Research on trench deposition characteristics of Sanxingdui platform in Guanghan,Sichuan Province
YANG Qi1, XIANG Fang2, RAN Honglin3, GUO Yuming1, LIU Jiancheng3, XIE Zhenbin3
1 College of Earth Sciences,Chengdu University of Technology,Chengdu 610059,China; 2 Institute of Sedimentary Geology,Chengdu University of Technology,Chengdu 610059,China; 3 Sichuan Institute of Cultural Relics and Archaeology,Chengdu 610041,China
Abstract In 2020,the Sichuan Provincial Institute of Cultural Relics and Archaeology carried out archaeological exploration in the surrounding area of the burial pits. On the southern side of the Sanxingdui platform,there are trenches built on the second terrace. Paleocurrent flows from the northwest to the southeast to connect the Mamu River meandering section. The main age of trench sediments is speculated to be the third and fourth stages of the Sanxingdui culture. Through thin-section identification,scanning electron microscopy observation,and particle size analysis of the trench profile samples,it was found that the main part of the trench was composed of near-source fluvial sediments,and only pottery pieces and other relics were enriched in individual strata. The trench was dominated by natural deposition,and no large-scale anthropogenic dumping activities were found. There is no significant difference in the composition of rock debris and other components in the raw soil and trench sediments of different stages,indicating that the Jianjiang River originating in the Longmenshan tectonic belt and its tributary Mamu River have not undergone significant diversion since the late Pleistocene. The trenches experienced at least three ‘trenching-filling' processes. In the first stage,the sediments are mainly clay and silt,with weak hydrodynamic force,a stable sedimentary environment,and frequent activities of the ancients. The sediments in the second stage are mainly medium to coarse-grained sand with strong hydrodynamic force and there may be frequent floods at this time. It can be seen that the ditch banks are cut and a large area of sandy sediment is distributed across the banks. In the third stage,the hydrodynamic fluctuation of sediments was obvious and gradually stabilized in the later stage. The ancients returned to the trench area. There are traces of multi-stage man-made construction in the form of trenches,reflecting the ancients' ability to cope with climate change and natural effects.
Fund:Co-funded by the National Natural Science Foundation of China(No.41972101)and the Special Program of Sanxingdui Science and Technology Archaeology,Chengdu University of Technology
Corresponding Authors:
XIANG Fang,born in 1974,professor and doctoral supervisor,has long been engaged in teaching and scientific research on sedimentary petrology,lithofacies palaeogeography,and Quaternary geology. E-mail: cdxiangfang@126.com.
About author: YANG Qi,born in 1997,a postgraduate student,majors in Quaternary geology. E-mail: yangqi7507@163.com.
Cite this article:
YANG Qi,XIANG Fang,RAN Honglin et al. Research on trench deposition characteristics of Sanxingdui platform in Guanghan,Sichuan Province[J]. JOPC, 2023, 25(3): 715-728.
YANG Qi,XIANG Fang,RAN Honglin et al. Research on trench deposition characteristics of Sanxingdui platform in Guanghan,Sichuan Province[J]. JOPC, 2023, 25(3): 715-728.
[1] 柏哲人. 2019. 丁公遗址龙山文化早期壕沟(G114)功能的地学考古研究. 山东大学硕士学位论文,1-61. [Bai Z R. 2019. Geoarchaeological study on the function of the early Longshan culture moat(G114)at Dinggong site. Masteral dissertation of Shandong University,1-61] [2] 陈德安. 1998. 三星堆遗址的发现与研究. 中华文化论坛, 5(2): 57-63. [Chen D A. 1998. The discovery and research of Sanxingdui Site. Journal of Chinese Culture, 5(2): 57-63] [3] 成都地质学院陕北队. 1978. 沉积岩(物)粒度分析及其应用. 北京: 地质出版社,1-147. [The Shanbei Group of Chengdu College of Geology. 1978. Particle Size Analysis of Sedimentary Rock(Sediment) and Application. Beijing: Geological Publishing House,1-147] [4] 程涌,文义明,吴伟,陈国栋. 2017. 场发射扫描电镜在现代河流沉积石英颗粒表面形态特征研究中的应用. 电子显微学报, 36(5): 457-465. [Cheng Y,Wen Y M,Wu W,Chen G D. 2017. The application of field emission scanning electron microscopy to the study of surface textures of quartz grains from modern fluvial deposits. Journal of Chinese Electron Microscopy Society, 36(5): 457-465] [5] 邓程文,张霞,林春明,于进,王红,殷勇. 2016. 长江河口区末次冰期以来沉积物的粒度特征及水动力条件. 海洋地质与第四纪地质, 36(6): 185-198. [Deng C W,Zhang X,Lin C M,Yu J,Wang H,Yin Y. 2016. Grain-size characteristics and hydrodynamic conditions of the Changjiang estuarine deposits since last glacial. Marine Geology & Quaternary Geology, 36(6): 185-198] [6] 范念念,吴保生,刘乐. 2010. 地震导致河流改道与古蜀文明的变迁. 山地学报, 28(4): 453-462. [Fan N N,Wu B S,Liu L. 2010. River avulsion by earthquake and the transition of ancient Shu civilization. Journal of Mountain Science, 28(4): 453-462] [7] 高大伦,郭明. 2016. 三星堆遗址古文明的长度宽度和高度. 四川文物, 33(6): 79-83. [Gao D L,Guo M. 2016. The length,width and height of ancient civilization of Sanxingdui site. Sichuan Cultural Relics, 33(6): 79-83] [8] 郭伟民. 2007. 城头山城墙、壕沟的营造及其所反映的聚落变迁. 南方文物, 19(2): 70-82. [Guo W M. 2007. Construction city wall & trench at Chengtoushan and their reflection “tribe changes”. Relics from South, 19(2): 70-82] [9] 洪友堂,田淑芳,陈建平,江明. 2006. 四川三星堆遗址多源遥感研究. 国土资源遥感, 19(4): 33-35,59,79. [Hong Y T,Tian S F,Chen J P,Jiang M. 2006. Multisource remote sensing researches on the Sanxingdui site in Sichuan Province. Remote Sensing for Land & Resources, 19(4): 33-35,59,79] [10] 黄明,马春梅,朱诚. 2017. 成都平原中—晚全新世环境考古研究进展. 古地理学报, 19(6): 1087-1098. [Huang M,Ma C M,Zhu C. 2017. Progress of the Mid-late Holocene environmental archaeology in Chengdu Plain. Journal of Palaeogeography(Chinese Edition), 19(6): 1087-1098] [11] 贾天骄. 2016. 成都平原新石器时代以来地震与古洪水等事件环境考古研究. 南京大学博士学位论文,1-121. [Jia T J. 2016. Environmental archaeology of the impacts of earthquakes and paleofloods of the Neolithic ages in the Chengdu Plain,China. Doctoral dissertation of Nanjing University,1-21] [12] 冷勇辉,李长安,刘辉,张玉芬,魏传义,李亚伟,贾明明,郭汝军. 2020. 湖北松滋关洲遗址沉积环境演化及长江河道变迁. 地球科学, 45(3): 764-775. [Leng Y H,Li C A,Liu H,Zhang Y F,Wei C Y,Li Y W,Jia M M,Guo R J. 2020. Sedimentary environment evolution and Yangtze River channel change in Guanzhou site,Songzi city,Hubei Province. Earth Science, 45(3): 764-775] [13] 黎兵. 2005. 青藏高原东缘晚新生代隆升的沉积记录与地貌响应. 成都理工大学硕士学位论文,1-89. [Li B. 2005. Sedimentary record and geomorphology response for the uplift of eastern margin of Tibet Plateau in the late Cenozoic. Masteral dissertation of Chengdu University of Technology,1-89] [14] 李磊,向芳,刘一鸣,台梓含. 2020. 岷江演化讨论: 来自四川宜宾地区第四纪河流沉积物的重矿物证据. 古地理学报, 22(4): 761-774. [Li L,Xiang F,Liu Y M,Tai Z H. 2020. Discussion on evolution of Min Jiang River: Heavy mineral evidence from the Quaternary fluvial sediments in Yibin area,Sichuan Province. Journal of Palaeogeography(Chinese Edition), 22(4): 761-774] [15] 梁斌,朱兵,王全伟,付小方,郝雪峰. 2014. 成都平原第四纪地质与环境. 北京: 科学出版社,1-124. [Liang B,Zhu B,Wang Q W,Fu X F,Hao X F. 2014. Quaternary Geology and Environment of Chengdu Plain. Beijing: Science Press,1-124] [16] 林春明,张霞,赵雪培,李鑫,黄舒雅,江凯禧. 2021. 沉积岩石学的室内研究方法综述. 古地理学报, 23(2): 223-244. [Lin C M,Zhang X,Zhao X P,Li X,Huang S Y,Jiang K X. 2021. Review of laboratory research methods for sedimentary petrology. Journal of Palaeogeography(Chinese Edition), 23(2): 223-244] [17] 刘朝,师育新,戴雪荣,席雅娟. 2016. 钱塘江河口区不同河段表层沉积物粒度特征及其对水动力的响应. 华东师范大学学报(自然科学版), 62(6): 182-191. [Liu C,Shi Y X,Dai X R,Xi Y J. 2016. Grain size characteristics of the surface sediments from the Qian Tang River Estuary and their implication for sedimentary hydrodynamics. Journal of East China Normal University(Natural Science), 62(6): 182-191] [18] 刘兴诗. 1998. 成都平原古城群兴废与古气候问题. 四川文物, 15(4): 34-37. [Liu X S. 1998. The rise and fall of the ancient cities of the Chengdu plain and paleoclimatic issues. Sichuan Cultural Relics, 15(4): 34-37] [19] 刘兴诗. 2005. 三星堆文明与古地理环境. 成都理工大学学报(社会科学版), 13(1): 1-6. [Liu X S. 2005. Sanxingdui civilization and ancient geographic environment. Journal of Chengdu University of Technology(Social Sciences), 13(1): 1-6] [20] 刘颖,介冬梅,方启,李楠楠,王江永,牛洪昊,冷程程,刘宝健,蒙萌,张桂华. 2020. 长山遗址沉积物粒度特征及其环境指示意义. 东北师大学报(自然科学版), 52(1): 136-143. [Liu Y,Jie D M,Fang Q,Li N N,Wang J Y,Niu H H,Leng C C,Liu B J,Meng M,Zhang G H. 2020. Sediment grain-size characteristics of the Changshan site and its environmental indication meaning. Journal of Northeast Normal University(Natural Science Edition), 52(1): 136-143] [21] 饶宗岳,王芬,庄奕杰,武昊,靳桂云. 2022. 焦家遗址大汶口文化城墙与壕沟使用过程的地学考古观察. 南方文物, 127(1): 140-151. [Rao Z Y,Wang F,Zhuang Y J,Wu H,Jin G Y. 2022. Geoarchaeological observation research on the use of the rammed earth wall and moat in Jiaojia site,Dawenkou Culture. Cultural Relics in Southern China, 127(1): 140-151] [22] 任昳霏. 2010. 夏商周时期黄河中游地区壕沟初探. 中央民族大学硕士学位论文,1-82. [Ren Y F. 2010. A preliminary study on the ditches in the middle reaches of the Yellow River during the Xia,Shang and Zhou Dynasties. Masteral dissertation of the Minzu University of China,1-82] [23] 苏永军,王绪本,罗建群. 2007. 高密度电阻率法在三星堆壕沟考古勘探中应用研究. 地球物理学进展, 22(1): 268-272. [Su Y J,Wang X B,Luo J Q. 2007. The archaeological application of high-density resistivity method to ditch exploration on Sanxingdui Site. Progress in Geophysics, 22(1): 268-272] [24] 宿凯. 2017. 城子崖遗址岳石文化时期微环境复原: 来自壕沟沉积物的地学考古证据. 山东大学硕士学位论文,1-73. [Su K. 2017. Reconstruction of micro-environment during the Yueshi culture at the Chengziya site: geoarchaeological evidence from moat sediments. Masteral dissertation of Shandong University,1-73] [25] 宿凯,靳桂云,吴卫红. 2020. 凌家滩遗址外壕沟沉积物反映的土地利用变化: 土壤微形态研究案例. 南方文物, 32(3): 136-150. [Su K,Jin G Y,Wu W H. 2020. Land use change reflected by sediments from the outside ditch of the Lingjiatan Site: a case study on soil micromorphology. Cultural Relics in Southern China, 32(3): 136-150] [26] 孙华. 2017. 三星堆遗址的初步研究. 南方民族考古, 31(2): 131-170. [Sun H. 2017. Preliminary research on Sanxingdui site. Southern Ethnology and Archaeology, 31(2): 131-170] [27] 孙有斌,安芷生. 2000. 风尘堆积物中石英颗粒表面微结构特征及其沉积学指示. 沉积学报, 18(4): 506-509,652. [Sun Y B.,An Z S. 2000. Sedimentary interpretation of surface textures of quartz grains from the eolian deposits. Acta Sedimentologica Sinica, 18(4): 506-509,652] [28] 谢振斌,许丹阳,韩玉,乔钢,傅悦,王瑞,向虹,李茹兰,冉宏林,吴小红,刘克新,潘岩,蒙清平,丁杏芳,付东波,林怡嫺,宋殷,王玥,欧阳心怡,雷雨. 2021. 四川广汉三星堆遗址四号祭祀坑的碳十四年代研究. 四川文物, 38(2): 117-120. [Xie Z B,Xu D Y,Han. Y,Qiao G,Fu Y,Wang R,Xiang H,Li R L,Ran H L,Wu X H,Liu K X,Pan Y,Meng Q P,Ding X F,Fu D B,Lin Y X,Song Y,Wang Y,Ouyang X Y,Lei Y. 2021. Carbon 14 dating of the No.4 sacrificial pit at the Sanxingdui site in Guanghan,Sichuan. Sichuan Cultural Relics, 38(2): 117-120] [29] 许丹阳. 2021. 三星堆文化研究四十年. 中国文化研究, 19(2): 51-62. [Xu D Y. 2021. A review of the research on Sanxingdui Culture in the past forty years. Chinese Culture Research, 19(2): 51-62] [30] 徐佳佳. 2017. 成都平原中晚全新世典型遗址环境考古研究. 南京大学博士学位论文,1-161. [Xu J J. 2017. Mid- to Late Holocene environmental archaeology in Chengdu Plain,China. Doctoral dissertation of Nanjing University,1-161] [31] 战庆,王张华,王昕,李晓. 2009. 长江口区晚新生代沉积物粒度特征和沉积地貌环境演变. 沉积学报, 27(4): 674-683. [Zhan Q,Wang Z H,Wang X,Li X. 2009. Grain-size characteristics and geomorphology evolution in late Cenozoic era sediments,Changjiang estuary. Acta Sedimentologica Sinica, 27(4): 674-683] [32] 张海,庄奕杰,方燕明,王辉. 2016. 河南禹州瓦店遗址龙山文化壕沟的土壤微形态分析. 华夏考古, 30(4): 86-95,163-166. [Zhang H,Zhuang Y J,Fang Y M,Wang H. 2016. Soil micromorphological analysis of the Longshan Culture trench at Wadian site in Yuzhou,Huaxia. Huaxia Archaeology, 30(4): 86-95,163-166] [33] 张俊娜,夏正楷,王幼平,顾万发,汪松枝. 2018. 河南新密李家沟遗址古环境分析. 中原文物, 42(6): 69-81. [Zhang J N,Xia Z K,Wang Y P,Gu W F,Wang S Z. 2018. The paleo-environment of the lijiagou site at Xinmi,Henan. Cultural Relics of Central China,42(6): 69-81] [34] 张汝藩. 1996. 扫描电镜: 微观地质学研究的深入进展. 电子显微学报, 15(6): 545. [Zhang R F. 1996. Scanning Electron Microscopy: in-depth progress in microgeology research. Journal of Chinese Electron Microscopy Society, 15(6): 545] [35] 张跃辉,杨洋,鲜文凯. 2005. 三星堆遗址环境地质现状评估及问题防治. 四川文物, 22(1): 21-28. [Zhang Y H,Yang Y,Xian W K. 2005. Assessment to the geo-environmental status and problem prevention of Sanxingdui Ruins. Sichuan Cultural Relics, 22(1): 21-28] [36] 章伟艳,张霄宇,金海燕,冯旭文,姚旭莹,高为利,张富元,高爱根. 2013. 长江口—杭州湾及其邻近海域沉积动力环境及物源分析. 地理学报, 68(5): 640-650. [Zhang W Y,Zhang X Y,Jin H Y,Feng X W,Yao X Y,Gao W L,Zhang F Y,Gao A G. 2013. Dynamic sedimentary environment and the provenance characteristics in Yangtze River Estuary-Hangzhou Bay and its adjacent waters. Acta Geographica Sinica, 68(5): 640-650] [37] 赵亚峰. 2014. 澧阳平原新石器时代聚落壕沟功用分析. 湖南考古辑刊, 34: 170-181. [Zhao Y F. 2014. Research on the function of the moat of neolithic settlement in Liyang Plain. Hunan Archaeological Journal, 34: 170-181] [38] 周慧,吴立,朱诚,李枫,李林英,路曙光,孙小玲. 2020. 长江中游荆州—公安段洪水滞流沉积物特征分析. 地层学杂志, 44(1): 56-63. [Zhou H,Wu L,Zhu C,Li F,Li L Y,Lu S G,Sun X L. 2020. Feature of the great flood slackwater deposits in the Jingzhou-Gongan section of middle reaches of the Yangtze River. Journal of Stratigraphy, 44(1): 56-63] [39] 朱诚,徐佳佳,黄明,杨占风,张娜,江章华,白铁勇,陆福志. 2021. 成都平原马街遗址古洪水事件遗存考古发现与研究. 地学前缘, 28(2): 181-201. [Zhu C,Xu J J,Huang M,Yang Z F,Zhang N,Jiang Z H,Bai T Y,Lu F Z. 2021. Archaeological discoveries and research on the remains of an ancient flood event at the Majie Site in the Chengdu Plain. Earth Science Frontiers, 28(2): 181-201] [40] 朱筱敏. 2008. 沉积岩石学. 第4版. 北京: 石油工业出版社,64-79. [Zhu X M. 2008. Sedimentary Petrology. 4th ed. Beijing: Petroleum Industry Press,64-79] [41] Folk R L,Ward W C. 1957. Brazos River bar: a study in the significance of grain size parameters. Journal of Sedimentary Research, 27(1): 3-26. [42] Huang M,Zhu C,Ma C M,Yang Z F,Liu Y M,Jia T J. 2020. The Hongqiaocun Site: the earliest evidence of ancient flood sedimentation of the water conservancy facilities in the Chengdu Plain,China. CATENA, 185: 104296. [43] Jia T J,Ma C M,Zhu C,Guo T H,Xu J J,Guan H C,Zeng M X,Huang M,Zhang Q. 2017. Depositional evidence of palaeofloods during 4.0-3.6 ka BP at the Jinsha site,Chengdu plain,China. Quaternary International, 440: 78-89. [44] Pejrup M. 1988. The triangular diagram used for classification of estuarine sediments: a new approach. In: de Boer P L,van Gelder A,Nio S D(eds). Tide-Influenced Sedimentary Environments and Facies. Dordrecht: D. Reidel Publishing Company,289-300. [45] Vos K,Wagonerdenberghe N,Elsen J. 2014. Surface textural analysis of quartz grains by scanning electron microscopy(SEM): from sample preparation to environmental interpretation. Earth-Science Reviews, 128(1): 93-104.