Abstract Hydrothermal sedimentary facies can be formed in rifted basins,mid-oceanic ridges,arc-basin system,as well as epeiric basins and intracontinental lacustrine basins. According to diagenetic and metallogenic modes,rock associations,and geochemical dynamic classifications,hydrothermal sedimentary lithofacies may be classified into hydrothermal syngenetic sedimentary lithofacies,hydrothermal quasi-syngenetic metasomatism lithofacies,hydrothermal syngenetic altered lithofacies,lithofacies of hydrothermal-blasting to hydraulic fracturing breccias,lithofacies of thermal brine quasi-syngenetic infiltration-metasomatism,and lithofacies of crytoexplosive to hydraulic fracturing breccias by hydrothermal fluids related to hydrothermal plume,including 17 types of tectonic lithofacies. All of them are of basic to establishment of independent tectonic mapping elements. The root,vent,center,proximate,and distal facies of the hrdrothermal fluid system have obvious tectonic lithofacies zonation and distribution in basins. However,all of them experienced deformations such as cataclastic rock facies,mylonite facies,and facies of the altered rocks related to thermal fluid reworking,overprinting,and reconstruction in intrcontinental orogens. After studies on deformation history and deformation-sieving of tectonic lithofacies,their tectono-palaeogeography units can be better understood. It may further help us to improve detecting buried tectonic lithofacies and mineral resource predication.
Fund:Co-funded by the Joint Project of Applied Basic Research and Enterprise Basic Research in Yunnan Province(No.202101BC070001-015),the Scientific Research Project of Public Welfare Industry(No.201511016-1),the National Sci?Tech Support Plan(No.2006BAB01 B09),and the Special Project of the Ministry of Science and Technology(No.2008EG115074)
About author: FANG Weixuan,born in 1961,is a senior researcher and doctoral supervisor. Now he is mainly enegaged in study on sedimentary basin,prospection and exploration for mineral resource. E-mail: 569026971@qq.com.
Cite this article:
FANG Weixuan. Hydrothermal sedimentary lithofacies and their tectono-palaeogeography[J]. JOPC, 2023, 25(3): 525-553.
FANG Weixuan. Hydrothermal sedimentary lithofacies and their tectono-palaeogeography[J]. JOPC, 2023, 25(3): 525-553.
[1] 窦志娟. 2015. 溧水火山构造洼地火山活动及与锶成矿作用关系研究. 中国地质科学院硕士学位论文. [Dou Z J. 2015. Relationship studies of volcanic activity and strontium mineralization of Lishui volcano-tectonic depression. Masteral dissertation of Chinese Academy of Geological Sciences] [2] 方维萱. 1999a. 陕西铅硐山大型铅锌矿床热水沉积岩相特征. 沉积学报, 17(1): 44-50. [Fang W X. 1999a. Characteristics of sedimentary facies of hydrothermal for Qiantongshan giant lead-zinc ore deposit in Feng County,Shaanxi Province. Acta Sedimentologica Sinica, 17(1): 44-50] [3] 方维萱. 1999b. 秦岭造山带古热水场地球化学类型及流体动力学模型探讨: 热水沉积成矿盆地分析与研究方法之二. 西北地质科学, 20(2): 17-27. [Fang W X. 1999b. Discusses on model of fluid dynamics for hydrothermal water system and geochemical patterna of paleo-hydrothermal fluids in the Qinling orogen: the analysis and approach of sedimentary basin with hydrothermal sedimentation(PartⅡ). Northwest Geoscience, 20(2): 17-27] [4] 方维萱. 2012. 地球化学岩相学类型及其在沉积盆地分析中应用. 现代地质, 25(6): 996-1007. [Fang W X. 2012. Types of geochemical lithofacies and their applications in basin. Geoscience, 25(6): 996-1007] [5] 方维萱. 2020. 论沉积盆地内成岩相系划分及类型. 地质通报, 39(11): 1692-1714. [Fang W X. 2020. Classification and types of diagenetic lithofacies systems in the sedimentary basin. Geological Bulletin of China, 39(11): 1692-1714] [6] 方维萱. 2022a. 论沉积盆地构造岩相变形史研究方法及应用. 地质力学学报, 28(1): 1-21. [Fang W X. 2022a. On research methodology for deformation history of tectonic lithofacies in sedimentary basin and their application. Journal of Geomechanics, 28(1): 1-21] [7] 方维萱. 2022b. 深成古岩溶不整合构造系统构造岩相学与金属成矿. 地质学报, 96(7): 2585-2610. [Fang W X. 2022b. On tectonic lithofacies of hypogene paleokarst unconformable tectonic systems and metallic mineralization. Acta Geologica Sinica, 96(7): 2585-2610] [8] 方维萱,张国伟,胡瑞忠,刘方杰. 2001a. 秦岭造山带泥盆系热水沉积岩相应用研究及实例. 沉积学报, 19(1): 38-54. [Fang W X,Zhang G W,Hu R Z,Liu F J. 2001. On implications of the Devonian hydrothermal sedimentary facies in the Qinling Orogeny. Acta Sedimentologica Sinica, 19(1): 38-54] [9] 方维萱,胡瑞忠,谢桂青,苏文超,漆亮. 2001b. 墨江镍金矿床(黄铁矿)硅质岩的成岩成矿时代. 科学通报, 46(10): 857-860. [Fang W X,Hu R Z,Xie G Q,Su W C,Qi L. 2001b. Diagenetic-metallogenic ages of pyritic cherts and their implications in Mojiang nickel-gold deposits in Yunnan Province,China. Chinese Science Bulletin, 46(10): 857-860] [10] 方维萱,胡瑞忠,苏文超,漆亮,肖加飞,蒋国豪. 2002. 大河边—新晃超大型重晶石矿床地球化学特征及形成的地质背景. 岩石学报, 18(2): 247-256. [Fang W X,Hu R Z,Su W C,Qi L,Xiao J F,Jiang G H. 2002. Geochemical characteristics of Dahebian-Gongxi superlarge barite deposits and analysis on its background of tectonic geology,China. Acta Petrologica Sinica, 18(2): 247-256] [11] 方维萱,胡瑞忠,漆亮,谢桂青. 2004. 云南墨江金矿含镍金绿色蚀变岩的构造地球化学特征及时空演化. 矿物学报, 24(1): 31-38. [Fang W X,Hu R Z,Qi L,Xie G Q. 2004. Characteristics of tectonic geochemistry and spatial-temporal evolution of green Ni-Au-bearing altered rocks in Mojiang Ni-Au deposits,Yunnan. Acta Mineralogica Sinica, 24(1): 31-38] [12] 方维萱,贾润幸,王磊. 2017. 塔西陆内红层盆地中盆地流体类型、砂砾岩型铜铅锌—铀矿床的大规模褪色化围岩蚀变与金属成矿. 地球科学与环境学报, 39(5): 585-619. [Fang W X,Jia R X,Wang L. 2017. Types of basin fluids,mechanism of discolored alterations and metal mineralizations of glutenite-type Cu-Pb-Zu-U deposits in intercontinental red-bed basin of the Western Tarim Basin. Journal of Earth Sciences and Environment, 39(5): 585-619] [13] 方维萱,王磊,贾润幸. 2018. 塔西地区中—新生代盆山原镶嵌构造区Ⅰ: 砂砾岩型铜铅锌—天青石—铀—煤成矿系统. 地球科学与环境学报, 39(5): 663-675. [Fang W X,Wang L,Jia R X. 2018. Mosaic tectonics of Mesozoic to Cenozoic Basin-Mountain-Plateau in the Western Traim Basin China: glutenite-type Cu-Pb-Zn-Celesite-U-coal Metallogenic system. Journal of Earth Sciences and Environment, 39(5): 663-675] [14] 方维萱,王磊,鲁佳,李天成,贾润幸. 2020. 新疆乌拉根中—新生代沉积盆地和前陆冲断褶皱带对铜铅锌—天青石—铀—煤成矿控制规律. 大地构造与成矿学, 44(5): 881-912. [Fang W X,Wang L,Lu J,Li T C,Jia R X. 2020. Mesozoic-Cenozoic sedimentary basin,foreland fold-and-thrust meralization reglarities of copper-lead-zinc-celesite-uranium-coal in Wulagen,Xinjiang,China. Geotectonica et Metallogenia,44(5),881-912] [15] 方维萱,方同辉,郑小明,倪杰才,郭玉乾,李建旭. 2021. 甘肃红石山地区泥盆—石炭纪有限洋盆重建与蛇绿混杂岩深部结构. 地质通报,40(5): 649-673. [Fang W X,Fang T H,Zheng X M,Ni J C,Guo Y Q,Li J X. 2021. Restoration of the Devonian-Carboniferous limited ocean basin and deep structure of the Hongshishan melange in Gansu. Geological Bulletin of China, 40(5): 649-673] [16] 范玉须,方维萱,李廷栋,肖庆辉,郭玉乾. 2018. 陕西双王金矿钠长角砾岩锆石SHRIMP U-Pb年代学、岩石地球化学特征及其构造意义. 地质学报, 92(9): 1873-1887. [Fan Y X,Fang W X,Li T D,Xiao Q H,Guo Y Q. 2018. Zircon SHRIMP geochronology and geochemical characteristics of albite-carbonate breccia of Shuangwang gold deposit in Shaanxi Province and tectonic significance. Acta Geologica Sinica, 92(9): 1873-1887] [17] 焦鑫,柳益群,周鼎武,李红,孟子圆,赵敏茹,杨奕曜. 2021. 湖相烃源岩中的火山—热液深源物质与油气生成耦合关系研究进展. 古地理学报, 23(4): 789-809. [Jiao X,Liu Y Q,Zhou D W,Li H,Meng Z Y,Zhao M R,Yang Y Y. 2021. Progress on coupling relationship between volcanic and hydrothermal-originated sediments and hydrocarbon generation in lacustrine source rocks. Journal of Palaeogeography(Chinese Edition), 23(4): 789-809] [18] 李哲萱,柳益群,焦鑫,周鼎武,杨奕曜,尤继元. 2019. 火山—热液作用相关细粒沉积岩研究现状及前沿探索. 古地理学报, 21(5): 727-742. [Li Z X,Liu Y Q,Jiao X,Zhou D W,Yang Y Y,You J Y. 2019. Progress and present research on volcanic-hydrothermal related fine-grained sedimentary rocks. Journal of Palaeogeography(Chinese Edition), 21(5): 727-742] [19] 李文渊. 2010. 现代海底热液成矿作用. 地球科学与环境学报, 32(1): 15-23. [Li W Y. 2010. Hydrothermal mineralization on the modern seafloor. Journal of Earth Sciences and Environment, 32(1): 15-23] [20] 柳益群,焦鑫,李红,袁明生,Yang Wan,周小虎,梁浩,周鼎武,郑朝阳,孙芹,汪双双. 2011. 新疆三塘湖跃进沟二叠系地幔热液喷流型原生白云岩. 中国科学: 地球科学, 41(12): 1816-1871. [Liu Y Q,Jiao X,Li H,Yuan M S,Yang W,Zhou X H,Liang H,Zhou J W,Zheng C Y,Sun Q,Wang S S. 2011. Primary dolostone formation related to mantle-originated exhalative hydrothermal activities,Permian Yuejingou section,Santanghu area,Xinjiang,NW China. Scientia Sinica Terrae, 41(12): 1816-1871] [21] 柳益群,周鼎武,焦鑫,南云,杨晚,李红,周小虎. 2013. 一类新型沉积岩: 地幔热液喷积岩: 以中国新疆三塘湖地区为例. 沉积学报, 31(5): 773-781. [Liu Y Q,Zhou D W,Jiao X,Nan Y,Yang W,Li H,Zhou X H. 2013. A new type of sedimentary rocks: mantle-originated hydroclastites and hydrothermal exhalites,Santanghu Area,Xinjiang,NW China. Acta Sedimentologica Sinica, 31(5): 773-781] [22] 刘家军,刘建明,郑明华,周渝峰,顾雪祥,张斌,林丽,周德安. 1998. 利用岩石地球化学特征判断西秦岭寒武系含矿硅岩建造的沉积环境. 沉积学报, 16(4): 42-49. [Liu J J,Liu J M,Zheng M H,Zhou Y F,Gu X X,Zhang B,Lin L,Zhou D. 1998. Judging the sedimentary environment of the silicalite formation on the chemical characteristics of rocks in Western Qinling. Acta Sedimentologica Sinica, 16(4): 42-49] [23] 何登发,李德生,王成善,刘少峰,陈槚俊. 2020. 活动论构造古地理的研究现状、思路与方法. 古地理学报, 22(1): 1-27. [He D F,Li D S,Wang C S,Liu S F,Chen J J. 2020. Status,thinking,and methodology of studying on the mobile tectono-palaeogeography. Journal of Palaeogeography(Chinese Edition), 22(1): 1-27] [24] 何登发,包洪平,高山林,李涤. 2022. 构造-沉积分异原理及其地质意义. 古地理学报, 24(5): 920-936. [He D F,Bao H P,Gao S L,Li D. 2022. Principles of tectonic depositional differentiation and its geological significance. Journal of Palaeogeography(Chinese Edition), 24(5): 920-936] [25] 郭唯明,马圣钞,孙艳,赵芝,钟海仁,姚垒珊. 2019. 云南腾冲热泉中稀有金属矿化特征及其意义. 地质学报, 93(6): 1321-1330. [Guo W M,Ma S C,Sun Y,Zhao Z,Zhong H R,Yao L S. 2019. Characteristics and significance of rare metal mineralization in hot-springs of Tengchong area,Yunnan. Acta Geologica Sinica, 93(6): 1321-1330] [26] 涂光炽,王秀璋,陈先沛. 1988. 中国层控矿床地球化学(第三卷).北京: 科学出版社,131-254. [Tu G C,Wang X Z,Cheng X P. 1988. Geochemistry of strata-bound ore deposits in China(the third volume). Beijing: Science Press,131-254] [27] 王吉平,胡墨田,周建民,朱敬宾,邓小林,杨清堂. 2000. 论华蓥山地区天青石矿石的两种成因. 地质学报, 74(4): 325-332,386. [Wang J P,Hu M T,Zhou J M,Zhu J B,Deng X L,Yang Q T. 2000. Two origins of celestite ores in Huaying mountains area. Acta Geologica Sinica, 74(4): 325-332,386] [28] 汪双双,柳益群,张宏福,周鼎武,焦鑫,南云. 2015. 新疆三塘湖地区中二叠世条湖组基性—超基性岩的地球化学特征及其大地构造背景. 中国科学: 地球科学, 45: 1481-1496. [Wang S S,Liu Y Q,Zhang H F,Zhou D W,Jiao X,Nan Y. 2015. Geochemical characteristics and tectonic setting of the Middle Permian Tiaohu Formation mafic-ultramafic rocks of Santanghu area,Xinjiang,Northwest China. Scientia Sinica Terrae, 45: 1481-1496] [29] 吴凯,袁洪林,吕楠,张丽鹏. 2020. 蛇纹石化和俯冲带蛇纹岩变质脱水过程中流体活动性元素的行为. 岩石学报, 36(1): 141-153. [Wu K,Yuan H L,Lyu N,Zhang L P. 2020. The behavior of fluid mobile elements during serpentinization and dehydration of serpentinites in subduction zones. Acta Petrologica Sinica, 36(1): 141-153] [30] 向龙,刘晓东,刘平辉,戴朝成,江文剑. 2019. 内蒙古巴音戈壁盆地因格井坳陷下白垩统湖相热水沉积岩特征及成因. 古地理学报, 21(5): 709-726. [Xiang L,Liu X D,Liu P H,Dai C C,Jiang W J. 2019. Genesis and characteristics of lacustrine hydrothermal sedimentary rock of the Lower Cretaceous in Yingejing sag of Bayan Gebi basin,Inner Mongolia. Journal of Palaeogeography(Chinese Edition), 21(5): 709-726] [31] 薛春纪,刘淑文,冯永忠,李强,王涛,朱经祥,吴邦朝. 2005. 南秦岭旬阳盆地下古生界热水沉积成矿地球化学. 地质通报, 24(10-11): 927-934. [Xue C J,Liu S W,Feng Y Z,Li Q,Wang T,Zhu J X,Wu B C. 2005. Geochemistry of hydrothermal sedimentary mineralization in the Lower Paleozoic of the Xunyang basin,south Qinling,China. Geoloical Bulletin of China, 24(10-11): 927-934] [32] 谢桂青,胡瑞忠,方维萱,漆亮. 2002. 云南墨江金矿热水喷流沉积成岩成矿的地质地球化学证据. 沉积学报, 20(3): 387-393. [Xie G Q,Hu R Z,Fang W X,Qi L. 2002. Evidence for geology and geochemistry of hydrothermal exhalative genesis from Mojiang Gold Deposit,Yunnan. Acta Sedimentologica Sinica, 20(3): 387-393] [33] 熊先孝. 1997. 论湖南石门雄黄矿区矿化角砾岩成因类型. 地质论评, 43(5): 483-489,562. [Xiong X X. 1997. On the genetic classification of mineralized breccias in the Shimen realgar ore district,Hunan Provinve. Geological Review, 43(5): 483-489,562] [34] 应汉龙,王登红,刘和林. 2005. 云南墨江金厂镍—金矿床镍矿化地质特征及形成时间. 矿床地质, 24(1): 44-51. [Ying H L,Wang D H,Liu H L. 2005. Geology and formation time of nickel mineralization in Jinchang nickel-gold deposit,Mojiang,Yunnan. Mineral Deposits, 24(1): 44-51] [35] 杨喆,钟大康,张硕,郭强,路昭. 2018. 二连盆地白音查干凹陷下白垩统湖相沸石成因: 来自矿物学、微量元素特征的证据. 地球科学, 43(10): 3733-3748. [Yang Z,Zhong D K,Zhang S,Guo Q,Lu Z. 2018. Mineralogical and trace-element constrains on the genesis of zeolite in Lower Cretaceous lacustrine rocks from Baiyinchagan Sag,Erlian Basin,China. Earth Science, 43(10): 3733-3748] [36] 詹涵钰,李占轲,武文辉,李建威. 2019. 陕西大西沟喷流沉积型菱铁矿矿床地质特征及矿床成因. 矿床地质, 38(1): 1-20. [Zhan H Y,Li Z K,Wu W H,Li J W. 2019. Geological characteristics and origin of Daxigou SEDEX siderite deposit in Shaanxi Province. Mineral Deposits, 38(1): 1-20] [37] 张景荣,陆建军,王蔚. 1994. 论湖南石门砷-(金)矿床的古热泉成因. 地质论评, 40(5): 429-435. [Zhang J R,Lu J J,Wang W. 1994. The Shimen hot spring-type As-(Au)deposit,Hunan Province. Geological Review, 40(5): 429-435] [38] 郑荣才,王成善,朱利东,刘红军,方国玉,杜文博,王崇孝,汪满福. 2003. 酒西盆地首例湖相“白烟型”喷流岩: 热水沉积白云岩的发现及其意义. 成都理工大学学报(自然科学版), 30(1): 1-8. [Zheng R C,Wang C S,Zhu L D,Liu H J,Fang G Y,Du W B,Wang C X,Wang M F. 2003. Discovery of the first example of “White smoke type”of exhalative rock(hydrothermal sedimentary dolostone in Jiuxi basin and its significance. Journal of Chengdu University of Technology(Science & Technology Edition), 30(1): 1-8] [39] 张帅,柳益群,李红,焦鑫,周鼎武. 2020. 准噶尔盆地东部中二叠统幔源热液沉积白云岩. 古地理学报, 22(1): 111-128. [Zhang S,Liu Y Q,Li H,Jiao X,Zhou D W. 2020. Mantle-originated hydrothermal-sedimentary dolostone in the Middle Permian in eastern Junggar Basin,China. Journal of Palaeogeography(Chinese Edition), 22(1): 111-128] [40] 赵元艺,樊兴涛,韩景仪,邓坚,赵希涛. 2009. 西藏谷露热泉型铯矿床地质地球化学特征与成矿作用. 地质通报, 28(7): 933-954. [Zhao Y Y,Fan X T,Han J Y,Deng J,Zhao X T. 2009. Geologic and geochemical features and ore forming process for hot spring cesium deposit of Gulu Area,Nagqu Region,Tibet,China. Geological Bulletin of China, 28(7): 933-954] [41] 郑秀娟,杜远生,朱筱敏,刘招君,胡斌,吴胜和,邵龙义,旷红伟,罗静兰,钟大康,李华,何登发,朱如凯,鲍志东. 2021. 中国古地理学近十年主要进展. 矿物岩石地球化学通报, 40(1): 94-114,4. [Zheng X J,Du Y S,Zhu X M,Liu Z J,Hu B,Wu S H,Shao L Y,Kuang H W,Luo J L,Zhong D K,Li H,He D F,Zhu R K,Bao Z D. 2021. The main progresses of Chinese palaeogeography in the past decade. Bulletin of Mineralogy,Petrology and Geochemistry, 40(1): 94-114,4] [42] 钟大康,杨喆,孙海涛,张硕. 2018. 热水沉积岩岩石学特征: 以内蒙古二连盆地白音查干凹陷下白垩统腾格尔组为例. 古地理学报, 20(1): 19-32. [Zhong D K,Yang Z,Sun H T,Zhang S. 2018. Petrological characteristics of hydrothermal sedimentary rocks: a case study of the Lower Cretaceous Tengger Formation in the Baiyinchagan sag of Erlian basin,Inner Mongolia. Journal of Palaeogeography(Chinese Edition), 20(1): 19-32] [43] Aguilera F,Layana S,Rodríguez-Díaz A,Gonz'alez C,Cort'es J,Inostroza M. 2016. Hydrothermal alteration,fumarolic deposits and fluids from Lastarria Volcanic complex: a multidisciplinary study. Andean Geology. 43(2): 166-196. [44] Agangi A,Hofmann A,Ossa F O,Paprika D,Bekke A. 2021. Mesoarchaean acidic volcanic lakes: a critical ecological niche in early land colonization. Earth and Planetary Science Letters, 556(2021): 116725. [45] Africano F,Bernard A. 2000. Acid alteration in the fumarolic environment of Usu volcano,Hokkaido,Japan. Journal of Volcanology and Geothermal Research, 97: 475-495. [46] Aquino K A,Früh-Green G L,Rickli J,Bernasconi S M,Lang S Q,Lilley M D,Butterfield D A. 2022. Multi-stage evolution of the Lost City hydrothermal vent fluids. Geochimica et Cosmochimica Acta,332: 239-262. [47] Benson T R,Coble M A,Rytuba J J,Mahood G A. 2018. Lithium enrichment in intracontinental rhyolite magmas leads to Li deposits in caldera basins. Nature Communications, 8: 1-9. [48] Brazelton W. 2017. Hydrothermal vents. Current Biology, 27: 450-452. [49] Burisch M,Markl G,Gutzmer J. 2022. Breakup with benefits-hydrothermal mineral systems related to the disintegration of a supercontinent. Earth and Planetary Science Letters, 580: 117373. [50] Calvin W M,Pace E L. 2016. Mapping alteration in geothermal drill core using a field portable spectroradiometer. Geothermics, 61: 12-23. [51] Castor S B,Henry C D. 2020. Lithium-rich claystone in the McDermitt Caldera,Nevada,USA: geologic,mineralogical,and geochemical characteristics and possible origin. Minerals, 10(68): 1-38. [52] Corliss J B,Dymond J,Gordon L I,Edmond J M,von Herzen R P,Ballard R D,Green K,Williams D,Bainbridge A,Crane K,van Andel T H. 1979. Submarine Thermal Sprirngs on the Galápagos Rift. Science, 203: 1073-1083. [53] David V. 2008. Structural-geological setting of the Elura-Zn-Pb-Ag massive sulphide deposit,Australia. Ore Geology Reviews, 34: 428-444. [54] de Ronde C E J,Hannington M D,Stoffers P,Wright I C,Ditchburn R G,Reyes A G,Baker E T,Massoth G J,Lupton J E,Walker S L,Greene R R,Soong C W R,Ishibashi J,Lebon G T,Bray C J,Resing J A. 2005. Evolution of a submarine magmatic-hydrothermal system: brothers volcano,southern Kermadec Arc,New Zealand. Economic Geology, 100: 1097-1133. [55] Deschamps F,Godard M,Guillot S,Hattori K. 2013. Geochemistry of subduction zone serpentinites: a review. Lithos, 178: 96-127. [56] Du Z F,Zhang X,Xue B Y,Luan Z D,Yan J. 2020. The applications of the in situ laser spectroscopy to the deep-sea cold seep and hydrothermal vent system. Solid Earth Sciences, 5: 153-168. [57] Ellis B S,Szymanowski D,Magna T,Neukampf J,Dohmen R,Bachmann O,Ulmer P,Guillong M. 2017. Post-eruptive mobility of lithium in volcanic rocks. Nature Communications, 9: 1-9. [58] Evenstar L A,Hartley A J,Archer S G,Neilson J E. 2016. Climatic and halokinetic controls on alluvial-lacustrine sedimentation during compressional deformation,Andean forearc,northern Chile. Basin Research, 28(5): 634-657. [59] Gao Y Q,Liu L,Yang H D,You L,Liu N. 2007. Characteristics and origin of dawsonite in Gudian carbon dioxide gas field of Songliao Basin. Acta Petrolei Sinica, 28(4): 62-66. [60] Georgieva M N,Little C T S,Maslennikov V V,Glover A G,Ayupova N R,Herrington R J. 2021. The history of life at hydrothermal vents. Earth-Science Reviews, 217: 103602. [61] Godfrey L,Álvarez-Amado F. 2020. Volcanic and saline lithium inputs to the Salar de Atacama. Minerals, 10(201): 1-27. [62] Giampouras M,Garrido C J,Zwicker J,Vadillo I,Smrzka D,Bach W,Peckmann J,Jiménez P,Benavente J,García-Ruiz J M. 2019. Geochemistry and mineralogy of serpentinization-driven hyperalkaline springs in the Ronda peridotites. Lithos, 350-351: 1-22. [63] Groves D I,Bierlein F P. 2007. Geodynamic settings of mineral deposit systems. Journal of the Geological Society, 164: 19-30. [64] Fang W X,Hu R Z,Huang Z Y. 2001. Mineralization zoning in Yindongzi-Daxigou barite-siderite silver-polymetallic deposits in the Qinling Orogen China. Chinese Journal of Geochemistry, 20(1): 45-51. [65] Han G M,Wang L,Xiao D Q,Lou D,Xu M Y,Zhao Y G,Pei Y L,Guo X W,Teng J C,Han Y J. 2021. Magmatic hydrothermal fluid genesis of zeolite in the Paleogene Kongdian Formation of Zaoyuan oilfield,Bohai Bay Basin,China. Petroleum Exploration and Development, 48(5): 1101-1112. [66] Hao Y L,Pang Z H,Tian J,Wang Y C,Li Z P,Li L W,Xing L T. 2020. Origin and evolution of hydrogen-rich gas discharges from a hot spring in the eastern coastal area of China. Chemical Geology, 538: 119477. [67] Hannington M D,Galley A,Gerzig P,Petersen S. 1998. Comparison of the TAG mound and stockwork complex with Cyprus-type massive sulfide deposits. Proc. Ocean Drill. Prog. Sci. Results, 158: 389-415. [68] Harris M,Coggon R M,Smith-Duque C E,Cooper M J,Milton J A,Teagle D A H. 2015. Channelling of hydrothermal fluids during the accretion and evolution of the upper oceanic crust: Sr isotope evidence from ODP Hole 1256D. Earth and Planetary Science Letters, 416: 56-66. [69] Herzig P M,Becker K P,Stoffers P,Bäcker H,Blum N. 1988. Hydrothermal silica chimney fields in the Galapagos spreading center at 86 ℃. Earth and Planetary Science Letters, 89(8): 261-272. [70] Hékinian R. 1982. Petrology of the Ocean Floor.Amsterdam: Elsevier. [71] James R H,Green D R H,Stock M J,Alker B J,Banerjee N R,Cole C,German C R,Huvenne V A I,Powell A M,Connelly D P. 2014. Composition of hydrothermal fluids and mineralogy of associated chimney material on the East Scotia Ridge back-arc spreading centre. Geochimica et Cosmochimica Acta, 139: 47-71. [72] Jamieson J W,Gartman G. 2020. Defining active,inactive,and extinct seafloor massive sulfide deposits. Marine Policy, 117: 103926. [73] Klose L,Kleint C,Bach W,Diehl A,Wilckens F,Peters C,Strauss H,Haase K,Koschinsky A. 2022. Hydrothermal activity and associated subsurface processes at Niuatahi rear-arc volcano,North East Lau Basin,SW Pacific: implications from trace elements and stable isotope systematics in vent fluids. Geochimica et Cosmochimica Acta, 332: 103-123. [74] Koschinsky A,Garbe-Schonberg D,Sander S,Schmidt K,Gennerich H H,Strauss H. 2008. Hydrothermal venting at pressure-temperature conditions above the critical point of seawater,5 degrees S on the Mid-Atlantic Ridge. Geology, 36: 615-618. [75] Leach D L,Bradley D C,Huston D,Pisarevsky S A,Taylor R D,Gardoll S J. 2010. Sediment-hosted lead-zinc deposits in earth history. Economic Geology, 105: 593-625. [76] Li D,Dong C M,Lin C Y,Ren L H,Jiang T,Tang Z X. 2013. Control factors on tight sandstone reservoirs below source rocks in the Rangzijing slope zone of southern Songliao Basin,East China. Petroleum Exploration and Development, 40(6): 742-750. [77] Liu J J,Song H J,Dai S F,Nechaev V P,Graham I T,French D,Nechaeva E V. 2019. Mineralization of REE-Y-Nb-Ta-Zr-Hf in Wuchiapingian coals from the Liupanshui Coalfield,Guizhou,southwestern China: Geochemical evidence for terrigenous input. Ore Geology Reviews, 115: 103190. [78] Manning A H,Emsbo P. 2018. Testing the potential role of brine reflux in the formation of sedimentary exhalative(sedex)ore deposits. Ore Geology Reviews, 102: 862-874. [79] Magni V. 2019. The effects of back-arc spreading on arc magmatism. Earth and Planetary Science Letters, 519: 141-151. [80] Martin W,Baross J,Kelley D,Russell M J. 2008. Hydrothermal vents and the origin of life. Nature Reviews Microbiology, 6: 805-814. [81] McDermott J M,Sylva S P,Ono S,German C R,Seewald J S. 2018. Geochemistry of fluids from Earth's deepest ridge-crest hot-springs: Piccard hydrothermal field,Mid-Cayman Rise. Geochimica et Cosmochimica Acta, 228: 95-118. [82] Menzies C D,Price R E,Ryan J,Sissmann O,Ken T K,Wheat C G. 2022. Spatial variation of subduction zone fluids during progressive subduction: insights from Serpentinite Mud Volcanoes. Geochimica et Cosmochimica Acta, 319: 118-134. [83] Mpodozis C,Arriagada C,Basso M,Roperch P,Cobbold P,Reich M. 2005. Late Mesozoic to Paleogene stratigraphy of the Salar de Atacama Basin,Antofagasta,northern Chile: implications for the tectonic evolution of the central Andes. Tectonophysics, 399: 125-154. [84] Murton B J,Lehrmann B,Dutrieux A M,Martins S,de la Iglesia A G,Stobbs I J,Barriga F J A S,Bialas J,Dannowski A,Vardy M E,North L J,Yeo I A L M,Lusty P A J,Petersen S. 2019. Geological fate of seafloor massive sulphides at the TAG hydrothermal field(Mid-Atlantic Ridge). Ore Geology Reviews, 107: 903-925. [85] Najar L N,Sharma P,Das S,Sherpa M T,Kumar S,Thakur N. 2022. Bacterial diversity,physicochemical and geothermometry of South Asian hot springs. Current Research in Microbial Sciences, 3: 100125. [86] Qi H W,Hu R Z,Su W C,Qi L,Feng J Y. 2004. Continental hydrothermal sedimentary siliceous rock and genesis of superlarge germanium(Ge)deposit hosted in coal: a study from the Lincang Ge deposit,Yunnan,China. China. Science China Earth Sciences, 47(11): 973-984. [87] Pirajno F,Chen Y J,Li N,Li C,Zhou L. 2016. Besshi-type mineral systems in the Palaeoproterozoic Bryah Rift-Basin,Capricorn Orogen,Western Australia: implications for tectonic setting and geodynamic evolution. Geoscience Frontiers, 7: 345-357. [88] Pirajno F. 2020. Subaerial hot springs and near-surface hydrothermal mineral systems past and present,and possible extraterrestrial analogues. Geoscience Frontiers, 11: 1549-1569. [89] Pueyo J J,Demergasso C,Escudero L,Chong G,Cort'ez-Rivera P,Sanjurjo-Sanchez J,Carmona V,Giralt S. 2021. On the origin of saline compounds in acidic salt flats(Central Andean Altiplano). Chemical Geology, 574: 120155. [90] Renaut R W,Jones B,Tiercelin J J, Tarits C. 2002. Sublacustrine precipitation of hydrothermal silica in rift lakes: evidence from Lake Baringo,central Kenya Rift Valley. Sedimentary Geology, 148: 235-257. [91] Risacher F,Fritz B,Hauser A. 2011. Origin of components in Chilean thermal waters. Journal of South American Earth Sciences, 31: 153-170. [92] Risacher F,Fritz B. 2009. Origin of salts and brine evolution of Bolivian and Chilean salars. Aquatic Geochemistry, 15: 123-157. [93] Sasso A M,Clark A H. 1998. The Farallon Negro Group Northwestern Argentina: magmatic hydrothermal and tectonic evolution and implications for Cu-Au metallogeny in the Andean back-arc. Society of Economic Geologist Newsletter, 34: 1-18. [94] Soto K J,Kim S. 2022. Hydrothermal vent periphery invertebrate community habitat preferences of the Lau Basin. Journal of Experimental Marine Biology and Ecology, 552: 151741. [95] Stoppa F,Schiazza M,Rosatelli G,Castorina F,Sharygin V,Ambrosio F,Vicentini N. 2019. Italian carbonatite system: from mantle to ore-deposit. Ore Geology Reviews, 114: 103041. [96] Su A,Chen H H,Cao L S,Lei M Z,Wang C W,Liu Y H,Li P J. 2014. Genesis,source and charging of oil and gas in Lishui sag,East China Sea Basin. Petroleum Exploration and Development, 41(5): 574-584. [97] Sun C,Yang X Y,Zhang H S,Ji W H,Chen B,Dong Z C,Faisal M,Xi D H. 2022. Tracing the formation and modification of the Keketale VMS-type Pb-Zn deposit,Altai Mountains: insights from ore deposit geology,geochronology,and magnetite geochemistry. Ore Geology Reviews, 144: 104852. [98] Takahashi T,Yoshino S,Takaya Y,Nozaki T,Ohki K,Ohki T,Sakka T,Thornton B. 2020. Quantitative in situ mapping of elements in deep-sea hydrothermal vents using laser-induced breakdown spectroscopy and multivariate analysis. Deep-Sea Research Part I, 158: 103232. [99] Toner J D,Catling D C. 2019. Alkaline lake settings for concentrated prebiotic cyanide and the origin of life. Geochimica et Cosmochimica Acta, 260: 124-132. [100] Zhang W X,Yang H,Xie L Q,Yang Y H. 2010. Lake-bottom hydrothermal activities and their influence on high-quality source rock development: a case from Chang 7 source rocks in Ordos Basin. Petroleum Exploration and Development, 37(4): 424-429. [101] Zheng Y,Long L J,Yu P P,Zhang X C,Hu Z B,Wu Y H. 2022. Metal endowment and geodynamic evolution of the Late Paleozoic SEDEX deposits in South China: the Yunfu giant iron-sulfide deposit,Yunkai Domain. Ore Geology Reviews, 145: 104918.