Characteristics,evolution and genetic mechanism of the Cenozoic island dolostones
WANG Rui1, WU Lü1, YU Kefu1, REN Min2, PAN Liyin3
1 School of Marine Sciences,Coral Reef Research Center of China,Guangxi University; Guangxi Laboratory on the Study of Coral Reefs in the South China Sea,Nanning 530004,China; 2 College of Oceans and Earth Sciences,Xiamen University,Fujian Xiamen 361005,China; 3 Key Laboratory of Carbonate Reservoirs,CNPC;PetroChina Hangzhou Research Institute of Geology,Hangzhou 310023,China
Abstract Cenozoic island dolostones found throughout the global oceans are considered as ideal natural laboratories for deciphering the classic “dolomite problem”due to their shallow burial,eogenetic formation,and weak diagenetic modifications. This paper systematically summarizes the research progress on these dolostones in term of their basic characteristics,time evolution,fluid properties,and genetic models,and discusses the paleoenvironmental and paleoclimatic factors that influence their formation. The Cenozoic island dolostones(tens to hundreds of meters thick)show similar petrological(texture-retentive and texture-destructive),stoichiometric(high-calcium dolomite and low-calcium dolomite),and geochemical(e.g.,carbon and oxygen isotopes,strontium content)properties,and are formed contemporarily during the 10-0.5 Ma interval. The strontium isotopes of the dolostones indicate that the age of dolomitization generally becomes progressively younger from the bottom to the top of the dolostone sections in a continuous or semi-continuous way on individual islands(atolls,carbonate platforms)under the influence of eustatic change and tectonic subsidence. Carbonate clumped and oxygen isotopes indicate that the primary fluid source for the island dolomitization is normal to slightly evaporated seawater. Furthermore,the high-calcium dolomite is formed primarily from normal seawater,while the low-calcium dolomite is formed from slightly evaporated seawater. A single fluid flowing mechanism(e.g.,seepage,reflux,geothermal convection)is insufficient to explain the genesis of the Cenozoic island dolostones;and available data demonstrate that the formation of the island dolostones is promoted by multiple flow mechanisms. During the island dolomitization period(10-0.5 Ma),there is no single paleoenvironmental or paleoclimatic factor(e.g.,seawater Mg/Ca ratio,temperature,$\text{SO}_{4}^{2-}$ concentration,redox state,pCO2,pH)that corresponds to significant dolomitization,implying that the Cenozoic island dolomitization event was probably controlled by multiple paleoenvironmental and paleoclimatic factors. To better understand the genetic mechanisms of the Cenozoic island dolostones,future research should focus on the micro-processes of dolomitization,the application of new geochemical methods and numerical simulation.
Fund:Guangxi Natural Science Foundation(No.2021GXNSFAA220126),National Natural Science Foundation of China(Nos. 41962010,42030502,42090041)and Open Fund Project of Key Laboratory of Carbonate Reservoirs,CNPC(No. RIPED-2021-JS-1731)
Corresponding Authors:
YU Kefu,born in 1969,graduated from Guangzhou Institute of Geochemistry,Chinese Academy of Sciences in 2000 with his Ph.D. degree. He is now a professor in the School of Marine Science,Guangxi University,and is mainly engaged in geology,ecology and environment of coral reefs in the South China Sea. E-mail: kefuyu@scsio.ac.cn.
About author: WANG Rui,born in 1983,graduated from China University of Petroleum(Beijing)in 2012 with his Ph.D. degree. He is now an associate professor in the School of Marine Science,Guangxi University,and is mainly engaged in the research on carbonate sedimentology. E-mail: wrzfl@gxu.edu.cn.
Cite this article:
. Characteristics,evolution and genetic mechanism of the Cenozoic island dolostones[J]. JOPC, 2023, 25(6): 1277-1298.
. Characteristics,evolution and genetic mechanism of the Cenozoic island dolostones[J]. JOPC, 2023, 25(6): 1277-1298.
[1] 鲍志东,季汉成,梁婷,韦明洋,史燕青,李宗峰,鲁锴,向鹏飞,张华,严睿,郭玉鑫,李卓伦,万谱,杨志波,麻晓东,刘锐,刘灿星,钟旭临,郭晓琦,蔡忠贤,张水昌. 2019. 中新元古界原生白云岩: 以中国典型台地区为例. 古地理学报, 21(6): 869-884. [Bao Z D,Ji H C,Liang T,Wei M Y,Shi Y Q,Li Z F,Lu K,Xiang P F,Zhang H,Yan R,Guo Y X,Li Z L,Wan P,Yang Z B,Ma X D,Liu R,Liu C X,Zhong X L,Guo X Q,Cai Z X,Zhang S C. 2019. Primary dolostones of the Meso-Neoproterozoic: Cases on typical platforms in China. Journal of Palaeogeography(Chinese Edition), 21(6): 869-884] [2] 韩雪,徐维海,罗云,黎刚,刘建国,朱小畏,程俊,苗莉,向荣,颜文. 2022. 南沙群岛南科1井生物礁白云岩发育特征及铁白云石成因机制的初步研究. 热带海洋学报, 41(5): 74-88. [Han X,Xu W H,Luo Y,Li G,Liu J G,Zhu X W,Cheng J,Miao L,Xiang R,Yan W. 2022. Preliminary studies on the development characteristics of reef dolostones and the formation mechanism of iron dolomite in the Well Nanke 1,Nansha Islands. Journal of Tropical Oceanography, 41(5): 74-88] [3] 何起祥,张明书. 1990. 西沙群岛新第三纪白云岩的成因与意义. 海洋地质与第四纪地质, 10(2): 47-57. [He Q X,Zhang M S. 1990. Origin of Neogene dolomite in Xisha Islands and their significance. Marine Geology & Quaternary Geology, 10(2): 47-57] [4] 何治亮,马永生,张军涛,朱东亚,钱一雄,丁茜,陈代钊. 2020. 中国的白云岩与白云岩储层: 分布、成因与控制因素. 石油与天然气地质, 41(1): 1-14. [He Z L,Ma Y S,Zhang J T,Zhu D Y,Qian Y X,Ding Q,Chen D Z. 2020. Distribution,genetic mechanism and control factors of dolomite and dolomite reservoirs in China. Oil & Gas Geology, 41(1): 1-14] [5] 梅冥相. 2012. 从3个科学理念简论沉积学中的“白云岩问题”. 古地理学报, 14(1): 1-12. [Mei M X. 2012. Brief introduction of “dolostone problem”in sedimentology according to three scientific ideas. Journal of Palaeogeography(Chinese Edition), 14(1): 1-12] [6] 王振峰,时志强,张道军,黄可可,尤丽,段雄,李胜勇. 2015. 西沙群岛西科1井中新统—上新统白云岩微观特征及成因. 地球科学, 40(4): 633-644. [Wang Z F,Shi Z Q,Zhang D J,Huang K K,You L,Duan X,Li S Y. 2015. Microscopic features and genesis for Miocene to Pliocene dolomite in Well Xike-1,Xisha Islands. Earth Science, 40(4): 633-644] [7] 谢树成,刘邓,邱轩,黄咸雨,Thomas J. ALGEO. 2016. 微生物与地质温压的一些等效地质作用. 中国科学: 地球科学, 46(8): 1087-1094. [Xie S C,Liu D,Qiu X,Huang X Y,Algeo T J. 2016. Microbial roles equivalent to geological agents of high temperature and pressure in deep Earth. Scientia Sinica Terrae, 46(8): 1087-1094] [8] 闫志为,刘辉利,张志卫. 2009. 温度及CO2对方解石、白云石溶解度影响特征分析. 中国岩溶, 28(1): 7-10. [Yan Z W,Liu H L,Zhang Z W. 2009. Influences of temperature and ${{\text{P}}_{\text{C}{{\text{O}}_{2}}}}$ on the solubility of calcite and dolomite. Carsologica Sinica, 28(1): 7-10] [9] Aharon P,Socki R A,Chan L. 1987. Dolomitization of atolls by sea water convection flow: test of a hypothesis at Niue,South Pacific. The Journal of Geology, 95: 187-203. [10] Aissaoui D M,Buigues D,Purser B H. 1986. Model of reef diagenesis: Mururoa atoll,French Polynesia. In: Schroeder J H,Purser B H(eds). Reef Diagenesis. Berlin: Springer,27-52. [11] Archer D,Martin P,Buffett B,Brovkin V,Rahmstorf S,Ganopolski A. 2004. The importance of ocean temperature to global biogeochemistry. Earth & Planetary Science Letters, 222: 333-348. [12] Aris A Z,Praveena S M,Abdullah M H. 2010. Saturation states of carbonate minerals in a freshwater-seawater mixing zone of small tropical island's aquifer. Chinese Journal of Geochemistry, 29: 278-286. [13] Arvidson R S. 1998. The kinetics of dolomite precipitation with application to changes in seawater saturation state over the past 100 Ma. Doctoral dissertation of The University of Hawaii: 1-320. [14] Arvidson R S,MacKenzie F T. 1997. Tentative kinetic model for dolomite precipitation rate and its application to dolomite distribution. Aquatic Geochemistry, 2: 273-298. [15] Arvidson R S,Mackenzie F T. 1999. The dolomite problem: control of precipitation kinetics by temperature and saturation state. American Journal of Science, 299: 257-288. [16] Arvidson R S,Guidry M W,MacKenzie F T. 2011. Dolomite controls on Phanerozoic seawater chemistry. Aquatic Geochemistry, 17: 735-747. [17] Badiozamani K. 1973. The dorag dolomitization model: application to the Middle Ordovician of Wisconsin. Journal of Sedimentary Research, 43: 965-984. [18] Bahr J,Eberli G,Swart P. 1995. Simulation of coupled heat and fluid flow in a carbonate bank. 1st SEPM Congr. Sediment. Geol.,St. Petersberg Beach,FL,Congress Program Abstracts,27. [19] Bénézeth P,Saldi G D,Dandurand J L,Schott J. 2011. Experimental determination of the solubility product of magnesite at 50 to 200 ℃. Chemical Geology, 286: 21-31. [20] Brennan S T,Lowenstein T K,Cendón D I. 2013. The major-ion composition of Cenozoic seawater: the past 36 million years from fluid inclusions in marine halite. American Journal of Science, 313: 713-775. [21] Bi D J,Zhai S K,Zhang D J,Liu X F,Liu X Y,Jiang L J,Zhang A B. 2018. Constraints of fluid inclusions and C,O isotopic compositions on the origin of the dolomites in the Xisha Islands,South China Sea. Chemical Geology, 493: 504-517. [22] Brennan S T,Lowenstein T K,Cendon D I. 2013. The major-ion composition of Cenozoic seawater: The past 36 million years from fluid inclusions in marine halite. American Journal of Science, 313: 713-775. [23] Budd D A. 1997. Cenozoic dolomites of carbonate islands: their attributes and origin. Earth-Science Reviews, 42: 1-47. [24] Budd D A,Mathias W D. 2015. Formation of lateral patterns in rock properties by dolomitization: evidence from a Miocene reaction front(bonaire,Netherlands Antilles). Journal of Sedimentary Research, 85: 1082-1101. [25] Burns S J,McKenzie J A,Vasconcelos C. 2000. Dolomite formation and biogeochemical cycles in the Phanerozoic. Sedimentology, 47: 49-61. [26] Chilingar G V. 1956. Relationship between Ca/Mg ratio and geologic age. AAPG Bulletin, 40: 2256-2266. [27] Choquette P W,Steinen R P. 1980. Mississippian non-supratidal dolomite,Ste. genevieve limestone,Illinois Basin: evidence for mixed-water dolomitization. In: Zenger D H,Dunham J B,Ethington R L(eds). Concepts and Models of Dolomitization,SEPM Society for Sedimentary Geology, 28: 163-196. [28] Coggon R M,Teagle D A H,Smith-Duque C E,Alt J C,Cooper M J. 2010. Reconstructing past seawater Mg/Ca and Sr/Ca from mid-ocean ridge flank carbonates. Science, 327: 1114-1117. [29] Dawans J M,Swart P K. 1988. Textural and geochemical alternations in Late Cenozoic Bahamian dolomites. Sedimentology, 35: 385-403. [30] Famoori F,Azin R,Osfouri S,Arya N. 2021. Experimental investigation of the geochemical and mineralogical interaction between CO2 and carbonate: Evaluation of CO2 sequestration in dolomite-calcite formations. Energy and Climate Change, 2: 100029. [31] Farrell J W,Clemens S C,Gromet L P. 1995. Improved chronostratigraphic reference curve of late Neogene seawater87Sr/86Sr. Geology, 23: 403-406. [32] Filippelli G M. 2008. The global phosphorus cycle: past,present,and future. Elements, 4: 89-95. [33] Fouke B W. 1994. Deposition,diagenesis and dolomitization of Neogene Seroe Domi Formation coral reef limestones on Curaçao,Netherlands Antilles. Natuurwetenschappelijke Studiekring voor het Caraibisch Gebied(Publications Foundation for Scientific Research in the Caribbean Region),Amsterdam,133:182. [34] Fouke B W,Beets C J,Meyers W J,Hanson G N,Melillo A J. 1996. 87Sr/86Sr Chronostratigraphy and dolomitization history of the Seroe Domi Formation,Curaçao(Netherlands Antilles). Facies, 35: 293-320. [35] Gebelein C D,Steinen R P,Garrett P,Hoffman E J,Queen J M,Plummer L N. 1980 Subsurface dolomitization beneath the tidal flats of central West Andros Island,Bahamas. In: Zenger D H,Dunham J B,Ethington R L(eds). Concepts and Models of Dolomitization. SEPM(Society for Sedimentary Geology), 28: 31-50. [36] Gill I P,Moore C H,Aharon P. 1995. Evaporitic mixed-water dolomitization on St. Croix,U.S.V.I. Journal of Sedimentary Research, 65: 591-604. [37] Gregg J M,Bish D L,Kaczmarek S E,Machel H G,Hollis C. 2015. Mineralogy,nucleation and growth of dolomite in the laboratory and sedimentary environment: a review. Sedimentology, 62: 1749-1769. [38] Guo Y R,Deng W F,Liu X,Kong K,Yan W,Wei G J. 2021. Clumped isotope geochemistry of island carbonates in the South China Sea: Implications for early diagenesis and dolomitization. Marine Geology, 437: 106513. [39] Guzikowski M. 1987. Evolution of pore fluid chemistry during the recrystallization of periplatform carbonates Bahamas. Masteral dissertation of University of Miami,Eunpublished: 215. [40] Halley R,Vacher H,Shinn E,Haines J. 1994. Marine geohydrology: dynamics of subsurface sea water around Key Largo,Florida. Geol. Sot. Am.,Annu. Meet. Program Abstracts, 26: A411. [41] Hanshaw B B,Back W,Deike R G. 1971. A geochemical hypothesis for dolomitization by ground water. Economic Geology, 66: 710-724. [42] Haq B U,Hardenbol J,Vail P R. 1987. Chronology of fluctuating sea levels since the Triassic. Science, 235: 1156-1167. [43] Hardie L A. 1987. Dolomitization: a critical view of some current views. Journal of Sedimentary Research, 57: 166-183. [44] Hermoyian C S,Owen R M. 2001. Late Miocene-early Pliocene biogenic bloom: evidence from low-productivity regions of the Indian and Atlantic Oceans. Paleoceanography, 16: 95-100. [45] Hein J R,Gray S C,Richmond B M,White L D. 1992. Dolomitization of Quaternary reef limestone,Aitutaki,Cook Islands. Sedimentology, 39: 645-661. [46] Hodell D A,Mueller P A,Garrido J R. 1991. Variations in the strontium isotopic composition of seawater during the Neogene. Geology, 19: 24-27. [47] Hodell D A,Mueller P A,McKenzie J A,Mead G A. 1989. Strontium isotope stratigraphy and geochemistry of the late Neogene ocean. Earth & Planetary Science Letters, 92: 165-178. [48] Holland H D,Zimmermann H. 2000. The dolomite problem Revisited. International Geology Review, 42: 481-490. [49] Horita J. 2014. Oxygen and carbon isotope fractionation in the system dolomite-water-CO2 to elevated temperatures. Geochimica et Cosmochimica Acta, 129: 111-124. [50] Humphrey J D. 1988. Late Pleistocene mixing zone dolomitization,southeastern Barbados,West Indies. Sedimentology, 35: 327-348. [51] Jones B. 2005. Dolomite crystal architecture: genetic implications for the origin of the Tertiary dolostones of the Cayman Islands. Journal of Sedimentary Research, 75: 177-189. [52] Jones B. 2007. Inside-out dolomite. Journal of Sedimentary Research, 77: 539-551. [53] Jones B,Luth R W. 2002. Dolostones from Grand Cayman,British West Indies. Journal of Sedimentary Research, 72: 559-569. [54] Jones B,Luth R W. 2003. Temporal evolution of Tertiary dolostones on Grand Cayman as determined by87Sr/86Sr. Journal of Sedimentary Research, 73: 187-205. [55] Jones B,Luth R W,MacNeil A J. 2001. Powder X-ray diffraction analysis of homogeneous and heterogeneous sedimentary dolostones. Journal of Sedimentary Research, 71: 790-799. [56] Kaczmarek S E,Sibley D F. 2011. On the evolution of dolomite stoichiometry and cation order during high-temperature synthesis experiments: An alternative model for the geochemical evolution of natural dolomites. Sedimentary Geology, 240: 30-40. [57] Kaufman J. 1994. Numerical models of fluid flow in carbonate platforms: implications for dolomitization. Journal of Sedimentary Research, 64: 128-139. [58] Land L S. 1973. Holocene meteoric dolomitization of Pleistocene limestones,North Jamaica. Sedimentology, 20: 411-424. [59] Land L S. 1980. The isotopic and trace element geochemistry of dolomite: the state of the art. In: Zenger D H,Dunham J B,Etherington R L(eds). Concepts and Models of Dolomitization. Society of Economic Paleontologists and Mineralogists,Special Publication, 28: 87-l10. [60] Land L S. 1985. The origin of massive dolomite. Journal of Geological Education, 33: 112-125. [61] Land L S. 1991. Dolomitization of the Hope Gate Formation(north Jamaica)by seawater: reassessment of mixing-zone dolomite. In: Taylor H P,O'Neil J R,Kaplan I R(eds). Stable Isotope Geochemistry: A Tribute to Samuel Epstein. Geochem. Sot. Spec. Pub., 3: 121-133. [62] Land L S. 1998. Failure to Precipitate Dolomite at 25 ℃ from dilute solution despite 1000-fold oversaturation after 32 years. Aquatic Geochemistry, 4: 361-368. [63] Land L S,Hoops G K. 1973. Sodium in carbonate sediments and rocks: a possible index to the salinity of diagenetic solutions. Journal of Sedimentary Research, 43: 614-617. [64] Li M T,Wignall P B,Dai X,Hu M Y,Song H J. 2021. Phanerozoic variation in dolomite abundance linked to oceanic anoxia. Geology, 49(6): 698-702. [65] Lucia F J,Major R P. 1994. Porosity evolution through hypersaline reflux dolomitization. In: Purser B,Tucker M,Zenger D.(Editors),Dolomites: a Volume in Honor of Dolomieu. Int. Assoc. Sedimentol. Spec. Pub., 21: 25-341. [66] Lumsden D N,Chimahusky J S. 1980. Relationship between dolomite nonstoichiometry and carbonate facies parameters. In: Zenger D,Dunham J(eds). Concepts and Models of Dolomitization. SEPM Society for Sedimentary Geology, 28: 123-137. [67] Machel H G. 2004. Concepts and models of dolomitization: a critical reappraisal. In: Braithwaite C,Rizzzi G,Darke G(eds). The Geometry and Petrogenesis of Dolomite Hydrocarbon Reservoirs. Geological Society,London,Special Publications, 235: 7-63. [68] Machel H G,Mountjoy E W. 1986. Chemistry and environments of dolomitization: a reappraisal. Earth-Science Reviews, 23: 175-222. [69] Machel H G,Burton E A. 1994. Golden grove dolomite,Barbados: origin from modified seawater. Journal of Sedimentary Research, 64: 741-751. [70] MacNeil A,Jones B. 2003. Dolomitization of the Pedro Castle Formation(Pliocene),Cayman Brac,British West Indies. Sedimentary Geology, 162: 219-238. [71] Major R. 1984. The Midway Atoll coral cap: Meteoric diagenesis,amplitude of sea-level fluctuation and dolomitization. Doctoral dissertation of Brown University: 1-133. [72] Matthews A,Katz A. 1977. Oxygen isotope fractionation during the dolomitization of calcium carbonate. Geochimica et Cosmochimica Acta, 41: 1431-1438. [73] Mazzullo S J. 1992. Geochemical and neomorphic alteration of dolomite: a review. Carbonates & Evaporites, 7(1): 21-37. [74] Mcarthur J M,Howarth R J,Bailey T R. 2001. Strontium isotope stratigraphy: lowess version 3: best fit to the marine Sr-isotope curve for 0-509 Ma and accompanying look-up table for deriving numerical age. The Journal of Geology, 109(2): 155-170. [75] McArthur J M,Howarth R J,Shields G A, Zhou Y. 2020. Strontium Isotope Stratigraphy. In: Geologic Time Scale 2020. Elsevier: 211-238. [76] McKenzie J,Isern A,Elderfield H,Williams A,Swart P. 1993. Strontium isotope dating of paleoceanographic,lithologic,and dolomitization events on the northeastern Australian margin,Leg 133. TX,United States: Texas A & M University,Ocean Drilling Program,College Station: 489-498. [77] Miller K G,Kominz M A,Browning J V,Wright J D,Mountain G S,Katz M E,Sugarman P J,Cramer B S,Christie-Blick N,Pekar S F. 2005. The Phanerozoic record of global sea-level change. Science, 310: 1293-1298. [78] Morrow D. 1982a. Diagenesis 1. Dolomite-Part 1: the chemistry of dolomitization and dolomite precipitation. Geoscience Canada, 9(1): 5-13. [79] Morrow D. 1982b. Diagenesis 2. Dolomite-Part 2 dolomitization models and ancient dolostones. Geoscience Canada, 9(2): 95-107. [80] Morse J W,Zullig J J,Bernstein L D,Millero F J,Milne P,Mucci A,Choppin G R. 1985. Chemistry of calcium carbonate-rich shallow water sediments in the Bahamas. American Journal of Science, 285(2): 147-185. [81] Murray R. 1969. Hydrology of South Bonaire,Netherlands Antilles: a rock selective dolomitization model. Journal of Sedimentary Research, 39: 987-1035. [82] Murray S T,Swart P K. 2017. Evaluating formation fluid models and calibrations using clumped isotope paleothermometry on Bahamian dolomites. Geochimica et Cosmochimica Acta, 206: 73-93. [83] Northrop D A,Clayton R N. 1966. Oxygen-isotope fractionations in systems containing dolomite. The Journal of Geology, 74: 174-196. [84] Ohde S,Elderfield H. 1992. Strontium isotope stratigraphy of Kita-daito-jima Atoll,North Philippine Sea: implications for Neogene sea-level change and tectonic history. Earth and Planetary Science Letters, 113: 473-486. [85] Ohde S,Greaves M,Masuzawa T,Buckley H A,Wagoner Woesik R,Wilson P A,Pirazzoli P A,Elderfield H. 2002. The chronology of Funafuti Atoll: revisiting an old friend. Proceedings of the Royal Society of London Series A: Mathematical Physical & Engineering Sciences, 458: 2289-2306. [86] Paytan A,Kastner M,Campbell D,Thiemens M H. 1998. Sulfur isotopic composition of Cenozoic seawater sulfate. Science, 282: 1459-1462. [87] Petrash D A,Bialik O M,Bontognali T R R,Vasconcelos C,Roberts J A,McKenzie J A,Konhauser K O. 2017. Microbially catalyzed dolomite formation: from near-surface to burial. Earth-Science Reviews, 171: 558-582. [88] Petrash D A,Bialik O M,Staudigel P T,Konhauser K O,Budd D A. 2021. Biogeochemical reappraisal of the freshwater-seawater mixing-zone diagenetic model. Sedimentology, 68: 1797-1830. [89] Ren M,Jones B. 2017. Spatial variations in the stoichiometry and geochemistry of Miocene dolomite from Grand Cayman: Implications for the origin of island dolostone. Sedimentary Geology, 348: 69-93. [90] Ren M,Jones B. 2018. Genesis of island dolostones. Sedimentology, 65: 2003-2033. [91] Rivers J M,Kurt K T,James N P. 2012. Salinity reflux and dolomitization of southern Australian slope sediments: the importance of low carbonate saturation levels. Sedimentology, 59: 445-465. [92] Rodgers K,Easton A J,Downes C. 1982. The chemistry of carbonate rocks of Niue Island,South Pacific. The Journal of Geology, 90: 645-662. [93] Meknassi S El T,Cardone G D,De Rafélis M,Brahmi C,Chavagnac V. 2018. Sr isotope ratios of modern carbonate shells: good and bad news for chemostratigraphy. Geology, 46: 1003-1006. [94] Saller A H. 1984. Petrologic and geochemical constraints on the origin of subsurface dolomite,Enewetak Atoll: an example of dolomitization by normal seawater. Geology, 12(4): 217-220. [95] Saller A H,Henderson N. 1998. Distribution of porosity and permeability in platform dolomites: insight from the Permian of west Texas. AAPG Bulletin, 82(8): 1528-1550. [96] Sass E,Bein A. 1988. Dolomites and salinity: a comparative geochemical study. Sedimentology and Geochemistry of Dolostones. SEPM(Society for Sedimentary Geology), 43: 223-233. [97] Sass E,Katz A. 1982. The origin of platform dolomites: new evidence. American Journal of Science, 282(8): 1184-1213. [98] Sibley D F,Gregg J M. 1987. Classification of dolomite rock textures. Journal of Sedimentary Research, 57(6): 967-975. [99] Simms M. 1984. Dolomitization by ground-water flow systems in carbonate platforms. AAPG Bulletin, 68(9): 1219-1220. [100] Sosdian S M,Greenop R,Hain M P,Foster G L,Pearson P N,Lear C H. 2018. Constraining the evolution of Neogene ocean carbonate chemistry using the boron isotope pH proxy. Earth & Planetary Science Letters, 498: 362-376. [101] Sperber C M,Wilkinson B H,Peacor D R. 1984. Rock composition,dolomite stoichiometry,and rock/water reactions in dolomitic carbonate rocks. The Journal of Geology, 92: 609-622. [102] Steinthorsdottir M,Coxall H K,de Boer A M,Huber M,Barbolini N,Bradshaw C D,Burls N J,Feakins S J,Gasson E,Henderiks J,Holbourn A E,Kiel S,Kohn M J,Knorr G,Kürschner W M,Lear C H,Liebrand D,Lunt D J,Mörs T,Pearson P N,Pound M J,Stoll H,Strömberg C A E. 2020. The Miocene: the future of the past. Paleoceanography and Paleoclimatology, 36: e2020PA004037. [103] Stüben D,Sedwick P,Colantoni P. 1996. Geochemistry of submarine warm springs in the limestone cavern of Grotta Azzurra,Capo Palinuro,Italy: Evidence for mixing-zone dolomitisation. Chemical Geology, 131: 113-125. [104] Sun S Q. 1992. Skeletal aragonite dissolution from hypersaline seawater: a hypothesis. Sedimentary Geology, 77: 249-257. [105] Suzuki Y,Iryu Y,Inagaki S,Yamada T,Aizawa S,Budd D A. 2006. Origin of atoll dolomites distinguished by geochemistry and crystal chemistry: Kita-daito-jima,northern Philippine Sea. Sedimentary Geology, 183: 181-202. [106] Swart P K. 2015. The geochemistry of carbonate diagenesis: the past,present and future. Sedimentology, 62: 1233-1304. [107] Swart P K,Melim L A. 2000. The origin of dolomites in Tertiary sediments from the margin of Great Bahama Bank. Journal of Sedimentary Research, 70: 738-748. [108] Takeshita Y. 2017. Understanding feedbacks between ocean acidification and coral reef metabolism. Journal of Geophysical Research: Oceans, 122: 1639-1642. [109] Vahrenkamp V C,Swart P K. 1994. Late Cenozoic dolomites of the Bahamas: metastable analogues for the genesis of ancient platform dolomites. In: Purser B H,Tucker M E,Zenger D L(eds). Dolomites: a volume in honour of dolomieu. Int. Assoc. Sedimentol. Spec. Publ.: 133-153. [110] Vahrenkamp V C,Swart P K,Ruiz J. 1988. Constraints and interpretation of87 Sr/86 Sr ratios in Cenozoic dolomites. Geophysical Research Letters, 15: 385-388. [111] Vahrenkamp V C,Swart P K. 1990. New distribution coefficient for the incorporation of strontium into dolomite and its implications for the formation of ancient dolomites. Geology, 18: 387-391. [112] Vahrenkamp V C,Swart P K,Ruiz J. 1991. Episodic dolomitization of Late Cenozoic carbonates in the Bahamas: evidence from strontium isotopes. Journal of Sedimentary Research, 61(6): 1002-1014. [113] Vail P R,Mitchum R M. 1979. Global cycles of relative changes of sea level from seismic stratigraphy: resources,comparative structure and eustatic changes in sea level. In: Geological and Geophysical Investigations of Continental Margins. AAPG Memoir: 469-472. [114] Vasconcelos C,McKenzie J A,Bernasconi S,Grujic D,Tiens A. 1995. Microbial mediation as a possible mechanism for natural dolomite formation at low temperatures. Nature, 377: 220-222. [115] Vasconcelos C,McKenzie J A. 1997. Microbial mediation of modern dolomite precipitation and diagenesis under anoxic conditions(Lagoa Vermelha,Rio de Janeiro,Brazil). Journal of Sedimentary Research, 67: 378-390. [116] Vasconcelos C,McKenzie J A,Warthmann R,Bernasconi S M. 2005. Calibration of the δ18O paleothermometer for dolomite precipitated in microbial cultures and natural environments. Geology, 33: 317-320. [117] Veillard C M A,John C M,Krevor S,Najorka J. 2019. Rock-buffered recrystallization of Marion Plateau dolomites at low temperature evidenced by clumped isotope thermometry and X-ray diffraction analysis. Geochimica et Cosmochimica Acta, 252: 190-212. [118] Wang P X,Li Q Y. 2009. The South China Sea: Paleoceanography and Sedimentology. Springer: 172. [119] Wang R,Jones B,Yu K F. 2019. Island dolostones: genesis by time-transgressive or event dolomitization. Sedimentary Geology, 390: 15-30. [120] Wang R,Yu K,Jones B,Jiang W,Xu S,Fan T,Zhang Y. 2021. Dolomitization micro-conditions constraint on dolomite stoichiometry: a case study from the Miocene Huangliu Formation,Xisha Islands,South China Sea. Marine & Petroleum Geology, 133: 105286. [121] Wang R,Xiao Y,Yu K F,Jones B,Wu L,Liang F,Yang Y,Chang B. 2022. Temperature regimes during formation of Miocene island dolostones as determined by clumped isotope thermometry: Xisha Islands,South China Sea. Sedimentary Geology, 429: 106079. [122] Wang R,Yu K F,Jones B,Wang Y H,Zhao J X,Feng Y,Bian L Z,Xu,S D,Fan T L,Jiang W,Zhang Y. 2018. Evolution and development of Miocene “island dolostones”on Xisha Islands,South China Sea. Marine Geology, 406: 142-158. [123] Wang X L,Planavsky N J,Reinhard C T,Hein J R,Johnson T M. 2016. A Cenozoic seawater redox record derived from238U/235U in ferromanganese crusts. American Journal of Science, 316(1): 64-83. [124] Warren J. 2000. Dolomite: occurrence,evolution and economically important associations. Earth-Science Reviews, 52: 1-81. [125] Wheeler C W,Aharon P,Ferrell R E. 1999. Successions of late Cenozoic platform dolomites distinguished by texture,geochemistry,and crystal chemistry,Niue,South Pacific. Journal of Sedimentary Research, 69: 239-255. [126] Whitaker F F,Smart P L. 1990. Active circulation of saline ground waters in carbonate platforms: evidence from the Great Bahama Bank. Geology, 18: 200-203. [127] Whitaker F F,Smart P L. 1998. Hydrology,geochemistry and diagenesis of fracture blue holes,South Andros,Bahamas. Karst Waters Institute Special Publication, 25: 75-82. [128] Whitaker F F,Smart P L. 1993. Circulation of saline ground water in carbonateplatforms: a review and case study from the Bahamas. In: Horbury A D,Rorbinson A D(eds). Diagenesis and Basin Hydrodynamics. AAPG Bulletin, 36: 113-132. [129] Whitaker F F,Smart P L,Jones G D. 2004. Dolomitization: from conceptual to numerical models. Geological Society,London,Special Publications, 235: 99-139. [130] Wilson M E J. 2008. Global and regional influences on equatorial shallow-marine carbonates during the Cenozoic. Palaeogeography,Palaeoclimatology,Palaeoecology, 265: 262-274. [131] Winkelstern I Z,Lohmann K C. 2016. Shallow burial alteration of dolomite and limestone clumped isotope geochemistry. Geology, 44: 467-470. [132] Wu S,Yang Z,Wang D,Lü F,Lüdmann T,Fulthorpe C,Wang B. 2014. Architecture,development and geological control of the Xisha carbonate platforms,northwestern South China Sea. Marine Geology, 350: 71-83. [133] Yamamoto S,Kayanne H,Terai M,Watanabe A,Kato K,Negishi A,Nozaki K. 2012. Threshold of carbonate saturation state determined by CO2 control experiment. Biogeosciences, 9: 1441-1450. [134] Zachos J,Pagani M,Sloan L,Thomas E,Billups K. 2001. Trends,rhythms,and aberrations in global climate 65 Ma to present. Science, 292: 686-693. [135] Zhao H,Jones B. 2012a. Genesis of fabric-destructive dolostones: A case study of the Brac Formation(Oligocene),Cayman Brac,British West Indies. Sedimentary Geology, 267-268: 36-54. [136] Zhao H,Jones B. 2012b. Origin of “island dolostones”: a case study from the Cayman Formation(Miocene),Cayman Brac,British West Indies. Sedimentary Geology, 243: 191-206.