvironmental distribution of Ordovician calcimicrobial associations in the Tarim Basin,northwest China. Palaios, 32: 462-489. [22] Lokier S W,Junaibi M A. 2016. The petrographic description of carbonate facies: are we all speaking the same language?Sedimentology, 63: 1843-1885. [23] Monty C L V. 1976. The origin and development of cryptalgal fabrics. In: Walter M R(ed). Stromatolites. Developments in Sedimentology,20. Amsterdam: Elsevier, 193-249. [24] Peryt T M. 1981. Phanerozoic oncoids: an overview. Facies, 4: 197-213. [25] Pia J. 1927. Thallophyta. In: Hirmer M(ed). Handbuch der Paläobotanik 1. Munich: Oldenbourg,31-136. [26] Riding R. 1988. Classification of microbial carbonates. In: 6th Int Coral Reef Symp Benthic microbes and reefs. Abstract,Townsville,Australia: 5. [27] Riding R. 1991. Classification of microbial carbonates. In: Riding R(ed). Calcareous Algae and Stromatolites. Berlin, Springer-Verlag: Springer, 21-51. [28] Riding R. 2000. Microbial carbonates: the geological record of calcified bacterial-algal mats and biofilms. Sedimentology,47(Supplement 1): 179-214. [29] Riding R. 2011. Microbialites,stromatolites,and thrombolites. In: Reitner J,Thiel V(ed). Encyclopedia of Geobiology,Encyclopedia of Earth Science Serie. Dordrecht: Springer,635-654. [30] Riding R,Virgone A. 2020. Hybrid carbonates: in situ abiotic,microbial and skeletal co-precipitates. Earth-Science Reviews, 208: 1-23. [31] Wright V P. 1992. A revised classification of limestones. Sedimentary Geology, 76: 177-185. [32] Wu Y S. 1991. Organisms and communities of the Permian reef of Xiangbo,China. Calcisponges,hydrozoans,algae,microproblematica. International Academic Publisher: 192. [33] Wu Y S. 1992. Fabric-facies and fabric-rock-types of reefs. Science in China(Series B),35(12): 1503-1511. [34] Wu Y S. 2022a. Definition of biopetrology. Biopetrology, 1(1): 3-8. http://biopetrology.com/yswdob. [35] Wu Y S. 2022b. Classification of biogenic carbonate rocks. Biopetrology, 1(1): 19-29.http://biopetrology.com/yswcob. [36] Wu Y S,Jiang H X,Li Y,Yu G L. 2021. Microfabric features of microbial carbonates: experimental and natural evidence of mold holes and crusts. Journal of Palaeogeography, 10(3): 321-333. [37] Yan Z,Liu J B,Ezaki Y,Adachi N,Du S X. 2017. Stacking patterns and growth models of multiscopic structures within Cambrian Series 3 thrombolites at the Jiulongshan section,Shandong Province,northern China. Palaeogeography,Palaeoclimatology,Palaeoecology, 474: 45-57.