Main controlling factors of organic matter enrichment in continental freshwater lacustrine shale: a case study of the Jurassic Ziliujing Formation in northeastern Sichuan Basin
1 State Key Laboratory of Petroleum Resources and Prospecting,China University of Petroleum(Beijing),Beijing 102249,China; 2 College of Geosciences,China University of Petroleum(Beijing),Beijing 102249,China; 3 Unconventional Oil and Gas Science and Technology Research Institute,China University of Petroleum(Beijing),Beijing 102249,China; 4 Exploration and Development Research Institute,PetroChina Southwest Oil and Gas Field Company,Chengdu 610095,China
Abstract It is of great significance to study the enrichment mechanism of organic matters and the associate main controlling factors of shale strata in continental freshwater lacustrine,which can guide the exploration and development of continental shale oil and gas. Lacustrine shales are developed in Dongyuemiao member and Da'anzhai member of Jurassic Ziliujing Formation in Sichuan Basin,which has great potential for oil and gas exploration. Its organic matter enrichment mechanism needs to be explored. Taking those shales in Ziliujing Formation as the research object,core description,thin section observation,electron microscopy scanning,measuring organic carbon content,kerogen microscopic analysis,and main and trace elements test were carried out to restore the sedimentary palaeoenvironment and then examine the main controlling factors of organic matter enrichment. The results show that the organic carbon content of Ziliujing Formation shale ranges from 0.29% to 3.43%,with an average value of 1.32%. Kerogen type index was mainly distributed in the range of 24-52,with an average of 37,indicating that organic matter was type Ⅱ1 and type Ⅱ2. Organic matter mainly came from the mixture of aquatic organisms,and terrestrial higher plants. The values of C,Sr/Cu,CIA,and Sr/Ba,and palaeo-salinity,proxies of palaeoclimates,indicate that the Sichuan Basin was a freshwater lacustrine in humid climate during the deposition of Ziliujing Formation. The medium productivity of lacustrine water provides sufficient material basis for the enrichment of organic matter. The oxygen-rich bottom water leads to the oxidation of organic matter,which is not favorable for the enrichment of organic matters. The analysis of cross plot of TOC and several palaeoenvironmental proxies show that organic matter enrichment in Ziliujing shales is mainly controlled by the palaeo-productivity,palaeo-climate,and deposition rate. Organic matter can be enriched only under the background of relatively humid climatic conditions,relatively high productivity,and appropriate deposition rate. Redox conditions and salinity are not the main controlling factors of organic matter enrichment in freshwater lacustrine shales,which is quite different from marine shales and saline lacustrine shales.
Fund:Strategic Cooperation Science and Technology Special Project between China National Petroleum Corporation and China University of Petroleum (Beijing)(No.ZLZX2020-02)
Corresponding Authors:
ZHU Xiaomin,born in 1960,is a professor and Ph.D. supervisor. He is mainly engaged in teaching and research work in sedimentary geology and reservoir geology. E-mail: xmzhu@cup.edu.cn.
About author: ZHANG Meizhou,born in 1993,is a Ph.D. candidate at China University of Petroleum(Beijing). He is mainly engaged in fine-grained sedimentology and reservoir geology. E-mail: zmzgeo@163.com.
Cite this article:
ZHANG Meizhou,ZHU Xiaomin,JIANG Zhenxue et al. Main controlling factors of organic matter enrichment in continental freshwater lacustrine shale: a case study of the Jurassic Ziliujing Formation in northeastern Sichuan Basin[J]. JOPC, 2023, 25(4): 806-822.
ZHANG Meizhou,ZHU Xiaomin,JIANG Zhenxue et al. Main controlling factors of organic matter enrichment in continental freshwater lacustrine shale: a case study of the Jurassic Ziliujing Formation in northeastern Sichuan Basin[J]. JOPC, 2023, 25(4): 806-822.
[1] 杜金虎,胡素云,庞正炼,林森虎,侯连华,朱如凯. 2019. 中国陆相页岩油类型、潜力及前景. 中国石油勘探, 24(5): 560-568. [Du J H,Hu S Y,Pang Z L,Lin S H,Hou L H,Zhu R K.2019. The types,potentials and prospects of continental shale oil in China. China Petroleum Exploration, 24(5): 560-568] [2] 方正,蒲秀刚,陈世悦,鄢继华,韩文中,时战楠,张伟,陈星燃,董庆民. 2021. 沧东凹陷孔二段页岩有机质富集特征研究. 中国矿业大学学报, 50(2): 304-317. [Fang Z,Pu X G,Chen S Y,Yan J H,Han W Z,Shi Z N,Zhang W,Chen X R,Dong Q M.2021. Investigation of enrichment characteristics of organic matter in shale of the 2nd member of Kongdian formation in Cangdong sag. Journal of China University of Mining & Technology, 50(2): 304-317] [3] 胡涛,庞雄奇,姜福杰,王琦峰,徐田武,吴冠昀,蔡哲,于吉旺. 2021. 陆相断陷咸化湖盆有机质差异富集因素探讨: 以东濮凹陷古近系沙三段泥页岩为例. 沉积学报, 39(1): 140-152. [Hu T,Pang X Q,Jiang F J,Wang Q F,Xu T W,Wu G Y,Cai Z,Yu J W.2021. Factors controlling differential enrichment of organic matter in saline lacustrine rift basin: a case study of third member Shahejie Fm in Dongpu Depression. Acta Sedimentologica Sinica, 39(1): 140-152] [4] 金之钧,白振瑞,高波,黎茂稳. 2019. 中国迎来页岩油气革命了吗?石油与天然气地质, 40(3): 451-458. [Jin Z J,Bai Z R,Gao B,Li M W.2019. Has China ushered in the shale oil and gas revolution?Oil & Gas Geology, 40(3): 451-458] [5] 金之钧,朱如凯,梁新平,沈云琦. 2021. 当前陆相页岩油勘探开发值得关注的几个问题. 石油勘探与开发, 48(6): 1276-1287. [Jin Z J,Zhu R K,Liang X P,Shen Y Q.2021. Several issues worthy of attention in current lacustrine shale oil exploration and development. Petroleum Exploration and Development, 48(6): 1276-1287] [6] 胡宗全,刘光祥. 2021. 中国陆相页岩气富集规律与评价技术北京: 地质出版社,30-31. [Hu Z Q,Liu G X.2021. Enrichment Rules and Evaluation Techniques of Continental Shale Gas in China. Beijing: Geological Publishing House,30-31] [7] 黎茂稳,马晓潇,金之钧,李志明,蒋启贵,吴世强,李政,徐祖新. 2022. 中国海、陆相页岩层系岩相组合多样性与非常规油气勘探意义. 石油与天然气地质, 43(1): 1-25. [Li M W,Ma X X,Jin Z J,Li Z M,Jiang Q G,Wu S Q,Li Z,Xu Z X.2022. Diversity in the lithofacies assemblages of marine and lacustrine shale strata and significance for unconventional petroleum exploration in China. Oil & Gas Geology, 43(1): 1-25] [8] 李艳芳,邵德勇,吕海刚,张瑜,张小龙,张同伟. 2015. 四川盆地五峰组—龙马溪组海相页岩元素地球化学特征与有机质富集的关系. 石油学报, 36(12): 1470-1483. [Li Y F,Shao D Y,Lü H G,Zhang Y,Zhang X L,Zhang T W.2015. A relationship between elemental geochemical characteristics and organic matter enrichment in marine shale of Wufeng Formation-Longmaxi Formation,Sichuan Basin. Acta Petrolei Sinica, 36(12): 1470-1483] [9] 刘树根,李智武,刘顺,罗玉宏,徐国强,戴国汗,龚昌明,雍自权. 2006. 大巴山前陆盆地—冲断带的形成演化. 北京: 地质出版社. [Liu S G,Li Z W,Liu S,Luo Y H,Xu G Q,Dai G H,Gong C M,Yong Z Q.2006. Formation and Evolution of Dabashan Foreland Basin Thrust Belt. Beijing: Geological Publishing House] [10] 刘忠宝,刘光祥,胡宗全,冯动军,朱彤,边瑞康,姜涛,金治光. 2019. 陆相页岩层系岩相类型、组合特征及其油气勘探意义: 以四川盆地中下侏罗统为例. 天然气工业, 39(12): 10-21. [Liu Z B,Liu G X,Hu Z Q,Feng D J,Zhu T,Bian R K,Jiang T,Jin Z G.2019. Lithofacies types and assemblage features of continental shale strata and their significance for shale gas exploration: a case study of the Middle and Lower Jurassic strata in the Sichuan Basin. Natural Gas Industry, 39(12): 10-21] [11] 柳波,石佳欣,付晓飞,吕延防,孙先达,巩磊,白云风. 2018. 陆相泥页岩层系岩相特征与页岩油富集条件: 以松辽盆地古龙凹陷白垩系青山口组一段富有机质泥页岩为例. 石油勘探与开发, 45(5): 828-838. [Liu B,Shi J X,Fu X F,Lyv Y F,Sun X D,Gong L,Bai Y F.2018. Petrological characteristics and shale oil enrichment of lacustrine fine-grained sedimentary system: a case study of organic-rich shale in first member of Cretaceous Qingshankou Formation in Gulong Sag,Songliao Basin,NE China. Petroleum Exploration and Development, 45(5): 828-838] [12] 马永生,蔡勋育,赵培荣,胡宗全,刘惠民,高波,王伟庆,李志明,张子麟. 2022. 中国陆相页岩油地质特征与勘探实践. 地质学报, 96(1): 155-171. [Ma Y S,Cai X Y,Zhao P R,Hu Z Q,Liu H M,Gao B,Wang W Q,Li Z M,Zhang Z L.2022. Geological characteristics and exploration practices of continental shale oil in China. Acta Geologica Sinica, 96(1): 155-171] [13] 杨万芹,蒋有录,王勇. 2015. 东营凹陷沙三下—沙四上亚段泥页岩岩相沉积环境分析. 中国石油大学学报(自然科学版), 39(4): 19-26. [Yang W Q,Jiang Y L,Wang Y.2015. Study on shale facies sedimentary environment of lower Es3-upper Es4 in Dongying sag. Journal of China University of Petroleum(Edition of Natural Science), 39(4): 19-26] [14] 杨万芹,王学军,蒋有录,张顺,王勇,朱德燕,朱德顺. 2018. 湖泊古气候的量化恢复及其对细粒沉积的影响: 以东营凹陷沙四段上亚段—沙三段下亚段为例. 油气地质与采收率, 25(2): 29-36. [Yang W Q,Wang X J,Jiang Y L,Zhang S,Wang Y,Zhu D Y,Zhu D S.2018. Quantitative reconstruction of paleoclimate and its effects on fine-grained lacustrine sediments: a case study of the upper Es4 and lower Es3,in Dongying sag. Petroleum Geology and Recovery Efficiency, 25(2): 29-36] [15] 尹锦涛,俞雨溪,姜呈馥,刘建,赵谦平,史鹏. 2017. 鄂尔多斯盆地张家滩页岩元素地球化学特征及与有机质富集的关系. 煤炭学报, 42(6): 1544-1556. [Yin J T,Yu Y X,Jiang C F,Liu J,Zhao Q P,Shi P.2017. Relationship between element geochemical characteristic and organic matter enrichment in Zhangjiatan Shale of Yanchang Formation,Ordos Basin. Journal of China Coal Society, 42(6): 1544-1556] [16] 于乐丹,彭军,许天宇,韩浩东,杨一茗. 2022. 陆相断陷咸化湖盆细粒沉积地层有机质富集特征及控制因素分析: 以东营凹陷沙河街组第四段上亚段纯上次亚段为例. 沉积学报. https://doi.org/10.14027/j.issn.1000-0550.2022.096 [Yu L D,Peng J,Xu T Y,Han H D,Yang Y M.2022. Analysis of organic matter enrichment and influences in fine-grained sedimentary strata in saline lacustrine basins of continental fault depressions: case study of the upper sub-segment of the upper 4th member of the Shahejie Formation in the Dongying Depression.Acta Sedimentologica Sinica. https://doi.org/10.14027/j.issn.1000-0550.2022.096] [17] 袁伟,柳广弟,罗文斌. 2016. 鄂尔多斯盆地延长组长7段沉积速率及其对烃源岩有机质丰度的影响. 西安石油大学学报(自然科学版), 31(5): 20-26. [Yuan W,Liu G D,Luo W B.2016. Deposition rate of the seventh member of Yangchang Formation,Ordos Basin and its impact on organic matter abundance of hydrocarbon source rock. Journal of Xi'an Shiyou University(Natural Science Edition), 31(5): 20-26] [18] 朱彤,龙胜祥,王烽,彭勇民. 2016. 四川盆地湖相泥页岩沉积模式及岩石相类型. 天然气工业, 26(8): 22-28. [Zhu T,Long S X,Wang F,Peng Y M.2016. Sedimentary models and lithofacies types of lacustrine mud shale in the Sichuan Basin. Natural Gas Industry, 36(8): 22-28] [19] 赵文智,胡素云,侯连华,杨涛,李欣,郭彬程,杨智. 2020. 中国陆相页岩油类型、资源潜力及与致密油的边界. 石油勘探与开发, 47(1): 1-10. [Zhao W Z,Hu S Y,Hou L H,Yang T,Li X,Guo B C,Yang Z.2020. Types and resource potential of continental shale oil in China and its boundary with tight oil. Petroleum Exploration and Development, 47(1): 1-10] [20] 周德华,焦方正,郭旭升,郭彤楼,魏志红. 2013. 川东北元坝区块中下侏罗统页岩油气地质分析. 石油实验地质, 35(6): 596-600. [Zhou D H,Jiao F Z,Guo X S,Guo T L,Wei Z H.2013. Geologic analysis of Middle Lower Jurassic shale reservoirs in Yuanba area,northeastern Sichuan Basin. Petroleum Geology & Experiment, 35(6): 596-600] [21] 周小梅,金鑫,吴强旺,葛禹,时志强. 2021. 鱼粪化石特征对早侏罗世托阿尔期湖泊生态系统的启示: 以川东大安寨段为例. 古地理学报, 23(3): 600-609. [Zhou X M,Jin X,Wu Q W,Ge Y,Shi Z Q.2021. Enlightment of fish coprolites characteristics on lake ecosystem in the Early Jurassic Toarcian: taking the Da'anzhai Member in northeast Sichuan Basin as an example. Journal of Palaeogeography(Chinese Edition), 23(3): 600-609] [22] Algeo T J,Maynard J B.2004. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems. Chemical Geology, 206: 289-318. [23] Algeo T J,Kuwahara K,Sano H,Bates S,Lyons T,Elswick E,Hinnov L,Ellwood B,Moser J,Maynard J B.2011. Spatial variation in sediment fluxes,redox conditions,and productivity in the Permian-Triassic Panthalassic Ocean. Palaeogeography,Palaeoclimatology,Palaeoecology, 308: 65-83. [24] Bohacs K M,Carroll A R,Neal J E.,Mankiewicz P J.2000. Lake-basin type,source potential,and hydrocarbon character: an integrated-sequence-stratigraphic-geochemical framework. In: Gierlowski-Kordesch E H,Kelts K R(eds). Lake basins through space and time. Tulsa: American Association of Petroleum Geologists,3-34. [25] Boynton W V.1984. Geochemistry of the rare earth elements: meteorite studies. Rare Earth Element In: Henderson P(ed). Rare Earth Element Geochemistry. Elsevier, Geochemistry: 63-114. [26] Calvert S,Pedersen T.1993. Geochemistry of recent oxic and anoxic marine sediments: implications for the geological record. Marine Geology, 113: 67-88. [27] Calvert S E,Pedersen T F,Naidu P D,van Stackelberg U.1995. On the organic carbon maximum on the continental slope of the eastern Arabian Sea. Journal of Marine Research, 53: 269-296. [28] Chen Y H,Zhu Z W,Zhang L.2019. Control actions of sedimentary environments and sedimentation rates on lacustrine oil shale distribution,an example of the oil shale in the Upper Triassic Yanchang Formation,southeastern Ordos Basin(NW China). Marine and Petroleum Geology, 102: 508-520. [29] Dean W E,Gardner J V,Piper D Z.1997. Inorganic geochemical indicators of glacial-interglacial changes in productivity and anoxia on the California continental margin. Geochimica et Cosmochimica Acta, 61: 4507-4518. [30] Demaison G J,Moore G T.1980. Anoxic environments and oil source bed genesis. Organic Geochemistry, 2: 9-31. [31] Doner Z,Kumral M,Demirel I H,Hu Q H.2019. Geochemical characteristics of the Silurian shales from the central Taurides,southern Turkey: organic matter accumulation,preservation and depositional environment modeling. Marine and Petroleum Geology, 102: 155-175. [32] Dymond J,Suess E,Lyle M.1992. Barium in deep-sea sediment: a geochemical proxy for paleoproductivity. Paleoceanography 7: 163-181. [33] Dymond J,Collier R.1996. Particulate barium fluxes and their relationships to biological productivity. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography. 43: 1283-1308. [34] Ji W M,Hao F,Song Y,Tian J Q,Meng M M,Huang H X.2020. Organic geochemical and mineralogical characterization of the lower Silurian Longmaxi shale in the southeastern Chongqing area of China: implications for organic matter accumulation. International Journal of Coal Geology, 220: 103412. [35] Jones B,Manning D A C.1994. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chemical Geology, 111: 111-129. [36] Loucks R G,Reed R M,Ruppel S C,Jarvie D M.2009. Morphology,genesis,and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale. Journal of Sedimentary Research, 79: 848-861. [37] Moradi A V,Sarı A,Akkaya P.2016. Geochemistry of the Miocene oil shale(Hançili Formation)in the Çankırı-Çorum Basin,Central Turkey: implications for Paleoclimate conditions,source-area weathering,provenance and tectonic setting. Sedimentary Geology, 341: 289-303. [38] Nesbitt H W,Young G M.1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299: 715-717. [39] Nichols G.2009. Sedimentology and stratigraphy(second edition). Chichester: John Wiley & Sons,151-157. [40] Passey Q R,Bohacs K M,Esch W L,Klimentidis R,Sinha S.2010. From oil-prone source rock to gas-producing shale reservoir-geologic and petrophysical characterization of unconventional shale-gas reservoirs. In: SPE-131350,CPS/SPE International Oil & Gas Conference and Exhibition in China. June 8-10,2010,Beijing,China. [41] Sageman B B,Murphy A E,Werne J P,Ver Straeten C A,Hollander D J,Lyons T W.2003. A tale of shales: the relative roles of production,decomposition,and dilution in the accumulation of organic-rich strata,Middle-Upper Devonian,Appalachian Basin. Chemical Geology, 195: 229-273. [42] Tribovillard N,Algeo T J,Lyons T,Riboulleau A.2006. Trace metals as paleoredox and paleoproductivity proxies: an update. Chemical Geology, 232: 12-32. [43] Tyson R V,Pearson T H.1991. Modern and ancient continental shelf anoxia: an overview. London: Geological Society,Special Publications, 58(1): 1-24. [44] Wu Z Y,Zhao X Z,Wang E Z,Pu X G,Lash G,Han W Z,Zhang W,Feng Y.2021. Sedimentary environment and organic enrichment mechanisms of lacustrine shale: a case study of the Paleogene Shahejie Formation,Qikou sag,Bohai Bay Basin. Palaeogeography,Palaeoclimatology,Palaeoecology, 573: 110404. [45] Yu Y M,Li P P,Guo R X,Zhao Y Z,Li S,Zou H Y.2021. Upwelling-induced organic matter enrichment of the Upper Permian Dalong Formation in the Sichuan Basin,SW China and its paleoenvironmental implications. Palaeogeography,Palaeoclimatology,Palaeoecology, 576: 110510. [46] Zeng S Q,Wang J,Fu X G,Chen W B,Feng X L,Wang D,Song C Y,Wang Z W.2015. Geochemical characteristics,redox conditions,and organic matter accumulation of marine oil shale from the Changliang Mountain area,northern Tibet,China. Marine and Petroleum Geology, 64: 203-221. [47] Zhang K,Liu R,Liu Z J.2021. Sedimentary sequence evolution and organic matter accumulation characteristics of the Chang 8-Chang 7 members in the Upper Triassic Yanchang Formation,southwest Ordos Basin,central China. Journal of Petroleum Science and Engineering, 196: 107751. [48] Zhang L C,Xiao D S,Lu S F,Jiang S,Lu S D.2019. Effect of sedimentary environment on the formation of organic-rich marine shale: insights from major/trace elements and shale composition. International Journal of Coal Geology, 204: 34-50.