Rapid transgressive shale characteristics and organic matter distribution of the Upper Ordovician-Lower Silurian Wufeng-Longmaxi Formations in southern Sichuan Basin,China
SHI Zhensheng1,2, WANG Hongyan1,2, ZHAO Shengxian3, ZHOU Tianqi1,2, ZHAO Qun1,2, QI Ling1,2
1 PetroChina Research Institute of Petroleum Exploration and Development,Beijing 100083,China; 2 National Energy Shale Gas R & D(Experiment)Center,Hebei Langfang 065007,China; 3 PetroChina Southwest Oil & Gas Field Company,Shale Gas Research Institute,Chengdu 610051,China
Abstract The characteristics and formation of the MF(maximum flooding)black shale are one of the focuses of fine-grained reservoir geology research. Seismic interpretation,well correlation,X-ray diffraction whole rock analysis,total organic carbon(TOC)test and field emission scanning electron microscope analysis show that the MF black shale of the Longmaxi Formation in the southern Sichuan Basin is in the basal part of the Longmaxi Formation,corresponding to the graptolite belt LM1. The shale has an average content of 49.3% quartz(85% clay-sized),10.5% calcite,8.4% dolomite and 23.4% clay minerals. The quartz content increases while the clay mineral content decreases basinward. The MF black shale formed during the stage of rapid relative sea level rise,with a thickness of 0.5-2.8 m and gradually thickening basinward. The average TOC content is 5.4%,which exhibits a gradual decrease towards the basin and forms four distinct stacking patterns in the vertical TOC content profile. The mineral composition and thickness distribution of the shale are closely related to the rapid transgression,biology and volcanism during the sedimentary period. The rapid transgression has led to a decrease in terrestrial sediment input,resulting in a reduction in shale thickness. Additionally,biological activity and volcanic influences have resulted in a prevalence of microcrystalline quartz and an increase in shale thickness towards the basin. The high TOC content of this shale is related to anoxic water,low sedimentation rate,and high primary productivity. Anoxic water body enhances preservation of organic matter. Low sedimentation rates can weaken the dilution of organic matter,while high primary productivity can increase the supply of organic matter. The planar variation and stacking style of TOC content in this set of shale are related to water depth. With increasing water depth,there is an amplified degradation and recycling of organic matter during sedimentation,leading to a decline in TOC content. Simultaneously,as the water depth rises,the sediment accommodation space also increases,resulting in distinct stacking patterns of TOC content.
Fund:14th Five-Year Plan of the Ministry of Science and Technology of PetroChina(No.2021DJ1901)
About author: SHI Zhensheng,born in 1976,senior engineer,doctoral supervisor,is engaged in fine-grained sedimentary geology and reservoir geology. E-mail: shizs69@petrochina.com.cn.第一作者简介 施振生,男,<italic>1976</italic>年生,高级工程师,博士生导师,主要从事细粒沉积学与储层地质学研究。<italic>E-mail</italic>: shizs69@petrochina.com.cn。
Cite this article:
SHI Zhensheng,WANG Hongyan,ZHAO Shengxian et al. Rapid transgressive shale characteristics and organic matter distribution of the Upper Ordovician-Lower Silurian Wufeng-Longmaxi Formations in southern Sichuan Basin,China[J]. JOPC, 2023, 25(4): 788-805.
SHI Zhensheng,WANG Hongyan,ZHAO Shengxian et al. Rapid transgressive shale characteristics and organic matter distribution of the Upper Ordovician-Lower Silurian Wufeng-Longmaxi Formations in southern Sichuan Basin,China[J]. JOPC, 2023, 25(4): 788-805.
[1] 陈旭,樊隽轩,张元动,王红岩,陈清,王文卉,梁峰,郭伟,赵群,聂海宽,文治东,孙宗元. 2015. 五峰组及龙马溪组黑色页岩在扬子覆盖区内的划分与圈定. 地层学杂志, 39(4): 351-358. [Chen X,Fan J X,Zhang Y D,Wang H Y,Chen Q,Wang W H,Liang F,Guo W,Zhao Q,Nie H K,Wen Z D,Sun Z Y.2015. Subdivision and delineation of the Wufeng and Lungmachi black shales in the subsurface areas of the Yangtze Platform. Journal of Stratigraphy, 39(4): 351-358] [2] 董大忠,施振生,孙莎莎,郭长敏,张晨晨,郭雯,管全中,张梦琪,蒋珊,张磊夫,马超,武瑾,李宁,昌燕. 2018. 黑色页岩微裂缝发育控制因素:以长宁双河剖面五峰组—龙马溪组为例. 石油勘探与开发,45(5),763-774. [Dong D Z,Shi Z S,Sun S S,Guo C M,Zhang C C,Guo W,Guan Q Z,Zhang M Q,Jiang S,Zhang L F,Ma C, Wu J, Li N, Chang Y.2018. Factors controlling microfractures in black shale: a case study of Ordovician Wufeng Formation-Silurian Longmaxi Formation in Shuanghe Profile,Changning area,Sichuan Basin,SW China. Petroleum Exploration and Development, 45(5): 818-829] [3] 卢龙飞,秦建中,申宝剑,腾格尔,刘伟新,张庆珍. 2018. 中上扬子地区五峰组—龙马溪组硅质页岩的生物成因证据及其与页岩气富集的关系. 地学前缘, 25(4): 226-236. [Lu L F,Qin J Z,Shen B J,Tenger,Liu W X,Zhang Q Z.2018. The origin of biogenic silica in siliceous shale from Wufeng-Longmaxi Formation in the Middle and Upper Yangtze region and its relationship with shale gas enrichment. Earth Science Frontiers, 25(4): 226-236] [4] 施振生,邱振,董大忠,卢斌,梁萍萍,张梦琪. 2018. 四川盆地巫溪2井龙马溪组含气页岩细粒沉积纹层特征石油勘探与开发, 45(2): 339-348. [Shi Z S,Qiu Z,Dong D Z,Lu B,Liang P P,Zhang M Q.2018. Laminae characteristics of gas-bearing shale fine-grained sediment of the Silurian Longmaxi Formation of Well Wuxi 2 in Sichuan Basin,SW China. Petroleum Exploration and Development, 45(2): 339-348] [5] 施振生,董大忠,王红岩,孙莎莎,武瑾. 2020含气页岩不同纹层及组合储集层特征差异性及其成因: 以四川盆地下志留统龙马溪组一段典型井为例. 石油勘探与开发, 47(4): 829-840. [Shi Z S,Dong D Z,Wang H Y,Sun S S,Wu J.2020. Reservoir characteristics and genetic mechanisms of gas-bearing shales with different laminae and laminae combinations: a case study of Member 1 of the Lower Silurian Longmaxi shale in Sichuan,Basin,SW China. Petroleum Exploration and Development, 47(4): 829-840] [6] 施振生,赵圣贤,赵群,孙莎莎,周天琪,程峰,施少军,武瑾. 2022. 川南地区下古生界五峰组—龙马溪组含气页岩岩心裂缝特征及其页岩气意义. 石油与天然气地质, 43(5): 1087-1101. [Shi Z S,Zhao S X,Zhao Q,Sun S S,Zhou T Q,Cheng F,Shi S J,Wu J.2022. Fractures in cores from the Lower Paleozoic Wufeng-Longmaxi shale in southern Sichuan Basin and their implications for shale gas exploration. Oil & Gas Geology, 43(5): 1087-1101] [7] 赵建华,金之钧,金振奎,温馨,耿一凯,颜彩娜. 2016. 四川盆地五峰组—龙马溪组含气页岩中石英成因研究. 天然气地球科学, 27(2): 377-386. [Zhao J H,Jin Z J,Jin Z K,Wen X,Geng Y K,Yan C N.2016. The genesis of quartz in Wufeng-Longmaxi gas shales,Sichuan Basin. Natural Gas Geoscience, 27(2): 377-386] [8] Arthur M A,Sageman B B.1994. Marine black shales: depositional mechanisms and environments of ancient deposits. Annual Review of Earth and Planetary Sciences, 22(1): 499-551. [9] Betzer P R,Byrne R H,Acker J G,Lewis C S,Jolley R R,Feely R A.1984. The oceanic carbonate system: a reassessment of biogenic controls. Science, 226(4678): 1074-1077. [10] Blumenberg M,Wiese F.2012. Imbalanced nutrients as triggers for black shale formation in a shallow shelf setting during the OAE 2(Wunstorf,Germany). Biogeosciences, 9(10): 4139-4153. [11] Bond D P,Grasby S E.2020. Late Ordovician mass extinction caused by volcanism,warming,and anoxia,not cooling and glaciation. Geology, 48(8): 777-781. [12] Brett C E.1983. Sedimentology,facies and depositional environments of the Rochester Shale(Silurian,Wenlockian)in western New York and Ontario. Journal of Sedimentary Research, 53(3): 947-971. [13] Calvert S E.1987. Oceanographic controls on the accumulation of organic matter in marine sediments. Geological Society,London,Special Publications, 26(1): 137-151. [14] Chen L,Jiang S,Chen P,Chen X,Zhang B,Zhang G,Lin W,Lu Y.2021. Relative sea-level changes and organic matter enrichment in the Upper Ordovician-Lower Silurian Wufeng-Longmaxi Formations in the Central Yangtze area,China. Marine and Petroleum Geology, 124: 104809. [15] Chen X,Rong J Y,Li Y,Boucot A J.2004. Facies patterns and geography of the Yangtze region,South China,through the Ordovician and Silurian transition. Palaeogeography,Palaeoclimatology,Palaeoecology, 204(3-4): 353-372. [16] Demaison G J,Moore G T.1980. Anoxic environments and oil source bed genesis. AAPG Bulletin, 64(8): 1179-1209. [17] Gradstein F M.2006. The geological time scale. The Paleontological Society Papers,12: 107-123. [18] Hallam A,Bradshaw M J.1979. Bituminous shales and oolitic ironstones as indicators of transgressions and regressions. Journal of the Geological Society, 136(2): 157-164. [19] Haq B U,Schutter S R.2008. A Chronology of Paleozoic Sea-Level Changes. Science, 322(5898): 64-68. [20] Heckel P H.1977. Origin of phosphatic black shale facies in Pennsylvanian cyclothems of mid-continent North America. AAPG Bulletin, 61(7): 1045-1068. [21] Hu Y,Sun W,Ding X,Wang F,Ling M,Liu J.2009. Volcanic event at the Ordovician-Silurian boundary: the message from K-bentonite of Yangtze Block. Acta Petrologica Sinica, 25(12): 3298-3308. [22] Jenkyns H C.1980. Cretaceous anoxic events: from continents to oceans. Journal of the Geological Society, 137: 171-188. [23] Jenkyns H C.1988. The early Toarcian(Jurassic)anoxic event,stratigraphic,sedimentary and geochemical evidence. American journal of science, 288(2): 101-151. [24] Jenkyns H C.2010. Geochemistry of oceanic anoxic events. Geochemistry,Geophysics,Geosystems, 11(3): 1-30. [25] Jr. Coveney R M,Watney W L,Maples C G.1991. Contrasting depositional models for Pennsylvanian black shale discerned from molybdenum abundances. Geology, 19(2): 147-150. [26] Leonowicz P.2016. Nearshore transgressive black shale from the Middle Jurassic shallow-marine succession from southern Poland. Facies, 62(2): 16. [27] Li N,Li C,Algeo T J,Cheng M,Jin C,Zhu G,Fan J,Sun Z.2021. Redox changes in the outer Yangtze Sea(South China)through the Hirnantian Glaciation and their implications for the end-Ordovician biocrisis. Earth-Science Reviews, 212: 103443. [28] Li Y,Schieber J,Fan T,Li Z,Zhang J.2017a. Regional depositional changes and their controls on carbon and sulfur cycling across the Ordovician-Silurian boundary,northwestern Guizhou,South China. Palaeogeography,Palaeoclimatology,Palaeoecology, 485: 816-832. [29] Li Y,Zhang T,Ellis G,Shao D.2017b. Depositional environment and organic matter accumulation of Upper Ordovician-Lower Silurian marine shale in the Upper Yangtze Platform,South China. Palaeogeography,Palaeoclimatology,Palaeoecology, 466: 252-264. [30] Luening S,Craig J,Loydell D K,Storch P,Fitches B.2000. Lower Silurian “hot shales” in North Africa and Arabia,regional distribution and depositional model. Earth-Science Reviews, 49(1-4): 121-200. [31] McArthur J M,Algeo T J,van de Schootbrugge B,Li Q,Howarth R J.2008. Basinal restriction,black shales,Re-Os dating,and the Early Toarcian(Jurassic)oceanic anoxic event. Paleoceanography, 23(4): 1-22. [32] McManus J,Berelson W M,Klinkhammer G P,Hammond D E,Holm C.2005. Authigenic uranium: relationship to oxygen penetration depth and organic carbon rain. Geochimica et Cosmochimica Acta, 69(1): 95-108. [33] Middelburg J J,Calvert S E,Karlin R.1991. Organic-rich transitional facies in silled basins: response to sea-level change. Geology, 19(7): 679-682. [34] Mo T,Suttle A D,Sackett W.1973. Uranium concentrations in marine sediments. Geochimica et Cosmochimica Acta, 37(1): 35-51. [35] Munnecke A,Calner M,Harper D A,Servais T.2010. Ordovician and Silurian sea-water chemistry,sea level,and climat: a synopsis. Palaeogeography,Palaeoclimatology,Palaeoecology, 296(3-4): 389-413. [36] Myers K J.1996. Organic-rich Facies and Hydrocarbon Source rocks. Sequence Stratigraphy. Oxford, UK: Blackwell Publishing Ltd.,238-257. [37] Oschmann W.1988. Kimmeridge Clay sedimentation-a new cyclic model. Palaeogeography,Palaeoclimatology,Palaeoecology, 65(3-4): 217-251. [38] Ozaki K,Tajima S,Tajika E.2011. Conditions required for oceanic anoxia/euxinia: Constraints from a one-dimensional ocean biogeochemical cycle model. Earth and Planetary Science Letters, 304(1-2): 270-279. [39] Paris F,Verniers J,Miller M A,Al-Hajri S,Melvin J,Wellman C H.2015. Late Ordovician-earliest Silurian chitinozoans from the Qusaiba-1 core hole(North Central Saudi Arabia)and their relation to the Hirnantian glaciation. Review of Palaeobotany and Palynology, 212: 60-84. [40] Pasley M A,Gregory W A,Hart G F.1991. Organic matter variations in transgressive and regressive shales. Organic Geochemistry, 17(4): 483-509. [41] Pedersen T F,Calvert S E.1990. Anoxia vs. productivity: what controls the formation of organic-carbon-rich sediments and sedimentary rocks?AAPG Bulletin, 74(4): 454-466. [42] Qiu Z,Zou C.2020. Controlling factors on the formation and distribution of “sweet-spot areas”of marine gas shales in South China and a preliminary discussion on unconventional petroleum sedimentology. Journal of Asian Earth Sciences, 194: 103989. [43] Rong J,Harper D A T,Huang B,Li R,Zhang X,Chen D.2020. The latest Ordovician Hirnantian brachiopod faunas: new global insights Earth-Science Reviews, 208: 103280. [44] Röhl H J,Schmid-Röhl A.2005. Lower Toarcian(Upper Liassic)black shales of the central European epicontinental basin: a sequence stratigraphic case study from the SW German Posidonia shale.SEPM,165-189. [45] Schroeder J O,Murray R W,Leinen M,Pflaum R C,Janecek T R.1997. Barium in equatorial Pacific carbonate sediment: terrigenous,oxide,and biogenic associations. Paleoceanography, 12(1): 125-146. [46] Shi Z,Wang H,Sun S,Guo C.2021. Graptolite zone calibrated stratigraphy and topography of the late Ordovician-early Silurian Wufeng-Lungmachi shale in Upper Yangtze area,South China. Arabian Journal of Geosciences, 14: 213. [47] Shi Z,Zhao S,Zhou T,Ding L,Sun S,Cheng F.2022a. Mineralogy and geochemistry of the Upper Ordovician and Lower Silurian Wufeng-Longmaxi shale on the Yangtze Platform,south China: Implications for provenance analysis and shale gas sweet-spot interval. Minerals, 12(10): 1190. [48] Shi Z,Zhou T,Wang H,Sun S.2022b. Depositional structures and their reservoir characteristics in the Wufeng-Longmaxi shale in southern Sichuan Basin,China. Energies, 15(5): 1618. [49] Spirakis C S.1996. The roles of organic matter in the formation of uranium deposits in sedimentary rocks. Ore Geology Reviews, 11(1-3): 53-69. [50] Stephen C,Passey Q R.1993. Recurring patterns of total organic carbon and source rock quality within a sequence stratigraphic framework. AAPG Bulletin, 77(3): 386-401. [51] Su W,Huff W D,Ettensohn F R,Liu X,Zhang J,Li Z.2009. K-bentonite,black-shale and flysch successions at the Ordovician-Silurian transition,South China: possible sedimentary responses to the accretion of Cathaysia to the Yangtze Block and its implications for the evolution of Gondwana. Gondwana Research, 15(1): 111-130. [52] Suess E.1980. Particulate organic carbon flux in the oceans,surface productivity and oxygen utilization. Nature, 288(5788): 260-263. [53] Słowakiewicz M,Tucker M E,Perri E,Pancost R D.2015. Nearshore euxinia in the photic zone of an ancient sea. Palaeogeography,Palaeoclimatology,Palaeoecology, 426: 242-259. [54] Wang G,Jin Z,Liu G,Liu Q,Liu Z,Wang H,Liang X,Jiang T,Wang R.2020. Geological implications of gamma ray(GR)anomalies in marine shales: a case study of the Ordovician-Silurian Wufeng-Longmaxi succession in the Sichuan Basin and its periphery,Southwest China. Journal of Asian Earth Sciences, 199: 104359. [55] Wang H,Shi Z,Zhao Q,Liu D,Sun S,Guo W,Liang F,Lin C,Wang X.2020. Stratigraphic framework of the Wufeng-Longmaxi shale in and around the Sichuan Basin,China: implications for targeting shale gas. Energy Geoscience, 1(3-4): 124-133. [56] Wignall P B.1991. Model for transgressive black shales. Geology, 19(2): 167-170. [57] Wignall P B,Newton R.2001. Black shales on the basin margin: a model based on examples from the Upper Jurassic of the Boulonnais,northern France. Sedimentary Geology, 144(3-4): 335-356. [58] Wu H.2000. Reinterpretation of the Guangxian Orogeny. Chinese Science Bulletin, 45(13): 1244-1248. [59] Wu L,Lu Y,Jiang S,Liu X,Liu Z,Lu Y.2018. Relationship between the origin of organic-rich shale and geological events of the Upper Ordovician-Lower Silurian in the Upper Yangtze area. Marine and Petroleum Geology, 102: 74-85. [60] Yan D,Chen D,Wang Q,Wang J.2011. Large-scale climatic fluctuations in the latest Ordovician on the Yangtze block,south China. Geology, 38(7): 599-602. [61] Yan D,Wang H,Fu Q,Chen Z,He J,Gao Z.2015. Geochemical characteristics in the Longmaxi Formation(Early Silurian)of South China: implications for organic matter accumulation. Marine and Petroleum Geology, 65: 290-301. [62] Yan D,Li S,Fu H,Jasper D M,Zhou S,Yang X,Zhang B,Mangi H N.2021. Mineralogy and geochemistry of Lower Silurian black shales from the Yangtze platform,South China. International Journal of Coal Geology, 237: 103706. [63] Yang S,Hu W,Wang X,Jiang B,Yao S,Sun F,Huang Z,Zhu F.2019. Duration,evolution,and implications of volcanic activity across the Ordovician-Silurian transition in the Lower Yangtze region,South China. Earth and Planetary Science Letters, 518: 13-25. [64] Yao W,Li Z,Wuxian L,Li S,Jinhui Y.2015. Detrital provenance evolution of the Ediacaran-Silurian Nanhua foreland basin,south China. Gondwana Research, 28(4): 1449-1465. [65] Yu J O,Reilly S Y,Wang L,Griffin W L,Zhang M,Wang R,Jiang S,Shu L.2008. Where was South China in the Rodinia supercontinent?Precambrian Research, 164(1-2): 1-15. [66] Zhang C,Santosh M,Zhu Q,Chen X,Huang W.2015a. The Gondwana connection of south China,evidence from monazite and zircon geochronology in the Cathaysia Block. Gondwana Research, 28(3): 1137-1151. [67] Zhang L,Wang R,Chen M,Liu J,Zeng L,Xiang R,Zhang Q.2015b. Biogenic silica in surface sediments of the South China Sea: controlling factors and paleoenvironmental implications. Deep Sea Research Part II Topical Studies in Oceanography, 122: 142-152. [68] Zhang T,Shen Y,Algeo T J.2010. High-resolution carbon isotopic records from the Ordovician of South China: links to climatic cooling and the Great Ordovician Biodiversification Event(GOBE). Palaeogeography,Palaeoclimatology,Palaeoecology, 289(1-4): 102-112. [69] Zhang X.2021. Marine refractory dissolved organic carbon and transgressive black shales. Chinese Science Bulletin, 67(15): 1607-1613. [70] Zhao K,Du X,Lu Y,Hao F,Liu Z,Jia J.2021. Is volcanic ash responsible for the enrichment of organic carbon in shales?Quantitative characterization of organic-rich shale at the Ordovician-Silurian transition. Bulletin, 133(3-4): 837-848. [71] Zhou L,Kang Z,Wang Z,Peng Y,Xiao H.2017. Sedimentary geochemical investigation for paleoenvironment of the Lower Cambrian Niutitang Formation shales in the Yangtze Platform. Journal of Petroleum Science and Engineering, 159: 376-386. [72] Zou C,Qiu Z,Poulton S W,Dong D,Wang H,Chen D,Lu B,Shi Z,Tao H.2018a. Ocean euxinia and climate change “double whammy”drove the Late Ordovician mass extinction. Geology, 46(6): 535-538. [73] Zou C,Qiu Z,Wei H,Dong D,Lu B.2018b. Euxinia caused the Late Ordovician extinction: evidence from pyrite morphology and pyritic sulfur isotopic composition in the Yangtze area,South China. Palaeogeography,Palaeoclimatology,Palaeoecology, 511: 1-11.