Discussions on classification scheme for fine-grained sedimentary rocks based on sediments sources and genesis
CAO Yingchang1,2, LIANG Chao1,2, HAN Yu2, XI Kelai1,2, WANG Junran2, JI Shichao2, MEI Junfang2
1 State Key Laboratory of Deep Oil and Gas(China University of Petroleum(East China)),Shandong Qingdao 266580,China; 2 School of Geosciences,China University of Petroleum(East China),Shandong Qingdao 266580,China
Abstract The classification of fine-grained sedimentary rocks is crucial for the deep and systematical study of the fine-grained sedimentary rocks. The classification scheme not only has to reflect the sources,sedimentation types of rock components,it also should be widely applicable. There are various sources of fine-grained sedimentary rocks, including terrigenous clastic sources, endogenic chemical precipitation sources, biological sources and volcanic clastic sources. Among different basins,there are significant differences in the sediment source of fine-grained sedimentary rocks;furthermore,in the same basin,the same mineral can also has multiple sources. Currently,there is no systematic classification scheme for fine-grained sedimentary rocks,a special type of rocks. Based on the components, sediment sources and sedimentation types,we propose a comprehensive four-component three-terminal classification scheme for fine-grained sedimentary rocks. Firstly,the sediment source is considered as the first principle,and three end-members, i.e.,terrestrial clastic substances,endogenic chemical precipitants,and volcanic clastic substances,are used to classify them into four types(terrigenous clastic fine-grained sedimentary rocks,chemical fine-grained sedimentary rocks,pyroclastic fine-grained sedimentary rocks,and mixed fine-grained sedimentary rocks), and according to the content of organic matter, the fine-grained sedimentary rocks can be further divided into three categories: high organic matter, medium organic matter and low organic matter. Secondly, fine-grained sedimentary rocks are divided into 11 subtypes following the three-level naming principle, combined naming principle and compound naming principle. Thus, fine-grained sedimentary rocks could be named according to the relative content of the components.
Fund:National Natural Science Foundation of China(Nos. 42272119,42072164)and the Key Research and Development Program of Shandong Province(No.2020ZLYS08)
About author: CAO Yingchang,born in 1969,obtained his Ph.D. degree in geochemistry from Guangzhou Institute of Geochemistry,Chinese Academy of Sciences in 2003. Currently he is a professor at China University of Petroleum(East China),mainly engaged in the teaching and scientific research of sedimentology and oil and gas reservoir geology. E-mail: caoych@upc.edu.cn.
Cite this article:
CAO Yingchang,LIANG Chao,HAN Yu et al. Discussions on classification scheme for fine-grained sedimentary rocks based on sediments sources and genesis[J]. JOPC, 2023, 25(4): 729-741.
CAO Yingchang,LIANG Chao,HAN Yu et al. Discussions on classification scheme for fine-grained sedimentary rocks based on sediments sources and genesis[J]. JOPC, 2023, 25(4): 729-741.
[1] 陈世悦,张顺,王永诗,谭明友. 2016. 渤海湾盆地东营凹陷古近系细粒沉积岩岩相类型及储集层特征. 石油勘探与开发, 43(2): 198-208. [Chen S Y,Zhang S,Wang Y S,Tan M Y.2016. Lithofacies types and reservoirs of Paleogene fine-grained sedimentary rocks in Dongying sag,Bohai Bay Basin. Petroleum Exploration and Development, 43(2): 198-208] [2] 邓涛. 2020. 龙门山前陆盆地西南缘须家河组黑色页岩特征及有机质富集机理. 成都理工大学硕士论文: 1-95. [Deng T.2020. Black shales characteristics and organic matter enrichment mechanism of Xujiahe Formation in the southwestern LongmenShan Foreland Basin. Masteral dissertation of Chengdu University of Technology: 1-95] [3] 董春梅,马存飞,林承焰,孙雪,袁梦影. 2015. 一种泥页岩层系岩相划分方法. 中国石油大学学报(自然科学版), 39(3): 1-7. [Dong C M,Ma C F,Lin C Y,Sun X,Yuan M Y.2015. A method of classification of shale set. Journal of China University of Petroleum(Edition of Natural Science), 39(3): 1-7] [4] 胡文瑄,姚素平,陆现彩,吴海光,孙福宁,靳军. 2019. 典型陆相页岩油层系成岩过程中有机质演化对储集性的影响. 石油与天然气地质, 40(5): 947-956. [Hu W X,Yao S P,Lu X C,Wu H G,Sun F N,Jin J.2019. Effects of organic matter evolution on oil reservoir property during diagenesis of typical continental shale sequences. Oil & Gas Geology, 40(5): 947-956] [5] 贾承造,郑民,张永峰. 2014. 非常规油气地质学重要理论问题. 石油学报, 35(1): 1-10. [Jia C Z,Zheng M,Zhang Y F.2014. Four important theoretical issues of unconventional petroleum geology. Acta Petrolei Sinica, 35(1): 1-10] [6] 姜在兴,陈代钊. 2021. 沉积学(第三版). 北京: 中国石化出版社. [Jiang Z X,Chen D Z.2021. Sedimentology(third edition). Beijing: Sinopec Press] [7] 姜在兴,梁超,吴靖,张建国,张文昭,王永诗,刘惠民,陈祥. 2013. 含油气细粒沉积岩研究的几个问题. 石油学报, 34(6): 1031-1039. [Jiang Z X,Liang C,Wu J,Zhang J G,Zhang W Z,Wang Y S,Lu H M,Chen X.2013. Several issues in sedimentological studies on hydrocarbon-bearing fine-grained sedimentary rocks. Acta Petrolei Sinica, 34(6): 1031-1039] [8] 姜在兴,张建国,孔祥鑫,谢环羽,程浩,王力. 2023. 中国陆相页岩油气沉积储层研究进展及发展方向. 石油学报, 44(1): 45-71. [Jiang Z X,Zhang J G,Kong X X,Xie H Y,Cheng H,Wang L.2023. Research progress and development direction of continental shale oil and gas deposition and reservoirs in China. Acta Petrolei Sinica, 44(1): 45-71] [9] 金之钧,朱如凯,梁新平,沈云琦. 2021. 当前陆相页岩油勘探开发值得关注的几个问题. 石油勘探与开发, 48(6): 1276-1287. [Jin Z J,Zhu R K,Liang X P,Shen Y Q.2021. Several issues worthy of attention in current lacustrine shale oil exploration and development. Petroleum Exploration and Development, 48(6): 1276-1287] [10] 黎茂稳,马晓潇,金之钧,李志明,蒋启贵,吴世强,李政,徐祖新. 2022. 中国海、陆相页岩层系岩相组合多样性与非常规油气勘探意义. 石油与天然气地质, 43(1): 1-25. [Li M W,Ma X X,Jin Z J,Li Z M,Jiang Q G,Wu S Q,Li Z,Xu Z X.2022. Diversity in the lithofacies assemblages of marine and lacustrine shale strata and significance for unconventional petroleum exploration in China. Oil & Gas Geology, 43(1): 1-25] [11] 梁超,吴靖,姜在兴,操应长,刘淑君,逄淑伊. 2017. 有机质在页岩沉积成岩过程及储层形成中的作用. 中国石油大学学报(自然科学版), 41(6): 1-9. [Liang C,Wu J,Jiang Z X,Cao Y C,Liu S J,Pang S Y.2017. Significances of organic matters on shale deposition,diagenesis process and reservoir formation. Journal of China University of Petroleum(Edition of Natural Science), 41(6): 1-9] [12] 李圯,刘可禹,蒲秀刚,陈世悦,韩文中,张伟,汪虎,梁超,赵建华. 2020. 沧东凹陷孔二段混合细粒沉积岩相特征及形成环境. 地球科学, 45(10): 3779-3796. [Li Y,Liu K Y,Pu X G,Chen S Y,Han W Z,Zhang W,Wang H,Liang C,Zhao J H.2020. Lithofacies characteristics and formation environments of mixed fine grained sedimentary rocks in second member of Kongdian Formation in Cangdong Depression,Bohai Bay Basin. Earth Science, 45(10): 3779-3796] [13] 刘传联,洪太元,毕海红,赵泉鸿. 1998. 东营凹陷沙河街组介形虫化石保存特征研究及应用. 微体古生物学报,(2): 80-89. [Liu C L,Hong T Y,Bi H H,Zhao Q H.1998. Preservational characteristics of ostracods from the Shahejie Formation in the Dongying Depression. Acta Micropalaeontologica Sinica,(2): 80-89] [14] 柳波,石佳欣,付晓飞,吕延防,孙先达,巩磊,白云风. 2018. 陆相泥页岩层系岩相特征与页岩油富集条件: 以松辽盆地古龙凹陷白垩系青山口组一段富有机质泥页岩为例. 石油勘探与开发, 45(5): 828-838. [Liu B,Shi J X,Fu X F,Lu Y F,Sun X D,Gong L,Bai Y F.2018. Petrological characteristics and shale oil enrichment of lacustrine fine-grained sedimentary system: a case study of organic-rich shale in first member of Cretaceous Qingshankou Formation in Gulong Sag,Songliao Basin,NE China. Petroleum Exploration and Development, 45(5): 828-838] [15] 柳益群,周鼎武,焦鑫,南云,杨晚,李红,周小虎. 2013. 一类新型沉积岩: 地幔热液喷积岩: 以中国新疆三塘湖地区为例. 沉积学报, 31(5): 773-781. [Liu Y Q,Zhou D W,Jiao X,Nan Y,Yang W,Li H,Zhou X H.2013. A new type of sedimentary rocks: mantle-originated hydroclastites and hydrothermal exhalites,Santanghu Area,Xinjiang,NW China. Acta Sedimentologica Sinica, 31(5): 773-781] [16] 彭军,曾垚,杨一茗,于乐丹,许天宇. 2022. 细粒沉积岩岩石分类及命名方案探讨. 石油勘探与开发, 49(1): 106-115. [Peng J,Zeng Y,Yang Y M,Yu L D,Xu T Y.2022. Discussion on classification and naming scheme of fine-grained sedimentary rocks. Petroleum Exploration and Development, 49(1): 106-115] [17] 袁选俊,林森虎,刘群,姚泾利,王岚,郭浩,邓秀芹,成大伟. 2015. 湖盆细粒沉积特征与富有机质页岩分布模式: 以鄂尔多斯盆地延长组长7油层组为例. 石油勘探与开发, 42(1): 34-43. [Yuan X J,Lin S H,Liu Q,Yao J L,Wang L,Guo H,Deng X Q,Cheng D W.2015. Lacustrine fine-grained sedimentary features and organic-rich shale distribution pattern: a case study of Chang 7 Member of Triassic Yanchang Formation in Ordos Basin,NW China. Petroleum Exploration and Development, 42(1): 34-43] [18] 张少敏,操应长,朱如凯,葸克来,王健,朱宁,户瑞宁. 2018. 湖相细粒混合沉积岩岩石类型划分: 以准噶尔盆地吉木萨尔凹陷二叠系芦草沟组为例. 地学前缘, 25(4): 198-209. [Zhang S M,Cao Y C,Zhu R K,Xi K L,Wang Ji,Zhu N,Hu R N.2018. Lithofacies classification of fine-grained mixed sedimentary rocks in the Permian Lucaogou Formation,Jimsar sag,Junggar Basin. Earth Science Frontiers, 25(4): 198-209] [19] 张文昭. 2014. 泌阳凹陷古近系核桃园组三段页岩油储层特征及评价要素. 中国地质大学(北京)硕士论文: 1-102. [Zhang W Z.2014. Characteristics and evaluation factors of shale oil reservoir of the third member of Hetaoyuan Formation,Paleogene in Biyang Depression.Masteral dissertation of China University of Geosciences(Beijing): 1-102] [20] 赵贤正,蒲秀刚,鄢继华,金凤鸣,时战楠,柴公权,韩文中,刘岩,姜文亚,陈长伟,张伟,方正,解德录. 2023. 渤海湾盆地沧东凹陷孔二段细粒沉积旋回及其对有机质分布的影响. 石油勘探与开发, 50(3): 468-480. [Zhao X Z,Pu X G,Yan J H,Jin F M,Shi Z N,Chai G Q,Han W Z,Liu Y,Jiang W Y,Chen C W,Zhang W,Fang Z,Xie D L.2023. Cycles of fine-grained sedimentation and their influences on organic matter distribution in the second member of Paleogene Kongdian Formaion in Cangdong Sag,Bohai Bay Basin,East China. Petroleum Exploration and Development, 50(3): 468-480] [21] 周立宏,蒲秀刚,陈长伟,杨飞,夏君,官全胜,黄传炎. 2018. 陆相湖盆细粒岩油气的概念、特征及勘探意义: 以渤海湾盆地沧东凹陷孔二段为例. 地球科学, 43(10): 3625-3639. [Zhou L H,Pu X G,Chen C W,Yang F,Xia J,Guan Q S,Huang C Y.2018. Concept,Characteristics and Prospecting Significance of Fine-Grained Sedimentary Oil Gas in Terrestrial Lake Basin: a Case from the Second Member of Paleogene Kongdian Formation of Cangdong Sag,Bohai Bay Basin. Earth Science, 43(10): 3625-3639] [22] 朱如凯,李梦莹,杨静儒,张素荣,蔡毅,曹琰,康缘. 2022细粒沉积学研究进展与发展方向. 石油与天然气地质, 43(2): 251-264. [Zhu R K,Li M Y,Yang J R,Zhang S R,Cai Y,Cao Y,Kang Y.2022. Advances and trends of fine-grained sedimentology. Oil & Gas Geology, 43(2): 251-264] [23] 朱筱敏. 2008. 沉积岩石学(第四版). 北京: 石油工业出版社. [Zhu Xiaomin.2008. Sedimentary Petrology(Forth Edition). Beijing: Petroleum Industry Press] [24] 朱筱敏,董艳蕾,刘成林,叶蕾,张美洲. 2021. 中国含油气盆地沉积研究主要科学问题与发展分析. 地学前缘, 28(1): 1-11. [Zhu X M,Dong Y L,Liu C L,Ye L,Zhang M Z.2021. Major challenges and development in Chinese sedimentological research on petroliferous basins. Earth Science Frontiers, 28(1): 1-11] [25] Aplin A C,Macquaker J S H.2011. Mudstone diversity: origin and implications for source,seal,and reservoir properties in petroleum systems. AAPG Bulletin, 95(12): 2031-2059. [26] Arthur M A,Sageman B B.1994. Marine black shales: depositional mechanisms and environments of ancient deposits. Annual Review of Earth and Planetary Science, 22(1): 499-551. [27] Bouma A H,Stone C G.2000. Fine-grained turbidite systems. AAPG Memoir, 72: 342. [28] Camp W K,Egenhoff S,Schieber J,Slatt R M.2016. A compositional classification for grain assemblages in fine-grained sediments and sedimentary rocks: diacussion. Journal of Sedimentary Research, 86: 1-5. [29] Cao J,Xia L W,Wang T T,Zhi D M,Tang Y,Li W W.2020. An alkaline lake in the Late Paleozoic Ice Age(LPIA): a review and new insights into paleoenvironment and petroleum geology. Earth-Science Reviews, 202: 103091. [30] Du X B,Jia J X,Zhao K,Shi J C,Shu Y,Liu Z H,Duan D.2021. Was the volcanism during the Ordovician-Silurian transition in South China actually global in extent?evidence from the distribution of volcanic ash beds in black shales. Marine and Petroleum Geology, 123: 1-10. [31] Dupraz C,Reid R P,Braissant O,Decho A W,Norman R S,Visscher P T.2009. Processes of carbonate precipitation in modern microbial mats. Earth-Science Reviews, 96(3): 141-162. [32] Garrels R M,Mackenzie F T.1971. Evolution of Sedimentary Rocks. W. W. Norton and Company,New York:397. [33] Ingram R L.1953. Fissility of Mudrocks. Geological Society of America Bulletin, 64(8): 869-878. [34] Kong X X,Jiang Z X,Ju B S,Liang C,Cai Y,Wu S Q.2022. Fine-grained carbonate formation and organic matter enrichment in an Eocene saline rift lake(Qianjiang Depression): constraints from depositional environment and material source. Marine and Petroleum Geology, 138: 105534. [35] Konitzer S F,Davies S J,Stephenson M H,Leng M J.2014. Depositional controls on mudstone lithofacies in a basinal setting: implications for the delivery of sedimentary organic matter. Journal of Sedimentary Research, 84: 198-214. [36] Krumbein W C.1932. The mechanic analysis of fine-grained sediments. Journal of Sedimentary Petrology, 2(3): 140-149. [37] Lazar O R,Bohacs K M,Macquaker J H S,Schieber J,Demko T M.2015. Integrated approach for the nomenclature and description of the spectrum of fine-grained sedimentary rocks. Journal of Sedimentary Research, 85: 230-246. [38] Liang C,Jiang Z X,Cao Y C,Wu J,Wang Y S,Hao F.2018a. Sedimentary characteristics and origin of lacustrine organic-rich shales in the salinized Eocene Dongying Depression. GSA Bulletin, 130: 154-174. [39] Liang C,Cao Y C,Liu K Y,Jiang Z X,Wu J,Hao F.2018b. Diagenetic variation at the lamina scale in lacustrine organic-rich shales: implications for hydrocarbon migration and accumulation. Geochimica et Cosmochimica Acta, 229: 112-128. [40] Liu W,Liu Y,Zeng Z X,Yang B Z,Peng L H,Xu D L,Wei Y X,Li Y Q,Ellam R M,Xu S.2020. K-bentonites in Ordovician-Silurian transition from South China: implications for tectonic evolution in the northern margin of Gondwana. Journal of the Geological Society, 177(6): 1245-1260. [41] Loucks R G,Ruppel S C.2007. Mississippian Barnett Shale: lithofacies and depositional setting of a deep-water shale-gas succession in the Fort Worth Basin,Texas. AAPG Bulletin, 91: 579-601. [42] Macquaker J H S,Adams A E.2003. Maximizing information from fine-grained sedimentary rocks: an inclusive nomenclature for mudstones. Journal of Sedimentary Research, 73(5): 735-744. [43] Macquaker J H S,Bentley S J,Bohacs K M.2010. Wave-enhanced sediment-gravity flows and mud dispersal across continental shelves: reappraising sediment transport processes operating in ancient mudstone successions. Geology, 38(10): 947-950. [44] Mckee E D,Weir G W.1953. Terminology for stratification and cross-stratification in sedimentary rocks. Geological Society of America Bulletin, 64(4): 381-390. [45] Milliken K.2014. A compositional classification for grain assemblages in fine-grained sediments and sedimentary rocks. Journal of Sedimentary Research, 84: 1185-1199. [46] Mulder T,Syvitski J.1995. Turbidity currents generated at river mouths during exceptional discharges to the world oceans. The Journal of Geology, 103(3): 285-299. [47] Picard M D.1971. Classification of fine-grained sedimentary rocks. Journal of Sedimentary Petrology, 41(1): 179-195. [48] Potter P E,Maynard J B,Pryor W A.1980. Sedimentology of Shale. Springer. [49] Potter P E,Maynard J B,Depetris P J.2005. Mud and Mudstones. Springer, New York: 137-142. [50] Schieber J,Krinsley D,Riciputi L.2000,Diagenetic origin of quartz silt in mudstones and implications for silica cycling. Nature, 406: 981-985. [51] Schieber J,Southard J B.2009. Bedload Transport of Mud by Floccule Ripples-Direct Observation of Ripple Migration Processes and their Implications. Geology, 37: 483-486. [52] Shanmugam G.2003. Deep-marine tidal bottom currents and their reworked sands in modern and ancient submarinecanyons. Marine and Petroleum Geology, 20(5): 471-491. [53] Stow D A V,Huc A Y,Bertrand P D.2001. Depositional process of black shales in deep water. Marine and Petroleum Geology, 18(4): 491-498. [54] Tucker M E.2001. Sedimentary Petrology.Wiley-Blackwell: 92-93. [55] Wentworth C K A.1922. A scale of grade and class terms of clastic sediments. The Journal of Geology, 30: 377-392. [56] Zou C N,Zhu R K,Chen Z Q,Ogg J G,Wu S T,Dong D Z,Qiu Z,Wang Y M,Wang L,Lin S H,Cui J W,Su L,Yang Z.2019. Organic-matter-rich shales of China. Earth Science Reviews, 189: 51-78.