Impacts of volcanic activity on sedimentary palaeo-environment and organic matter enrichment
XIE Haoran1, LIANG Chao1,2, WU Jing3, JI Shichao1
1 School of Geosciences,China University of Petroleum(East China),Shandong Qingdao 266580,China; 2 State Key Laboratory of Deep Oil and Gas(China University of Petroleum(East China)),Shandong Qingdao 266580,China; 3 School of Earth Science and Engineering,Shandong University of Science and Technology,Shandong Qingdao 266590,China
Abstract Volcanic activity greatly affected the palaeoecological environment and biological evolution process. This study focuses on examining the volcanic activity records during the Ordovician/Silurian period in the Yangtze area. We incorporates the volcanic activity records from the Junggar Basin,Ordos Basin,and Santanghu Basin,as well as modern volcanic activities worldwide to elucidate the influence mechanism of volcanic activity on sedimentary palaeo-environment and organic matter enrichment. Tuff,sedimentary tuff,bentonite and tuffaceous sedimentary rocks formed in geological history are good proxy of volcanic activities. Through the analysis of the petrology,mineralogy and geochemical characteristics from macro-to micro-scale,this study established a comprehensive judgment method of multi-angle assessment of volcanic activity in the section core-microstructure-whole rock minerals-geochemistry. The nutrient elements released by volcanic activities lead to the proliferation of marine organisms and the increase of primary productivity,which is conducive to the accumulation of organic matter,while toxic substances impede the survival of organisms and reduce primary productivity. The relative amounts of nutrients and toxins released by volcanic activity may affect the primary productivity of the ocean. Low intensity volcanic activity can promote biological reproduction,while intense volcanic activity constantly increases the pressure of ecological environment restoration,ultimately resulting in irreversible damage. Volcanic activity intensifies water body hypoxia and enhances organic matter preservation efficiency. Sulphuric acid aerosols derived from volcanic gases increase planetary albedo and lower surface temperatures.
Fund:Co-funded by the National Natural Science Foundation of China(Nos.42172165,41902134),the Fundamental Research Funds for the Central Universities(No.22CX06001A)and the Taishan Scholars Program(No. TSQN201812030)
Corresponding Authors:
LIANG Chao,born in 1986,Ph.D.,professor,is engaged in sedimentology and reservoir geology research. E-mail: liangchao0318@163.com.
About author: XIE Haoran,born in 1998,doctoral candidate,is engaged in sedimentology research. E-mail: xiehaoran2016@163.com.
Cite this article:
XIE Haoran,LIANG Chao,WU Jing et al. Impacts of volcanic activity on sedimentary palaeo-environment and organic matter enrichment[J]. JOPC, 2023, 25(4): 768-787.
XIE Haoran,LIANG Chao,WU Jing et al. Impacts of volcanic activity on sedimentary palaeo-environment and organic matter enrichment[J]. JOPC, 2023, 25(4): 768-787.
[1] 陈旋,刘小琦,王雪纯,马强,刘俊田,龚鑫,杨小东,石江峰,白国娟. 2019. 三塘湖盆地芦草沟组页岩油储层形成机理及分布特征. 天然气地球科学, 30(8): 1180-1189. [Chen X,Liu X Q,Wang X C,Ma Q,Liu J T,Gong X,Yang X D,Shi J F,Bai G J.2019. Formation mechanism and distribution characteristics of Lucaogou shale oil reservoir in Sangtanghu Basin. Natural Gas Geoscience, 30(8): 1180-1189] [2] 樊婷婷,柳益群,李红,车飞翔,杨皓凯. 2021. 含方沸石凝灰质豆粒灰岩的成因及地质意义: 以准噶尔东部中二叠统平地泉组为例. 地质科学, 56(4): 1147-1164. [Fan T T,Liu Y Q,Li H,Che F X,Yang H K.2021. Origin and geological significance of analcime-bearing tuffaceous pisolitic limestone: example from Guadalupian Pingdiquan Formation,eastern Junggar Basin. Chinese Journal of Geology(Scientia Geologica Sinica), 56(4): 1147-1164] [3] 冯新斌,尹润生,俞奔,杜布云,陈玖斌. 2015. 汞同位素地球化学概述. 地学前缘, 22(5): 124-135. [Feng X B,Yin R S,Yu B,Du B Y,Chen J B.2015. A review of Hg isotope geochemistry. Earth Science Frontiers, 22(5): 124-135] [4] 高长林,秦德余,吉让寿,殷勇. 1989. 北大巴地区早古生代的缺氧环境和油源岩与水下火山活动之间关系的探讨. 石油实验地质, 11(2): 105-112. [Gao C L,Qin D Y,Ji R S,Yin Y.1989. Approach on the relation among anoxic environment,source rocks and subaqueous volcanic activity of lower Paleozoic in North Daba area. Experimental Petroleum Geology, 11(2): 105-112] [5] 葛祥英. 2020. 四川盆地东部奥陶—志留纪交替时期事件沉积与有机质富集. 中国地质大学(北京)博士论文: 1-142. [Ge X Y.2020. The events across the Ordovician-Silurian transition and the organic enrichment of black shales in the east of Sichuan Basin. Doctoral dissertation of China University of Geosciences(Beijing): 1-142] [6] 龚清. 2018. 中国华南地区奥陶纪—志留纪之交汞异常沉积对火山作用和灭绝事件关系的指示. 中国地质大学(武汉)博士论文:1-113. [Gong Q.2018. Mercury spikes suggest volcanic driverof the Ordovician-Silurian mass extinctionin South China. Doctoral dissertation of China University of Geosciences(Wuhan): 1-113] [7] 姜在兴,张建国,孔祥鑫,谢环羽,程浩,王力. 2023. 中国陆相页岩油气沉积储层研究进展及发展方向. 石油学报, 44(1): 45-71. [Jiang Z X,Zhang J G,Kong X X,Xie H Y,Cheng H,Wang L.2023. Research progress and development direction of continental shale oil and gas deposition and reservoirs in China. Acta Petrolei Sinica, 44(1): 45-71] [8] 焦鑫,柳益群,周鼎武,李红,孟子圆,赵敏茹,杨奕曜. 2021. 湖相烃源岩中的火山—热液深源物质与油气生成耦合关系研究进展. 古地理学报, 23(4): 789-809. [Jiao X,Liu Y Q,Zhou D W,Li H,Meng Z Y,Zhao M R,Yang Y Y.2021. Progress on coupling relationship between volcanic and hydrothermal-originated sediments and hydrocarbon generation in lacustrine source rocks. Journal of Palaeogeography(Chinese Edition), 23(4): 789-809] [9] 李登华,李建忠,黄金亮,汪少勇,王淑芳. 2014. 火山灰对页岩油气成藏的重要作用及其启示. 天然气工业, 34(5): 56-65. [Li D H,Li J Z,Huang J L,Wang S Y,Wang S F.2014. An important role of volcanic ash in the formation of shale plays and its inspiration. Natural Gas Industry, 34(5): 56-65] [10] 李鹏,刘全有,毕赫,孟庆强. 2021. 火山活动与海侵影响下的典型湖相页岩有机质保存差异分析. 地质学报, 95(3): 632-642. [Li P,Liu Q Y,Bi H,Meng Q Q.2021. Analysis of the difference in organic matter preservation in typical lacustrine shale under the influence of volcanism and transgression. Acta Geologica Sinica, 95(3): 632-642] [11] 李庆,卢浩,吴胜和,夏东领,李江山,齐奉强,付育璞,伍岳. 2022. 鄂尔多斯盆地南部三叠系长7~3亚段凝灰岩沉积成因及储层特征. 石油与天然气地质, 43(5): 1141-1154. [Li Q,Lu H,Wu S H,Xia D L,Li J S,Qi F Q,Fu Y P,Wu Y.2022. Sedimentary origins and reservoir characteristics of the Triassic Chang 7~3 tuffs in the southern Ordos Basin. Oil & Gas Geology, 43(5): 1141-1154] [12] 李树同,李士祥,刘江艳,杨鸣一,陈俊霖,张珊,崔德艺,李家程. 2021. 鄂尔多斯盆地长7段纯泥页岩型页岩油研究中的若干问题与思考. 天然气地球科学, 32(12): 1785-1796. [Li S T,Li S X,Liu J Y,Yang M Y,Chen J L,Zhang S,Cui D Y,Li J C.2021. Some problems and thoughts on the study of pure shale-type shale oil in the 7th Member of Yanchang Formation in Ordos Basin. Natural Gas Geoscience, 32(12): 1785-1796] [13] 刘全有,李鹏,金之钧,梁新平,朱东亚,吴小奇,赵建华. 2022a. 火山活动对海相和淡水湖相页岩形成的影响. 地球化学, 51(5): 556-569. [Liu Q Y,Li P,Jin Z J,Liang X P,Zhu D Y,Wu X Q,Zhao J H.2022a. Effect of volcanic activity on the formation of marine shale and freshwater lacustrine shale. Geochimica, 51(5): 556-569] [14] 刘全有,李鹏,金之钧,孙跃武,胡广,朱东亚,黄振凯,梁新平,张瑞,刘佳宜. 2022b. 湖相泥页岩层系富有机质形成与烃类富集: 以长7为例. 中国科学: 地球科学, 52(2): 270-290. [Liu Q Y,Li P,Jin Z J,Sun Y W,Hu G,Zhu D Y,Huang Z,Liang X P,Zhang R,Liu J Y.2022b. Organic-rich formation and hydrocarbon enrichment of lacustrine shale strata: A case study of Chang 7 Member. Science China-Earth Sciences, 52(2): 270-290] [15] 柳蓉,张坤,刘招君,闫旭,于佳琦. 2021. 中国油页岩富集与地质事件研究. 沉积学报, 39(1): 10-28. [Liu R,Zhang K,Liu Z J,Yan X,Yu J Q.2021. Oil shale mineralization and geological events in China. Acta Sedimentologica Sinica, 39(1): 10-28] [16] 柳益群,周鼎武,焦鑫,冯乔,周小虎. 2019. 深源物质参与湖相烃源岩生烃作用的初步研究: 以准噶尔盆地吉木萨尔凹陷二叠系黑色岩系为例. 古地理学报, 21(6): 983-998. [Liu Y Q,Zhou D W,Jiao X,Feng Q,Zhou X H.2019. A preliminary study on the relationship between deep-sourced materials and hydrocarbon generation in lacustrine source rocks: an example from the Permian black rock series in Jimusar sag,Junggar Basin. Journal of Palaeogeography(Chinese Edition), 21(6): 983-998] [17] 卢贤志,沈俊,郭伟,冯庆来. 2021. 中上扬子地区奥陶纪—志留纪之交火山作用对有机质富集的影响. 地球科学, 46(7): 2329-2340. [Lu X Z,Shen J,Guo W,Feng Q L.2021. Influence of mercury geochemistry and volcanism on the enrichment of organic matter near the Ordovician Silurian transition in the middle and Upper Yangtze. Earth Science, 46(7): 2329-2340] [18] 陆扬博,马义权,王雨轩,陆永潮. 2017. 上扬子地区五峰组—龙马溪组主要地质事件及岩相沉积响应. 地球科学, 42(7): 1169-1184. [Lu Y B,Ma Y Q,Wang Y X,Lu Y C.2017. The sedimentary response to the major geological events and lithofacies characteristics of Wufeng formation-longmaxi formation in the Upper Yangtze area. Earth Science, 42(7): 1169-1184] [19] 马剑,黄志龙,钟大康,梁世君,梁浩,薛东青,陈旋,范谭广. 2016. 三塘湖盆地马朗凹陷二叠系条湖组凝灰岩致密储集层形成与分布. 石油勘探与开发, 43(5): 714-722. [Ma J,Huang Z L,Zhong D K,Liang S J,Liang H,Xue D Q,Chen X,Fan T G.2016. Formation and distribution of tuffaceous tight reservoirs in the Permian Tiaohu Formation in the Malang sag,Santanghu Basin,NW China. Petroleum Exploration and Development, 43(5): 714-722] [20] 潘永帅,黄志龙,郭小波,李天军,范谭广,徐雄飞. 2022. 火山灰影响下的湖相富有机质页岩油成藏条件分析: 以三塘湖盆地条湖—马朗凹陷芦草沟组为例. 地质学报, 96(3): 1053-1068. [Pan Y S,Huang Z L,Guo X B,Li T J,Fan T G,Xu X F.2022. Analysis of accumulation conditions of lacustrine organic-rich shale oil affected by volcanic ash: a case study of the Lucaogou Formation in the Tiaohu-Malang sag,Santanghu basin. Acta Geologica Sinica, 96(3): 1053-1068] [21] 邱欣卫,刘池洋,李元昊,毛光周,王建强. 2009. 鄂尔多斯盆地延长组凝灰岩夹层展布特征及其地质意义. 沉积学报, 27(6): 1138-1146. [Qiu X W,Liu C Y,Li Y H,Mao G Z,Wang J Q.2009. Distribution characteristics and geological significances of tuff interlayers in Yanchang formation of Ordos Basin. Acta Sedimentologica Sinica, 27(6): 1138-1146] [22] 邱欣卫,刘池洋,毛光周,吴柏林. 2011. 鄂尔多斯盆地延长组火山灰沉积物岩石地球化学特征. 地球科学, 36(1): 139-150. [Qiu X W,Liu C Y,Mao G Z,Wu B L.2011. Petrological-geochemical characteristics of volcanic ash sediments in Yanchang formation in Ordos Basin. Earth Science, 36(1): 139-150] [23] 邱振,卢斌,陈振宏,张蓉,董大忠,王红岩,邱军利. 2019. 火山灰沉积与页岩有机质富集关系探讨: 以五峰组—龙马溪组含气页岩为例. 沉积学报, 37(6): 1296-1308. [Qiu Z,Lu B,Chen Z H,Zhang R,Dong D Z,Wang H Y,Qiu J L.2019. Discussion of the Relationship between Volcanic Ash Layers and Organic Enrichment of Black Shale: a case study of the Wufeng-Longmaxi gas shales in the Sichuan Basin. Acta Sedimentologica Sinica, 37(6): 1296-1308] [24] 邱振,邹才能. 2020. 非常规油气沉积学: 内涵与展望. 沉积学报, 38(1): 1-29. [Qiu Z,Zou C N.2020. Unconventional petroleum sedimentology: Connotation and prospect. Acta Sedimentologica Sinica, 38(1): 1-29] [25] 曲长胜,邱隆伟,杨勇强,余宽宏,汤丽莉,万敏. 2019. 准噶尔盆地吉木萨尔凹陷二叠系芦草沟组火山活动的环境响应. 地震地质, 41(3): 789-802. [Qu C S,Qiu L W,Yang Y Q,Yu K H,Tang L L,Wan M.2019. Environmental response of the Permian volcanism in lucaogou formation in jimsar sag,Junggar Basin,northwest China. Seismology and Geology, 41(3): 789-802] [26] 舒逸,陆永潮,刘占红,王超,毛华武. 2017. 海相页岩中斑脱岩发育特征及对页岩储层品质的影响: 以涪陵地区五峰组—龙马溪组一段为例. 石油学报, 38(12): 1371-1380. [Shu Y,Lu Y C,Liu Z H,Wang C,Mao H W.2017. Development characteristics of bentonite in marine shale and its effect on shale reservoir quality: a case study of Wufeng Formation to Member 1 of Longmaxi Formation,Fuling area. Acta Petrolei Sinica, 38(12): 1371-1380] [27] 王超,张柏桥,陆永潮,舒志国,陆亚秋,包汉勇,孟志勇,陈雷. 2018. 焦石坝地区五峰组—龙马溪组一段页岩岩相展布特征及发育主控因素. 石油学报, 39(6): 631-644. [Wang C,Zhang B Q,Lu Y C,Shu Z G,Lu Y Q,Bao H Y,Meng Z Y,Chen L.2018. Lithofacies distribution characteristics and main development controlling factors of shale in Wufeng Formation-Member 1 of Longmaxi Formation in Jiaoshiba area. Acta Petrolei Sinica, 39(6): 631-644] [28] 王剑,袁波,刘金,李勇,李二庭,马聪,张宝真. 2022. 准噶尔盆地吉木萨尔凹陷二叠系芦草沟组混积岩成因及其孔隙发育特征. 石油实验地质, 44(3): 413-424. [Wang J,Yuan B,Liu J,Li Y,Li E T,Ma C,Zhang B Z.2022. Genesis and pore development characteristics of Permian Lucaogou migmatites,Jimsar Sag,Junggar Basin. Petroleum Geology & Experiment, 44(3): 413-424] [29] 王建强,刘池洋,李行,吴桐桐,吴经理. 2017. 鄂尔多斯盆地南部延长组长7段凝灰岩形成时代、物质来源及其意义. 沉积学报, 35(4): 691-704. [Wang J Q,Liu C Y,Li H,Wu T T,Wu J L.2017. Geochronology,potential source and regional implications of tuff intervals in Chang-7 member of Yanchang formation,south of Ordos Basin. Acta Sedimentologica Sinica, 35(4): 691-704] [30] 王向东. 2019. 晚二叠世—早三叠世火山喷发强度、时限及其与生物灭绝和后期复苏的关系. 中国地质大学(武汉)博士论文,1-144. [Wang X D.2019. Volcanic eruption intensity and time limit during the Late Permian to Early Triassic and its linking with the mass extinction and subsequent recovery. Doctoral dissertation of China University of Geosciences(Wuhan),1-144] [31] 王玉满,王红岩,沈均均,拜文华,董大忠,邱振,李新景,王灿辉. 2020. 川北—鄂西地区下志留统龙马溪组上段厚层斑脱岩的新发现及地质意义. 石油学报, 41(11): 1309-1323. [Wang Y M,Wang H Y,Shen J J,Bai W H,Dong D Z,Qiu Z,Li X J,Wang C H.2020. A new discovery and geological significance of thick-layered bentonites in the Upper Member of Lower Silurian Longmaxi Formation in the Northern Sichuan-Western Hubei area. Acta Petrolei Sinica, 41(11): 1309-1323] [32] 吴蓝宇,陆永潮,蒋恕,刘晓峰,何贵松. 2018. 上扬子区奥陶系五峰组—志留系龙马溪组沉积期火山活动对页岩有机质富集程度的影响. 石油勘探与开发, 45(5): 806-816. [Wu L Y,Lu Y C,Jiang S,Liu X F,He G S.2018. Effects of volcanic activities in Ordovician Wufeng-Silurian Longmaxi period on organic-rich shale in the Upper Yangtze area,South China. Petroleum Exploration and Development, 45(5): 806-816] [33] 吴蓝宇. 2018. 上扬子地区晚奥陶世—早志留世富有机质页岩成因与地质事件关系研究. 中国地质大学(武汉)博士论文,1-104. [Wu L Y.2018. Relationship between the origin of organic-rich shale and geological events of the upper Ordovician-lower Silurian in the Upper Yangtze area. Doctoral dissertation of China University of Geosciences(Wuhan): 1-104] [34] 吴卫华,郑洪波,杨杰东,罗超. 2012. 硅酸盐风化与全球碳循环研究回顾及新进展. 高校地质学报, 18(2): 215-224. [Wu W H,Zheng H B,Yang J D,Luo C.2012. Review and advancements of studies on silicate weathering and the global carbon cycle. Geological Journal of China Universities, 18(2): 215-224] [35] 袁伟,柳广弟,罗文斌,李超正,徐黎明,牛小兵,艾嘉怡. 2016. 鄂尔多斯盆地长7段富有机质页岩中磷灰石类型及其成因. 天然气地球科学, 27(8): 1399-1408. [Yuan W,Liu G D,Luo W B,Li C Z,Xu L M,Niu X B,Ai J Y.2016. Species and formation mechanism of apatites in the 7th member of Yanchang Formation organic-rich shale of Ordos Basin,China. Natural Gas Geoscience, 27(8): 1399-1408] [36] 张斌,毛治国,张忠义,袁懿琳,陈小亮,石雨昕,刘广林,邵晓州. 2021. 鄂尔多斯盆地三叠系长7段黑色页岩形成环境及其对页岩油富集段的控制作用. 石油勘探与开发, 48(6): 1127-1136. [Zhang B,Mao Z G,Zhang Z Y,Yuan Y L,Chen X L,Shi Y,Liu G L,Shao X Z.2021. Black shale formation environment and its control on shale oil enrichment in Triassic Chang 7 Member,Ordos Basin,NW China. Petroleum Exploration and Development, 48(6): 1127-1136] [37] 张建国,姜在兴,刘鹏,孔祥鑫,葛云锦. 2022. 陆相超细粒页岩油储层沉积机制与地质评价. 石油学报, 43(2): 234-249. [Zhang J G,Jiang Z X,Liu P,Kong X X,Ge Y J.2022. Deposition mechanism and geological assessment of continental ultrafine-grained shale oil reservoirs. Acta Petrolei Sinica, 43(2): 234-249] [38] 张丽霞,柳益群,向辉,李红,周鼎武,焦鑫,李哲萱,南云. 2018. 凝灰岩型含油层系特征与成因分析: 以准噶尔盆地火烧山油田二叠系平地泉组为例. 沉积学报, 36(4): 768-776. [Zhang L X,Liu Y Q,Xiang H,Li H,Zhou D W,Jiao X,Li Z X,Nan Y.2018. Characteristics and Origin of Tuffaceous Tight Oil: based on a reference of tight oil in Permain Pingdiquan Formation in Huoshaoshan oil field,Junggar Basin. Acta Sedimentologica Sinica, 36(4): 768-776] [39] 张少敏,操应长,朱如凯,葸克来,王健,朱宁,户瑞宁. 2018. 湖相细粒混合沉积岩岩石类型划分: 以准噶尔盆地吉木萨尔凹陷二叠系芦草沟组为例. 地学前缘, 25(4): 198-209. [Zhang S M,Cao Y C,Zhu R K,Xi K L,Wang J,Zhu N,Hu R N.2018. Lithofacies classification of fine-grained mixed sedimentary rocks in the Permian Lucaogou Formation,Jimsar sag,Junggar Basin. Earth Science Frontiers, 25(4): 198-209] [40] 张少敏. 2019. 吉木萨尔凹陷二叠系芦草沟组致密油储层成岩作用与成储机制. 中国石油大学(华东)博士论文, 1-164. [Zhang S M.2019. Diagenesis and genetic mechanism of tight oil reservoir of the Permian lucaogou formation,jimusar sag,China. Doctoral dissertation of China University of Petroleum(East China): 1-164] [41] 张文正,杨华,彭平安,杨奕华,张辉,石小虎. 2009. 晚三叠世火山活动对鄂尔多斯盆地长7优质烃源岩发育的影响. 地球化学, 38(6): 573-582. [Zhang W Z,Yang H,Peng P A,Yang Y H,Zhang H,Shi X H.2009. The Influence of Late Triassic volcanism on the development of Chang 7 high grade hydrocarbon source rock in Ordos Basin. Geochimica, 38(6): 573-582] [42] Adam D.2022. Tonga volcano eruption created puzzling ripples in Earth's atmosphere. Nature, 601: 497. [43] Bond D P G,Grasby S E.2017. On the causes of mass extinctions. Palaeogeography,Palaeoclimatology, Palaeoecology, 478: 3-29. [44] Bottini C,Cohen A S,Erba E,Jenkyns H C,Coe A L.2012. Osmium-isotope evidence for volcanism,weathering,and ocean mixing during the early Aptian OAE 1a. Geology, 40: 583-586. [45] Chapman T,Milan L A,Metcalfe I,Blevin P L,Crowley J.2022. Pulses in silicic arc magmatism initiate end-Permian climate instability and extinction. Nature Geoscience, 15(5): 411-416. [46] Cohen A S,Coe A L,Harding S M,Schwark L.2004. Osmium isotope evidence for the regulation of atmospheric CO2 by continental weathering. Geology, 32(2): 157-160. [47] Cooper C L,Swindles G T,Savov I P,Schmidt A,Bacon K L.2018. Evaluating the relationship between climate change and volcanism. Earth-Science Reviews, 177: 238-247. [48] Dal C J,Song H J,Callegaro S,Chu D L,Sun Y D,Hilton J,Grasby S E,Joachimski M M,Wignall P B.2022. Environmental crises at the Permian-Triassic mass extinction. Nature Reviews Earth & Environment, 3(3): 197-214. [49] Ding X J,Qu J X,Imin A,Zha M,Su Y,Jiang Z F,Jiang H.2019. Organic matter origin and accumulation in tuffaceous shale of the lower Permian Lucaogou Formation,Jimsar Sag. Journal of Petroleum Science and Engineering, 179: 696-706. [50] Dong Z T,Wang Z T,Zhang W L,Zhao F,Du Y H,Zhu Y X,Fu X H,Wang C Y.2022. Dynamic sulfur and carbon cycles related to microbial sulfate reduction and volcanic activity during the Hirnantian glaciation in the Upper Yangtze Basin,South China. Frontiers in Earth Science, 10: 1-17. [51] Du X B,Jia J X,Zhao K,Shi J C,Shu Y,Liu Z H,Duan D.2021. Was the volcanism during the Ordovician-Silurian transition in South China actually global in extent?evidence from the distribution of volcanic ash beds in black shales. Marine and Petroleum Geology, 123: 1-10. [52] Duggen S,Croot P,Schacht U,Hoffmann L.2007. Subduction zone volcanic ash can fertilize the surface ocean and stimulate phytoplankton growth: evidence from biogeochemical experiments and satellite data. Geophysical Research Letters, 34(1): L01612. [53] Duggen S,Olgun N,Croot P,Hoffmann L,Dietze H,Delmelle P,Teschner C.2010. The role of airborne volcanic ash for the surface ocean biogeochemical ironc-ycle: a review. Biogeosciences, 7(3): 827-844. [54] Edmonds M,Mather T A,Liu E J.2018. A distinct metal fingerprint in arc volcanic emissions. Nature Geoscience, 11: 790-794. [55] Elrick M,Polyak V,Algeo T J,Romaniello S,Asmerom Y,Herrmann A D,Anbar A D,Zhao L S,Chen Z Q.2017. Global-ocean redox variation during the middle-late Permian through Early Triassic based on uranium isotope and Th/U trends of marine carbonates. Geology, 45(2): 163-166. [56] Falkowski P G.1997. Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean. Nature, 387: 272-275. [57] Finnegan S,Bergmann K,Eiler J M,Jones D S,Fike D A,Eisenman I,Hughes N C,Tripati A K,Fischer W W.2011. The magnitude and duration of late Ordovician-early Silurian glaciation. Science, 331: 903-906. [58] Ge X Y,Mou C L,Wang C S,Men X,Chen C,Hou Q A.2018. Mineralogical and geochemical characteristics of K-bentonites from the Late Ordovician to the Early Silurian in South China and their geological significance. Geological Journal, 54(1): 514-528. [59] Genin A,Lazar B,Brenner S.1995. Vertical mixing and coral death in the Red Sea following the eruption of Mount Pinatubo. Nature,377: 507-510. [60] Gong Q,Wang X D,Zhao L S,Grasby S E,Chen Z Q,Zhang L,Li Y,Cao L,Li Z H.2017. Mercury spikes suggest volcanic driver of the Ordovician-Silurian mass extinction. Scientific Reports, 7: 1-7. [61] Haeckel M,van Beusekom J,Wiesner M G,König I.2001. The impact of the 1991 Mount Pinatubo tephra fallout on the geochemical environment of the deep-sea sediments in the South China Sea. Earth and Planetary Science Letters, 193: 151-166. [62] Hammarlund E U,Dahl T W,Harper D A T,Bond D P G,Nielsen A T,Bjerrum C J,Schovsbo N H,Schönlaub H P,Zalasiewicz J A,Canfield D E.2012. A sulfidic driver for the end-Ordovician mass extinction. Earth and Planetary Science Letters, 331-332: 128-139. [63] Hembury D J,Palmer M R,Fones G R,Mills R A,Marsh R,Jones M T.2012. Uptake of dissolved oxygen during marine diagenesis of fresh volcanic material. Geochimica et Cosmochimica Acta, 84: 353-368. [64] Hu D P,Li M H,Zhang X L,Turchyn A V,Gong Y Z,Shen Y N.2020. Large mass-independent sulphur isotope anomalies link stratospheric volcanism to the Late Ordovician mass extinction. Nature Communications, 11: 1-8. [65] Huff W D.2016. K-bentonites: a review. American Mineralogist, 101: 43-70. [66] Jellinek A M,Manga M,Saar M O.2004. Did melting glaciers cause volcanic eruptions in eastern California?probing the mechanics of dike formation. Journal of Geophysical Research: Solid Earth,109(B9): 1-10. [67] Jia J X,Du X B,Zhao K,Lu Y C,Tan C.2022. Sources of K-bentonites across the Ordovician-Silurian transition in South China: implications for tectonic activities on the northern and southern margins of the South China Block. Marine and Petroleum Geology, 139: 1-15. [68] Jones D S,Martini A M,Fike D A,Kaiho K.2017. A volcanic trigger for the Late Ordovician mass extinction?mercury data from South China and Laurentia. Geology, 45(7): 631-634. [69] Kiipli T,Einasto R,Kallaste T,Nestor V,Perens H,Siir S.2011. Geochemistry and correlation of volcanic ash beds from the Rootsiküla Stage(Wenlock-Ludlow)in the eastern Baltic. Estonian Journal of Earth Sciences, 60(4): 207-219. [70] Kiipli T,Kallaste T,Kiipli E,Radzevičius S.2013. Correlation of Silurian bentonites based on the immobile elements in the East Baltic and Scandinavia. GFF, 135(2): 152-161. [71] Kuhnt W,Hess S,Holbourn A,Paulsen H,Salomon B.2005. The impact of the 1991 Mt. Pinatubo eruption on deep-sea foraminiferal communities: a model for the Cretaceous-Tertiary(K/T)boundary?Palaeogeography,Palaeoclimatology,Palaeoecology, 224: 83-107. [72] Lamb H H.1970. Volcanic dust in the atmosphere:with a chronology and assessment of its meteorological significance. Philosophical Transactions of the Royal Society of London Series A,Mathematical and Physical Sciences, 266: 425-533. [73] Langmann B,Zakšek K,Hort M,Duggen S.2010. Volcanic ash as fertiliser for the surface ocean. Atmospheric Chemistry and Physics, 10(8): 3891-3899. [74] Li L,Liu Z J,Sun P C,Li Y J,George S C.2020. Sedimentary Basin evolution,gravity flows,volcanism,and their impacts on the formation of the Lower Cretaceous oil shales in the Chaoyang Basin,northeastern China. Marine and Petroleum Geology, 119: 1-21. [75] Li N,Li C,Algeo T J,Cheng M,Jin C S,Zhu G Y,Fan J X,Sun Z Y.2021. Redox changes in the outer Yangtze Sea(South China)through the Hirnantian Glaciation and their implications for the end-Ordovician biocrisis. Earth-Science Reviews, 212: 1-14. [76] Liu M,Chen D Z,Jiang L,Stockey R G,Aseal D,Zhang B,Liu K,Yang X R,Yan D T,Planavsky N J.2022. Oceanic anoxia and extinction in the latest Ordovician. Earth and Planetary Science Letters, 588: 1-12. [77] Liu W,Liu Y A,Zeng Z X,Yang B Z,Peng L H,Xu D L,Wei Y X,Li Y Q,Ellam R M,Xu S.2020. K-bentonites in Ordovician-Silurian transition from South China: implications for tectonic evolution in the northern margin of Gondwana. Journal of the Geological Society, 177(6): 1245-1260. [78] Liu Y,Li Y C,Hou M C,Shen J,Algeo T J,Fan J X,Zhou X L,Chen Q,Sun Z Y,Li C.2023. Terrestrial rather than volcanic mercury inputs to the Yangtze Platform(South China)during the Ordovician-Silurian transition. Global and Planetary Change, 220: 1-11. [79] Longman J,Palmer M R,Gernon T M,Manners H R.2019. The role of tephra in enhancing organic carbon preservation in marine sediments. Earth-Science Reviews, 192: 480-490. [80] Longman J,Mills B J W,Manners H R,Gernon T M,Palmer M R.2021. Late Ordovician climate change and extinctions driven by elevated volcanic nutrient supply. Nature Geoscience, 14: 924-929. [81] Lu Y B,Hao F,Shen J,Lu Y C,Song H Y,Wang Y X,Gou Q Y.2022a. High-resolution volcanism-induced oceanic environmental change and its impact on organic matter accumulation in the Late Ordovician Upper Yangtze Sea. Marine and Petroleum Geology, 136: 1-15. [82] Lu Y B,Shen J,Wang Y X,Lu Y C,Algeo T J,Jiang S,Yan D T,Gou Q Y.2022b. Seawater sources of Hg enrichment in Ordovician-Silurian boundary strata,South China. Palaeogeography Palaeoclimatology Palaeoecology, 601: 1-16. [83] McKnight D M,Feder G L,Stiles E A.1981. Toxicity of volcanic-ash leachate to a blue-green Alga. Results of A preliminary bioassay experiment. Environmental Science & Technology, 15(3): 362-364. [84] Men X,Mou C L,Ge X Y.2022. Changes in palaeoclimate and palaeoenvironment in the Upper Yangtze area(South China)during the Ordovician-Silurian transition. Scientific Reports, 12(1): 1-26. [85] Olgun N,Duggen S,Andronico D,Kutterolf S,Croot P L,Giammanco S,Censi P,Randazzo L.2013. Possible impacts of volcanic ash emissions of Mount Etna on the primary productivity in the oligotrophic Mediterranean Sea: results from nutrient-release experiments in seawater. Marine Chemistry, 152(2): 32-42. [86] Oman L,Robock A,Stenchikov G,Schmidt G A,Ruedy R.2005. Climatic response to high-latitude volcanic eruptions. Journal of Geophysical Research-Atmospheres, 110(110): 1-13. [87] Percival L M E,Witt M L I,Mather T A,Hermoso M,Jenkyns H C,Hesselbo S P,Al-Suwaidi A H,Storm M S,Xu W,Ruhl M.2015. Globally enhanced mercury deposition during the end-Pliensbachian extinction and Toarcian OAE: a link to the Karoo-Ferrar Large Igneous Province. Earth and Planetary Science Letters, 428: 267-280. [88] Qiu Z,Wei H Y,Tian L,Corso J D,Zhang J Q,Zou C N.2022. Different controls on the Hg spikes linked the two pulses of the Late Ordovician mass extinction in South China. Scientific Reports, 12(1): 1-12. [89] Ratcliffe J L,Lowe D J,Schipper L A,Gehrels M J,French A D,Campbell D I.2020. Rapid carbon accumulation in a peatland following Late Holocene tephra deposition,New Zealand. Quaternary Science Reviews, 246: 1-14. [90] Reitz A,Thomson J,de Lange G J,Green D R H,Slomp C P,Gebhardt A C.2006. Effects of the Santorini(Thera)eruption on manganese behavior in Holocene sediments of the eastern Mediterranean. Earth and Planetary Science Letters, 241: 188-201. [91] Robock A,Mass C.1982. The mount St. Helens volcanic eruption of 18 may 1980: Large short-term surface temperature effects. Science, 216: 628-630. [92] Robock A,Matson M.1983. Circumglobal transport of the el chichón volcanic dust cloud. Science, 221: 195-197. [93] Robock A.2000. Volcanic eruptions and climate. Reviews of Geophysics, 38(2): 191-219. [94] Schmidt P,Lund B,Hieronymus C,MacLennan J,Árnadóttir T,Pagli C.2013. Effects of present-day deglaciation in Iceland on mantle melt production rates. Journal of Geophysical Research: Solid Earth, 118(7): 3366-3379. [95] Self S,Schmidt A,Mather T A.2014. Emplacement characteristics,time scales,and volcanic gas release rates of continental flood basalt eruptions on Earth. Geological Society of America Special Paper, 505: 319-337. [96] Shen J,Algeo T J,Hu Q,Zhang N,Zhou L A,Xia W C,Xie S C,Feng Q L.2012. Negative C-isotope excursions at the Permian-Triassic boundary linked to volcanism. Geology, 40(11): 963-966. [97] Shen J,Algeo T J,Chen J B,Planavsky N J,Feng Q L,Yu J X,Liu J L.2019a. Mercury in marine Ordovician/Silurian boundary sections of South China is sulfide-hosted and non-volcanic in origin. Earth and Planetary Science Letters, 511: 130-140. [98] Shen J,Algeo T J,Planavsky N J,Yu J X,Feng Q L,Song H J,Song H Y,Rowe H,Zhou L A,Chen J B.2019b. Mercury enrichments provide evidence of Early Triassic volcanism following the end-Permian mass extinction. Earth-Science Reviews, 195: 191-212. [99] Shen J,Chen J B,Yu J X,Algeo T J,Smith R M H,Botha J,Frank T D,Fielding C R,Ward P D,Mather T A.2023. Mercury evidence from southern Pangea terrestrial sections for end-Permian global volcanic effects. Nature Communications, 14(1): 1-9. [100] Shi J,Zou Y R,Cai Y L,Zhan Z W,Sun J N,Liang T,Peng P A.2022. Organic matter enrichment of the Chang 7 member in the Ordos Basin: insights from chemometrics and element geochemistry. Marine and Petroleum Geology, 135: 1-12. [101] Solomon S.1999. Stratospheric ozone depletion: a review of concepts and history. Reviews of Geophysics, 37(3): 275-316. [102] Su W B,He L Q,Wang Y B,Gong S Y,Zhou H Y.2003. K-bentonite beds and high-resolution integrated stratigraphy of the uppermost Ordovician Wufeng and the lowest Silurian Longmaxi formations in South China. Science in China Series D: Earth Sciences, 46(11): 1121-1133. [103] Tang L,Song Y,Jiang S,Jiang Z X,Li Z,Yang Y D,Li X H,Xiao L.2020. Organic matter accumulation of the Wufeng-Longmaxi shales in southern Sichuan Basin: evidence and insight from volcanism. Marine and Petroleum Geology, 120: 1-20. [104] Walton C R,Hao J H,Huang F,Jenner F E,Williams H,Zerkle A L,Lipp A,Hazen R M,Peters S E,Shorttle O.2023. Evolution of the crustal phosphorus reservoir. Science Advances, 9(18): 1-11. [105] White A F,Yee A.1985. Aqueous oxidation-reduction kinetics associated with coupled electron-cation transfer from iron-containing silicates at 25℃. Geochimica et Cosmochimica Acta, 49(5): 1263-1275. [106] Wignall P B.2001. Large igneous provinces and mass extinctions. Earth-Science Reviews, 53(1): 1-33. [107] Wu L Y,Lu Y C,Jiang S,Liu X F,Liu Z H,Lu Y B.2019. Relationship between the origin of organic-rich shale and geological events of the Upper Ordovician-Lower Silurian in the Upper Yangtze. Marine and Petroleum Geology, 102: 74-85. [108] Xiao B,Xiong L,Zhao Z Y,Fu X,Zhao Z H,Hou H H,Liu S G.2023. Late Ordovician-Early Silurian extension of the northern margin of the Upper Yangtze Platform(South China)and its impact on organic matter accumulation. Journal of Petroleum Science and Engineering, 220: 1-29. [109] Yang S C,Hu W X,Wang X L,Jiang B Y,Yao S P,Sun F N,Huang Z C,Zhu F.2019. Duration,evolution,and implications of volcanic activity across the Ordovician-Silurian transition in the Lower Yangtze region,South China. Earth and Planetary Science Letters, 518: 13-25. [110] Yang S C,Hu W X,Fan J X,Deng Y Y.2022. New geochemical identification fingerprints of volcanism during the Ordovician-Silurian transition and its implications for biological and environmental evolution. Earth-Science Reviews, 228: 1-18. [111] Zhang H,Wang F,Li J,Duan Y H,Zhu C W,He J Y.2022. Potential impact of Tonga volcano eruption on global mean surface air temperature. Journal of Meteorological Research, 36(1): 1-5. [112] Zhang K,Liu R,Liu Z J,Li B L,Han J B,Zhao K G.2020. Influence of volcanic and hydrothermal activity on organic matter enrichment in the Upper Triassic Yanchang Formation,southern Ordos Basin,Central China. Marine and Petroleum Geology, 112: 1-15. [113] Zhang S H,Liu C Y,Liang H,Jia L B,Bai J K,Zhang L,Wang J Q.2021a. Mineralogical composition and organic matter characteristics of lacustrine fine-grained volcanic-hydrothermal sedimentary rocks: A data-driven analytics for the second member of Permian Lucaogou Formation,Santanghu Basin,NW China. Marine and Petroleum Geology, 126: 1-15. [114] Zhang W Z,Yang W W,Xie L Q.2017. Controls on organic matter accumulation in the Triassic Chang 7 lacustrine shale of the Ordos Basin,central China. International Journal of Coal Geology, 183: 38-51. [115] Zhang X,Zhang T S,Zhao X M,Zhu H H,Mihai E P,Chen L,Yong J J,Xiao Q,Li H J.2021b. Effects of astronomical orbital cycle and volcanic activity on organic carbon accumulation during Late Ordovician-Early Silurian in the Upper Yangtze area,South China. Petroleum Exploration and Development, 48(4): 850-863. [116] Zheng R H,Zeng W R,Li Z P,Chen X,Man K X,Zhang Z H,Wang G L,Shi S B.2022. Differential enrichment mechanisms of organic matter in the Chang 7 Member mudstone and shale in Ordos Basin,China: constraints from organic geochemistry and element geochemistry. Palaeogeography, Palaeoclimatology, Palaeoecology, 601: 1-20. [117] Zou C N,Qiu Z,Poulton S W,Dong D Z,Wang H Y,Chen D Z,Lu B,Shi Z S,Tao H F.2018. Ocean euxinia and climate change “double whammy”drove the Late Ordovician mass extinction. Geology, 46(6): 535-538. [118] Zou C N,Zhu R K,Chen Z Q,Ogg J G,Wu S T,Dong D Z,Qiu Z,Wang Y M,Wang L,Lin S H,Cui J W,Su L,Yang Z.2019. Organic-matter-rich shales of China. Earth-Science Reviews, 189: 51-78.