Sedimentary types,characteristics and model of lacustrine fine-grained gravity flow in the Member 7 of Trassic Yanchang Formation in Ningxian area,Ordos Basin
LU Qiqi1, XIN Honggang2,3, WANG Lin1, LUO Shunshe1, DAN Weidong2,3, FENG Shengbin2,3
1 School of Geosciences,Yangtze University,Wuhan 430100,China; 2 National Engineering Laboratory for Exploration and Development of Low Permeability Oil & Gas Fields,Xi'an 710018,China; 3 Exploration and Development Research Institute of Changqing Oilfield Branch Company Ltd., PetroChina,Xi'an 710018,China
Abstract The lacustrine fine-grained gravity flow sand body is a favorable target area for exploration in deep-water basins. Based on core,drilling,well logging,mud logging and thin section identification,the sedimentary types,characteristics,sedimentary evolution process and sedimentary model of fine-grained gravity flow are studied in the Member 7 of Yanchang Formation in the Ningxian area,Ordos Basin. The findings results show the presence of ten lithofacies,six lithofacies associations,and five types of deep-water sediments,including slide-slump deposits,sandy debris flow deposits,hybrid event bed,turbidity current deposits and deep lacustrine muddy deposits. According to the lithofacies and their combination characteristics,the semi-deep to deep lake subfacies can be further divided into six sedimentary microfacies: confined channel,unconfined channel,levee,lobe,inter-channel and semi-deep to deep lake mud. The delta front sediments destabilized under the action of external forces,and experienced five evolution stages of sliding,slumping,sandy debris flow,hybrid event bed,and turbidity currents. With the“fluid transformation and separation”and“hydroplaning”,the gravity flow deposits gradually evolved from confined channel-levees,unconfined channel-levees,to lobes toward the center of basin. This study will help to deepen the understanding of lacustrine fine-grained gravity flow deposits and provides guidance for deep-water oil and gas exploration and development.
Fund:National Natural Science Foundation of China(No.42102170)and the National Basic Research Program(973 Program)of China(No.2014CB239003)
Corresponding Authors:
LUO Shunshe,born in 1961,is a professor in the School of Geosciences,Yangtze University. He is mainly engaged in sedimentology and reservoir geology. E-mail: 201673021@yangtzeu.edu.cn.
About author: LU Qiqi,born in 1986,is an associate professor in the School of Geosciences,Yangtze University. He is mainly engaged in unconventional oil and gas sedimentology research. E-mail: lvqiqiabcd@163.com.
Cite this article:
LU Qiqi,XIN Honggang,WANG Lin et al. Sedimentary types,characteristics and model of lacustrine fine-grained gravity flow in the Member 7 of Trassic Yanchang Formation in Ningxian area,Ordos Basin[J]. JOPC, 2023, 25(4): 823-840.
LU Qiqi,XIN Honggang,WANG Lin et al. Sedimentary types,characteristics and model of lacustrine fine-grained gravity flow in the Member 7 of Trassic Yanchang Formation in Ningxian area,Ordos Basin[J]. JOPC, 2023, 25(4): 823-840.
[1] 操应长,杨田,王艳忠,张少敏,王思佳,张青青,王心怿. 2017. 深水碎屑流与浊流混合事件层类型及成因机制. 地学前缘, 24(3): 234-248. [Cao Y C,Yang T,Wang Y Z,Zhang S M,Wang S J,Zhang Q Q,Wang X Y.2017. Types and genesis of deep-water hybrid event beds comprising debris flow and turbidity current. Earth Science Frontiers, 24(3): 234-248] [2] 陈安清,陈洪德,侯明才,楼章华,徐胜林,李洁,苏中堂. 2011. 鄂尔多斯盆地中—晚三叠世事件沉积对印支运动Ⅰ幕的指示. 地质学报, 85(10): 1681-1690. [Chen A Q,Chen H D,Hou M C,Lou Z H,Xu S L,Li J,Su Z T.2011. The Middle-Late Triassic event sediments in Ordos Basin: indicators for episode I of the indosinian movement. Acta Geologica Sinica, 85(10): 1681-1690] [3] 廖纪佳,朱筱敏,邓秀芹,孙勃,惠潇. 2013. 鄂尔多斯盆地陇东地区延长组重力流沉积特征及其模式. 地学前缘, 20(2): 29-39. [Liao J J,Zhu X M,Deng X Q,Sun B,Hui X.2013. Sedimentary characteristics and model of gravity flow in Triassic Yanchang Formation of Longdong Area in Ordos Basin. Earth Science Frontiers, 20(2): 29-39] [4] 吕奇奇,罗顺社,付金华,向吉,牛小兵,龚辰,徐黎明,冯胜斌,李士祥. 2017. 湖泊深水重力流沉积露头精细解剖: 以鄂尔多斯盆地瑶曲剖面长7油层组为例. 地质学报, 91(3): 617-628. [Lyu Q Q,Luo S S,Fu J H,Xiang J,Niu X B,Gong C,Xu L M,Feng S B,Li S X.2017. Outcrop-based analysis of a deep-water gravity flow sediments in lake: a case study from the Chang 7 of Yaoqu section,Ordos Basin. Acta Geologica Sinica, 91(3): 617-628] [5] 吕奇奇,罗顺社,李梦杰,官玉龙,张建坤. 2020. 深水碎屑流与浊流混合事件层沉积特征及分布: 以鄂尔多斯盆地西南长7油层组为例. 东北石油大学学报, 44(2): 69-78,9-10. [Lyu Q Q,Luo S S,Li M J,Guan Y L,Zhang J K.2020. Sedimentary characteristics and distribution of deep-water hybrid event beds comprising debris and turbidites: a case study of Chang 7 Oil Formation in the southwest of Ordos Basin. Journal of Northeast Petroleum University, 44(2): 69-78,9-10] [6] 吕奇奇,付金华,罗顺社,李士祥,周新平,蒲宇新,闫红果. 2022. 坳陷湖盆重力流水道—朵叶复合体沉积特征及模式: 以鄂尔多斯盆地西南部三叠系延长组长7段为例. 石油勘探与开发, 49(6): 1143-1156. [Lyu Q Q,Fu J H,Luo S S,Li S X,Zhou X P,Pu Y X,Yan H G.2022. Sedimentary characteristics and model of gravity flow channel-lobe complex in a depression lake basin: a case study of Chang 7 Member of Triassic Yanchang Formation in southwestern Ordos Basin,NW China. Petroleum Exploration and Development, 49(6): 1143-1156] [7] 潘树新. 2012. 大型坳陷湖盆深水重力流研究. 成都理工大学博士学位论文. [Pan S X.2012. Deep-water gravity deposits in Songliao Terrestrial Basin. Doctoral dissertation of Chengdu University of Technology] [8] 邱振,邹才能. 2020. 非常规油气沉积学: 内涵与展望. 沉积学报, 38(1): 1-29. [Qiu Z,Zou C N.2020. Unconventional petroleum sedimentology: connotation and prospect. Acta Sedimentologica Sinica, 38(1): 1-29] [9] 孙靖,薛晶晶,厚刚福,吴爱成,宋明星,朱峰. 2019. 湖盆凹陷区砂质碎屑流沉积特征与模式: 以准噶尔盆地盆1井西凹陷侏罗系三工河组为例. 中国矿业大学学报, 48(4): 858-869. [Sun J,Xue J J,Hou G F,Wu A C,Song M X,Zhu F.2019. Sedimentary characteristics and model of sandy debris flow in depression area of lacustrine basin: a case study of the Jurassic Sangonghe Formation in the western well Pen-1 sag,Junggar Basin. Journal of China University of Mining, 48(4): 858-869] [10] 田媛,钟建华,王书宝,陶红胜,刘韶光,李勇,孙宁亮,邵珠福,倪良田,毛毳,葛玉柱,陈彬,曲俊利,王桂林. 2015. 鄂尔多斯盆地富县探区三叠系延长组震积岩及其地质意义. 古地理学报, 17(4): 541-552. [Tian Y,Zhong J H,Wang S B,Tao H S,Liu S G,Li Y,Sun N L,Shao Z F,Ni L T,Mao C,Ge Y Z,Chen B,Qu J L,Wang G L.2015. Seismites and their geological significances of the Triassic Yanchang Formation in Fuxian exploration area,Ordos Basin. Journal of Palaeogeography(Chinese Edition), 17(4): 541-552] [11] 王岚,李文厚,林潼,王若谷. 2012. 鄂尔多斯盆地上三叠统延长组长6油层组储集层成岩作用及其影响因素. 古地理学报, 14(3): 311-320. [Wang L,Li W H,Lin T,Wang R G.2012. Diagenesis and its influencing factors of the Chang 6 interval of Upper Triassic Yanchang Formation in Ordos Basin. Journal of Palaeogeography(Chinese Edition), 14(3): 311-320] [12] 王岚,李文厚,刘群,王大兴,张盟勃,白斌. 2023. 鄂尔多斯盆地延长组7段黑色页岩岩相分类与沉积环境恢复. 古地理学报, 25(3): 598-613. [Wang L,Li W H,Liu Q,Wang D X,Zhang M B, Bai B.2023. Lithofacies characteristics and sedimentary enironment of Chang 7 black shale in the Yanchang Formation, Ordos Basin. Journal of Palaeogeography(Chinese Edition), 25(3): 598-613] [13] 葸克来,李克,操应长,林敉若,牛小兵,朱如凯,魏心卓,尤源,梁晓伟,冯胜斌. 2020. 鄂尔多斯盆地三叠系延长组长73亚段富有机质页岩纹层组合与页岩油富集模式. 石油勘探与开发, 47(6): 1244-1255. [Xi K L,Li K,Cao Y C,Lin M R,Niu X B,Zhu R K,Wei X Z,You Y,Liang X W,Feng S B.2020. Laminae combination and shale oil enrichment patterns of Chang 73 sub-member organic-rich shales in the Triassic Yanchang Formation,Ordos Basin,NW China. Petroleum Exploration and Development, 47(6): 1244-1255] [14] 夏景生,刘晓涵,王政军,文雯,唐小云. 2017. 渤海湾盆地南堡凹陷西部东营组三段—沙河街组一段砂质碎屑流沉积特征及油气勘探意义. 石油学报, 38(4): 399-413. [Xia J S,Liu X H,Wang Z J,Wen W,Tang X Y.2017. Sedimentary characteristics of sandy debris flow in the 3rd Member of Dongying Formation and the 1st Member of Shahejie Formation of the western Nanpu sag,Bohai Bay Basin and its significance in hydrocarbon exploration. Acta Petrolei Sinica, 38(4): 399-413] [15] 杨华,邓秀芹. 2013. 构造事件对鄂尔多斯盆地延长组深水砂岩沉积的影响. 石油勘探与开发, 40(5): 513-520. [Yang H,Deng X Q.2013. Deposition of Yanchang Formation deep-water sandstone under the control of tectonic events,Ordos Basin. Petroleum Exploration and Development, 40(5): 513-520] [16] 杨仁超,何治亮,邱桂强,金之钧,孙冬胜,金晓辉. 2014. 鄂尔多斯盆地南部晚三叠世重力流沉积体系. 石油勘探与开发, 41(6): 661-670. [Yang R C,He Z L,Qiu G Q,Jin Z J,Sun D S,Jin X H.2014. Late Triassic gravity flow depositional systems in the southern Ordos Basin. Petroleum Exploration and Development, 41(6): 661-670] [17] 杨仁超,金之钧,孙冬胜,樊爱萍. 2015. 鄂尔多斯晚三叠世湖盆异重流沉积新发现. 沉积学报, 33(1): 10-20. [Yang R C,Jin Z J,Sun D S,Fan A P.2015. Discovery of hyperpycnal flow deposits in the Late Triassic lacustrine Ordos Basin. Acta Sedimentologica Sinica, 33(1): 10-20] [18] 杨田,操应长,王艳忠,张少敏. 2015. 深水重力流类型、沉积特征及成因机制: 以济阳坳陷沙河街组三段中亚段为例. 石油学报, 36(9): 1048-1059. [Yang T,Cao Y C,Wang Y Z,Zhang S M.2015. Types,sedimentary characteristics and genetic mechanisms of deep-water gravity flows: a case study of the middle submember in Member 3 of Shahejie Formation in Jiyang depression. Acta Petrolei Sinica, 36(9): 1048-1059] [19] 杨田,操应长,田景春. 2021. 浅谈陆相湖盆深水重力流沉积研究中的几点认识. 沉积学报, 39(1): 88-111. [Yang T,Cao Y C,Tian J C.2021. Discussion on research of deep-water gravity flow deposition in lacustrine basin. Acta Sedimentologica Sinica, 39(1): 88-111] [20] 袁选俊,林森虎,刘群,姚泾利,王岚,郭浩,邓秀芹,成大伟. 2015. 湖盆细粒沉积特征与富有机质页岩分布模式: 以鄂尔多斯盆地延长组长7油层组为例. 石油勘探与开发, 42(1): 34-43. [Yuan X J,Lin S H,Liu Q,Yao J L,Wang L,Guo H,Deng X Q,Cheng D W.2015. Lacustrine fine-grained sedimentary features and organic-rich shale distribution pattern: a case study of Chang 7 Member of Triassic Yanchang Formation in Ordos Basin,NW China. Petroleum Exploration and Development, 42(1): 34-43] [21] 张家强,李士祥,李宏伟,周新平,刘江艳,郭睿良,陈俊霖,李树同. 2021. 鄂尔多斯盆地延长组7油层组湖盆远端重力流沉积与深水油气勘探: 以城页水平井区长73小层为例. 石油学报, 42(5): 570-587. [Zhang J Q,Li S X,Li H W,Zhou X P,Liu J Y,Guo R L,Chen J L,Li S T.2021. Gravity flow deposits in the distal lacustrine basin of the 7th reservoir group of Yanchang Formation and deepwater oil and gas exploration in Ordos Basin: a case study of Chang 73 sublayer of Chengye horizontal well region. Acta Petrolei Sinica, 42(5): 570-587] [22] 张晓辉,冯顺彦,梁晓伟,冯胜斌,毛振华,任继胜,陈韶华. 2020. 鄂尔多斯盆地陇东地区延长组长7段沉积微相及沉积演化特征. 地质学报, 94(3): 957-967. [Zhang X H,Feng S Y,Liang X W,Feng S B,Mao Z H,Ren J S,Chen S H.2020. Sedimentary microfacies identification and inferred evolution of the Chang 7 Member of Yanchang Formation in the Longdong area,Ordos Basin. Acta Geologica Sinica, 94(3): 957-967] [23] 张倚安. 2021. 鄂尔多斯盆地三叠系延长组长73亚段细粒沉积特征及成因机制研究. 成都理工大学硕士学位论文. [Zhang Y A.2021. The characteristics and genetic mechanisms of fine-grained sediments of Chang 73 sub-member of Triassic Yanchang Formation,Ordos Basin. Masteral dissertation of Chengdu University of Technology] [24] 邹才能,冯有良,杨智,蒋文琦,潘松圻,张天舒,王小妮,朱吉昌,李嘉蕊. 2022. 湖盆细粒重力流沉积作用过程及甜点层发育机制是什么?地球科学, 47(10): 3864-3866. [Zou C N,Feng Y L,Yang Z,Jiang W Q,Pan S Q,Zhang T S,Wang X N,Zhu J C,Li J R.2022. What are the lacustrine fine-grained gravity flow sedimentation process and the genetic mechanism of sweet sections for shale oil?Earth Science, 47(10): 3864-3866] [25] 邹才能,赵政璋,杨华,付金华,朱如凯,袁选俊,王岚. 2009. 陆相湖盆深水砂质碎屑流成因机制与分布特征: 以鄂尔多斯盆地为例. 沉积学报, 27(6): 1065-1075. [Zou C N,Zhao Z Z,Yang H,Fu J H,Zhu R K,Yuan X J,Wang L.2009. Genetic mechanism and distribution of sandy debris flows in Terrestrial lacustrine basin. Acta Sedimentologica Sinica, 27(6): 1065-1075] [26] Allen J R L.1971. Mixing at turbidity current heads,and its geological implications. Journal of Sedimentary Research, 41(1): 97-113. [27] Baas J H,Best J L,Peakall J,Wang M.2009. A phase diagram for turbulent,transitional,and laminar clay suspension flows. Journal of Sedimentary Research, 79(4): 162-183. [28] Bates C C.1953. Rational theory of delta formation. AAPG Bulletin, 37(9): 2119-2162. [29] Bouma A H.1962. Sedimentology of some flysch deposits: a graphic approach to facies interpretation. Amsterdam/New York:. Amsterdam/New York: Elsevier,1-168. [30] De Blasio F V,Engvik L,Harbitz,C B,Elverhøi A.2004. Hydroplaning and submarine debris flows. Journal of Geophysical Research: Oceans,109(C1). [31] Felix M,Peakall J.2006. Transformation of debris flows into turbidity currents: mechanisms inferred from laboratory experiments. Sedimentology, 53(1): 107-123. [32] Felix M,Leszczyński S, Ślaczka A,Uchman A,Amy L,Peakall J.2009 Field expressions of the transformation of debris flows into turbidity currents,with examples from the Polish Carpathians and the French Maritime Alps. Marine and Petroleum Geology, 26(10): 2011-2020. [33] Harbitz C B,Parker G,Elverhøi A,Marr J G,Mohrig D,Harff P A.2003. Hydroplaning of subaqueous debris flows and glide blocks: analytical solutions and discussion. Journal of Geophysical Research: Solid Earth,108(B7). [34] Haughton P D W,Barker S P,McCaffrey W D.2003. ‘Linked' debrites in sand-rich turbidite systems-origin and significance. Sedimentology, 50(3): 459-482. [35] Haughton P,Davis C,McCaffrey W,Barker S.2009. Hybrid sediment gravity flow deposits-Classification,origin and significance. Marine and Petroleum Geology, 26(10): 1900-1918. [36] Kuenen P H,Migliorini C I.1950. Turbidity currents as a cause of graded bedding. The Journal of Geology, 58(2): 91-127. [37] Lowe D R.1976. Subaqueous liquefied and fluidized sediment flows and their deposits. Sedimentology, 23(3): 285-308. [38] Lowe D R.1979. Sediment gravity flows: their classification and some problems of application to natural flows and deposits. Geology of Continental Slopes. SEPM Special Publication, 27: 75-82. [39] Lowe D R.1982. Depositional models with special reference to the deposits of high-density turbidity currents. Journal of Sedimentary Petrology, 52: 279-297. [40] Marr J G,Harff P A,Shanmugam G,Parker G.2001. Experiments on subaqueous sandy gravity flows: the role of clay and water content in flow dynamics and depositional structures. Geological Society of America Bulletin, 113(11): 1377-1386. [41] Middleton G V,Hampton M A.1973. Sediment Gravity Flows:Mechanics of Flow and Deposition. In:Middleton G V,Bouma A H (eds). Turbidites and Deep-water Sedimentation. Los Angles: Pacific Section SEPM,1-38. [42] Mohrig D,Ellis C,Parker G,Whipple K X,Hondzo M.1998. Hydroplaning of subaqueous debris flows. Geological Society of America Bulletin, 110(3): 387-394. [43] Mohrig D,Marr J G.2003. Constraining the efficiency of turbidity current generation from submarine debris flows and slides using laboratory experiments. Marine and Petroleum Geology, 20(6-8): 883-899. [44] Morgenstern N R.1967. Submarine slumping and the initiation of turbidity currents. Marine geotechnique, 3: 189-220. [45] Normark W R.1970. Growth patterns of deep-sea fans. AAPG Bulletin, 54(11): 2170-2195. [46] Parker G.1996. Interaction between basic research and applied engineering: a personal perspective. Journal of Hydraulic Research, 34(3): 291-316. [47] Postma G,Cartigny M J B.2014. Supercritical and subcritical turbidity currents and their deposits: a synthesis. Geology, 42(11): 987-990. [48] Schieber J,Southard J B.2009. Bedload transport of mud by floccule ripples-Direct observation of ripple migration processes and their implications. Geology, 37(6): 483-486. [49] Schwarz H U.1982. Subaqueous slope failures-experiments and modern occurrences. Stuttgart:Schweizerbart'sche Verlagsbuchhandlung. [50] Shanmugam G.1996. High-density turbidity currents: are they sandy debris flows?Journal of Sedimentary Research, 66(1): 2-10. [51] Shanmugam G.2012. New perspectives on deep-water sandstones: origin,recognition,initiation,and reservoir quality. Elsevier: 1-423. [52] Shanmugam G.2013. New perspectives on deep-water sandstones: implications. Petroleum Exploration and Development, 40(3): 316-324. [53] Shanmugam G.2017. Global case studies of soft-sediment deformation structures(SSDS): definitions,classifications,advances,origins,and problems. Journal of Palaeogeography, 6(4): 251-320. [54] Shanmugam G,Lehtonen L R,Straume T,Syvertsen S E,Hodgkinson R J,Skibeli M.1994. Slump and debris-flow dominated upper slope facies in the Cretaceous of the Norwegian and northern north seas(61-67N): implications for sand distribution. AAPG Bulletin, 78(6): 910-937. [55] Talling P J,Amy L A,Wynn R B,Blackbourn G,Gibson O.2007. Evolution of turbidity currents deduced from extensive thin turbidites: Marnoso Arenacea Formation(Miocene),Italian Apennines. Journal of Sedimentary Research, 77(3): 172-196. [56] Talling P J,Masson D G,Sumner E J,Malgesini G.2012. Subaqueous sediment density flows: depositional processes and deposit types. Sedimentology, 59(7): 1937-2003. [57] Talling P J.2013. Hybrid submarine flows comprising turbidity current and cohesive debris flow: deposits,theoretical and experimental analyses,and generalized models. Geosphere, 9(3): 460-488. [58] Wagoner Andel T H,Komar P D.1969. Ponded sediments of the Mid-Atlantic Ridge between 22 and 23 North latitude. Geological Society of America Bulletin, 80(7): 1163-1190. [59] Wang F,Chen R,Yu W,Tian J C,Liang X W,Tan X F,Gong L.2021. Characteristics of lacustrine deepwater fine-grained lithofacies and source-reservoir combination of tight oil in the Triassic chang 7 member in Ordos Basin,China. Journal of Petroleum Science and Engineering, 202: 108429. [60] Zavala C,Arcuri M.2016. Intrabasinal and extrabasinal turbidites: origin and distinctive characteristics. Sedimentary Geology, 337: 36-54. [61] Zou C N,Wang L,Li Y,Tao S Z,Hou L H.2012. Deep-lacustrine transformation of sandy debrites into turbidites,Upper Triassic,Central China. Sedimentary Geology, 265: 143-155.