Migration patterns and controlling factors of barrier of the Benxi Formation in southeastern Ordos Basin
PENG Zixiao1, YU Xinghe1, LI Shunli1, QI Rong2, FU Chao3, JIANG Longyan2
1 School of Energy Resources,China University of Geosciences(Beijing),Beijing 100083,China; 2 North China Oil and Gas Branch,SINOPEC,Zhengzhou 450006,China; 3 CNOOC Research Institute Co., Ltd.,Beijing 100028,China
Abstract The Upper Paleozoic Benxi Formation in the Ordos Basin experienced multiple transgressions and developed extensive epicontinental sea deposits. The distribution characteristics and control factors of the clastic barrier system in the southeastern of the basin are still not clear. Based on the field core,electric logging, and other data,this paper studied and established the sedimentary sequence of barrier system,restored the macro palaeogeomorphic features,depicted the plane distribution of barrier sand body,and clarify the migration style and control factors of the barrier system in Benxi Formation. Four types of sedimentary sequences,barrier island,tidal channel delta,tidal flat lagoon and swamp,were identified in the barrier coastal sedimentary system; moreover, two types of palaeogeomorphic features,namely,the stepped steep slope at the bottom of the Member 1 of Benxi Formation and the continuous gentle slope at the bottom of the Member 2 of Benxi Formation,were characterized. The barrier is distributed along the multi-stage parallel shoreline. the sand body continuity along the shoreline is high,and the vertical shoreline presents multi-stage migration characteristics. The barrier system shows two types of migration modes in map view. The Member 1 of Benxi Formation is dominated by rolling continuous migration,with low vertical overlap and strong horizontal continuity. The Member 2 of Benxi Formation is dominated by jump interval migration,with high overlap and weak horizontal continuity. The transgression process promoted the preservation of barrier system,but its distribution and migration were mainly controlled by palaeogeomorphology. The coastline trajectory controlled the distribution direction of the dominant long axis of barrier,and the steep and gentle slopes caused the differences in migration patterns of barriers. This study also emphasizes the importance of sea level rise and palaeogeomorphic slope in establishing the evolution model of ancient barrier systems.
Fund:National Natural Science Foundation of China(No.421721112)and Fundamental Research Funds for the Central Universities,China(No.2-9-2019-100)
Corresponding Authors:
YU Xinghe,born in 1958,is a professor and director of the Ph.D. candidate. He is mainly engaged in reservoir sedimentology and analysis of petroliferous basins,hydrocarbon reservoir characterization and modeling technology,analysis of marine hydrocarbon accumulation conditions,and resources evaluation. E-mail: billyu@cugb.edu.cn.
About author: PENG Zixiao,born in 1995,is a Ph.D. candidate in China University of Geosciences(Beijing). He is currently engaged in applied sedimentology research. E-mail: zixiao1995@gmail.com.
Cite this article:
PENG Zixiao,YU Xinghe,LI Shunli et al. Migration patterns and controlling factors of barrier of the Benxi Formation in southeastern Ordos Basin[J]. JOPC, 2023, 25(6): 1330-1346.
PENG Zixiao,YU Xinghe,LI Shunli et al. Migration patterns and controlling factors of barrier of the Benxi Formation in southeastern Ordos Basin[J]. JOPC, 2023, 25(6): 1330-1346.
[1] 陈孟晋,汪泽成,郭彦如,夏明军. 2006. 鄂尔多斯盆地南部晚古生代沉积特征与天然气勘探潜力. 石油勘探与开发, 33(1): 1-5. [Chen M J,Wang Z C,Guo Y R,Xia M J. 2006. Late Paleozoic sedimentary systems and gas potential in the South Ordos Basin. Petroleum Exploration and Development, 33(1): 1-5] [2] 陈全红. 2007. 鄂尔多斯盆地上古生界沉积体系及油气富集规律研究. 西北大学博士论文: 20-50. [Chen Q H. 2007. Research on sedimentary systems and hydrocarbons enrichment of the Upper Paleozoic of the Ordos Basin. Doctoral dissertation of Northwest University: 20-50] [3] 陈全红,李克永,张道锋,金栓联,郭艳琴,庞军刚,袁珍. 2010. 鄂尔多斯盆地本溪组—太原组扇三角洲沉积与油气聚集的关系. 中国地质, 37(2): 421-429. [Chen Q H,Li K Y,Zhang D F,Jin S L,Guo Y Q,Pang J G,Yuan Z. 2010. The relationship between fan delta and hydrocarbon accumulation in Benxi-Taiyuan Formation,Ordos Basin. Geology in China, 37(2): 421-429] [4] 冯娟萍,欧阳征健,陈全红,李文厚. 2021. 鄂尔多斯盆地及周缘地区上石炭统沉积特征. 古地理学报, 23(1): 53-64. [Feng J P,Ouyang Z J,Chen Q H,Li W H. 2021. Sedimentary characteristics of the Upper Carboniferous in Ordos Basin and its adjacent areas. Journal of Palaeogeography(Chinese Edition), 23(1): 53-64] [5] 付金华,董国栋,周新平,惠潇,淡卫东,范立勇,王永刚,张海涛,古永红,周国晓. 2021. 鄂尔多斯盆地油气地质研究进展与勘探技术. 中国石油勘探, 26(3): 19-40. [Fu J H,Dong G D,Zhou X P,Hui X,Dan W D,Fan L Y,Wang Y G,Zhang H T,Gu Y H,Zhou G X. 2021. Research progress of petroleum geology and exploration technology in Ordos Basin. China Petroleum Exploration, 26(3): 19-40] [6] 付金华,段晓文,席胜利. 2000. 鄂尔多斯盆地上古生界气藏特征. 天然气工业, 20(6): 16-19. [Fu J H,Duan X W,Xi S L. 2000. Characteristics of Upper Paleozoic gas reservoirs in Ordos Basin. Natural Gas Industry, 20(6): 16-19] [7] 高志东. 2019. 鄂尔多斯盆地上石炭统本溪组物源分析及有利砂体发育规律. 成都理工大学硕士学位论文: 13-14. [Gao Z D. 2019. Provenance analysis and favorable sand body development law of Upper Carboniferous Benxi Formation in Ordos Basin. Masteral dissertation of Chengdu University of Technology: 13-14] [8] 何登发,包洪平,孙方源,张才利,开百泽,许艳华,成祥,翟咏荷. 2020. 鄂尔多斯盆地中央古隆起的地质结构与成因机制. 地质科学, 55(3): 627-656. [He D F,Bao H P,Sun F Y,Zhang C L,Kai B Z,Xu Y H,Cheng X,Zhai Y H. 2020. Geologic structure and genetic mechanism for the central uplift in the Ordos Basin. Chinese Journal of Geology(Scientia Geologica Sinica), 55(3): 627-656] [9] 胡鹏,于兴河,陈宏亮,赵晨帆,周进松,韩小琴,李亚龙. 2019. 障壁坝砂体储层特征与成岩孔隙定量演化模式: 以鄂尔多斯盆地延长探区本溪组为例. 沉积学报, 37(2): 390-402. [Hu P,Yu X H,Zhao C F,Zhou J S,Han X Q,Li Y L. 2019. Characteristics and a quantitative diagenetic porosity evolution mode of barrier bar sandstone reservoirs: a case study of the Benxi Formation,Yanchang exploration block,Ordos Basin. Acta Sedimentologica Sinica, 37(2): 390-402] [10] 贾浪波. 2019. 鄂尔多斯盆地中东部上石炭统本溪组物源及沉积体系研究. 中国石油大学(北京)博士学位论文: 114-116. [Jia L B. 2019. Study on the provenance and sedimentary system of Upper Carboniferous Benxi Formation in central-eastern Ordos Basin. Doctoral dissertation of China University of Petroleum(Beijing): 114-116] [11] 贾浪波,钟大康,孙海涛,严锐涛,张春林,莫午零,邱存,董媛,李兵,廖广新. 2019. 鄂尔多斯盆地本溪组沉积物物源探讨及其构造意义. 沉积学报, 37(5): 1087-1103. [Jia L B,Zhong D K,Sun H T,Yan R T,Zhang C L,Mo W L,Qiu C,Dong Y,Li B,Liao G X. 2019. Sediment provenance analysis and tectonic implication of the Benxi Formation,Ordos Basin. Acta Sedimentologica Sinica, 37(5): 1087-1103] [12] 康玉柱. 2014. 全球沉积盆地的类型及演化特征. 天然气工业, 34(4): 10-18. [Kang Y Z. 2014. Types and evolution characteristics of global sedimentary basins. Natural Gas Industry, 34(4): 10-18] [13] 刘春雷. 2012. 鄂尔多斯盆地东部本溪组沉积体系研究. 西北大学博士学位论文: 38-53. [Liu C L. 2012. Sedimentary system research of Benxi Formation in East Ordos Basin. Doctoral dissertation of Northwest University: 38-53] [14] 李文厚,张倩,李克永,陈强,郭艳琴,马瑶,冯娟萍,张道锋. 2021. 鄂尔多斯盆地及周缘地区晚古生代沉积演化. 古地理学报, 23(1): 39-52. [Li W H,Zhang Q,Li K Y,Chen Q,Guo Y Q,Ma Y,Feng J P,Zhang D F. 2021. Sedimentary evolution of the Late Paleozoic in Ordos Basin and its adjacent areas. Journal of Palaeogeography(Chinese Edition), 23(1): 39-52] [15] 林进,李云,何剑. 2013. 鄂尔多斯延长探区本溪组物源及沉积体系分析. 中国地质, 40(5): 1542-1551. [Lin J,Li Y,He J. 2013. An analysis of the source and the sedimentary system of the Carboniferous Benxi Formation in Yanchang area of Ordos Basin. Geology in China, 40(5): 1542-1551] [16] 漆家福,杨桥. 2001. 关于碎屑岩层的去压实校正方法的讨论: 兼讨论李绍虎等提出的压实校正法. 石油实验地质, 23(3): 351-356. [Qi J F,Yang Q. 2001. A discussion about the method of decompaction correction. Petroleum Geology & Experiment, 23(3): 351-356] [17] 苏东旭,于兴河,李胜利,单新,周进松. 2017. 鄂尔多斯盆地东南部本溪组障壁海岸沉积特征与展布规律. 天然气工业, 37(9): 48-56. [Su D X,Yu X H,Li S L,Shan X,Zhou J S. 2017. Sedimentary characteristics and distribution laws of Benxi Fm barrier coast in SE Ordos Basin. Natural Gas Industry, 37(9): 48-56] [18] 汤显明,惠斌耀. 1993. 鄂尔多斯盆地中央古隆起与天然气聚集. 石油与天然气地质, 14(1): 64-71. [Tang X M,Hui B Y. 1993. The central uplift of Ordos Basin and its gas accumulation. Oil & Gas Geology, 14(1): 64-71] [19] 魏红红,彭惠群,李静群,谢正温,漆雕良. 1999. 鄂尔多斯盆地中部石炭—二叠系沉积相带与砂体展布. 沉积学报, 17(3): 403-408. [Wei H H,Peng H Q,Li J Q,Xie Z W,Qi D L. 1999. Distribution of sedimentary facies belts and sandstone bodies of Permo-Carboniferous in the central part of Ordos Basin. Acta Sedimentologica Sinica, 17(3): 403-408] [20] 杨俊杰. 2002. 鄂尔多斯盆地构造演化与油气分布规律. 北京: 石油工业出版社,14-26. [Yang J J. 2002. Tectonic Evolution and Hydrocarbon Distribution in Ordos Basin. Beijing: Petroleum Industry Press, 14-26] [21] 周进松,赵谦平,银晓,刘佳庆,万永平. 2012. 鄂尔多斯盆地东南部石炭系本溪组储层沉积特征及天然气勘探方向. 天然气勘探与开发, 35(2): 13-16,21,85. [Zhou J S,Zhao Q P,Yin X,Liu J Q. Wan Y P.2012. Sedimentary characteristics of carboniferous Benxi Formation,southeastern Ordos Basin. Natural Gas Exploration and Development, 35(2): 13-16,21,85] [22] Allen J L,Johnson C L. 2011. Architecture and formation of transgressive-regressive cycles in marginal marine strata of the John Henry Member,Straight Cliffs Formation,Upper Cretaceous of Southern Utah,USA. Sedimentology, 58: 1486-1513. [23] Belknap D F,Kraft J C. 1985. Influence of antecedent geology on stratigraphic preservation potential and evolution of Delaware's barrier systems. Marine Geology, 63: 235-262. [24] Brenner O T,Moore L J,Murray A B. 2015. The complex influences of back-barrier deposition,substrate slope and underlying stratigraphy in barrier island response to sea-level rise: insights from the Virginia Barrier Islands,Mid-Atlantic Bight,USA. Geomorphology, 246: 334-350. [25] Carter R W G,Forbes D L,Jennings S C,Orford J D,Shaw J,Taylor R B. 1989. Barrier and lagoon coast evolution under differing relative sea-level regimes: examples from Ireland and Nova Scotia. Marine Geology, 88: 221-242. [26] Carter R W G,Orford J D,Forbes D L,Taylor R B. 1987. Gravel barriers,headlands and lagoons: an evolutionary model. ASCE, Coastal Sediments,(2): 1776-1792. [27] Ciarletta D J,Lorenzo-Trueba J,Ashton A D. 2019a. Interaction of sea-level pulses with periodically retreating barrier islands. Frontiers in Earth Science, 7: 279. [28] Ciarletta D J,Lorenzo-Trueba J,Ashton A D. 2019b. Mechanism for retreating barriers to autogenically form periodic deposits on continental shelves. Geology, 47: 239-242. [29] Cooper J A G,Jackson D W T,Dawson A G,Dawson S,Bates C R,Ritchie W. 2012. Barrier islands on bedrock: a new landform type demonstrating the role of antecedent topography on barrier form and evolution. Geology, 40: 923-926. [30] Cooper J A G,Green A N,Loureiro C. 2018. Geological constraints on mesoscale coastal barrier behaviour. Global and Planetary Change, 168: 15-34. [31] Cowell P J,Roy P S,Jones R A. 1992. Shoreface translation model: computer simulation of coastal-sand-body response to sea level rise. Mathematics and Computers in Simulation, 33: 603-608. [32] Cowell P J,Roy P S,Jones R A. 1995. Simulation of large-scale coastal change using a morphological behaviour model. Marine Geology, 126: 45-61. [33] Demarest J M,Leatherman S P. 1985. Mainland influence on coastal transgression: Delmarva Peninsula. Marine Geology, 63: 19-33. [34] De Falco G,Antonioli F,Fontolan G,Lo Presti V,Simeone S,Tonielli R. 2015. Early cementation and accommodation space dictate the evolution of an overstepping barrier system during the Holocene. Marine Geology, 369: 52-66. [35] Fu C,Yu X H,Li S L,Peng Z X,Shi S. 2021. Carboniferous-Permian transgression/regression mechanisms in the Eastern Ordos Basin and their sea-level spatiotemporal variability: insights from source-to-sink systems. Marine and Petroleum Geology, 123: 104722. [36] Fruergaard M,Møller I,Johannessen P N,Nielsen L H,Andersen T J,Nielsen L,Pejrup M. 2015. Stratigraphy,evolution,and controls of a Holocene transgressive-regressive barrier island under changing sea level: Danish North Sea coast. Journal of Sedimentary Research, 85(7): 820-844. [37] Fruergaard M,Tessier B,Poirier C,Mouazé D,Weill P,Noël S. 2020. Depositional controls on a hypertidal barrier-spit system architecture and evolution,Pointe du Banc spit,north-western France. Sedimentology, 67(1): 502-533. [38] Fruergaard M,Sander L,Goslin J,Andersen T J. 2021. Temporary late Holocene barrier-chain deterioration due to insufficient sediment availability,Wadden Sea,Denmark. Geology, 49(2): 162-167. [39] Hesp P A. 1999. Barrier morphodynamics. Handbook of beach and shoreface morphodynamics: 307-333. [40] Hubbard D K,Oertel G,Nummedal D. 1979. The role of waves and tidal currents in the development of tidal-inlet sedimentary structures and sand body geometry;examples from North Carolina,South Carolina,and Georgia. Journal of Sedimentary Research, 49(4): 1073-1091. [41] Johannessen P N,Nielsen L H,Nielsen L,Møller I,Pejrup M,Andersen T J. 2010. Architecture of an Upper Jurassic barrier island sandstone reservoir,Danish Central Graben: implications of a Holocene-Recent analogue from the Wadden Sea. Geological Society,London,Petroleum Geology Conference Series, 7: 145-155. [42] Kennedy D,Oliver T,Tamura T,Murray-Wallace C,Thom B,Rosengren N,Ierodiaconou D,Augustinus P C,Leach C,Gao J J,McSweeney S,Konlechner T,Woodroffe C. 2020. Holocene evolution of the Ninety Mile Beach sand barrier,Victoria,Australia: the role of sea level,sediment supply and climate. Marine Geology, 430: 106366. [43] Mellett C L,Hodgson D M,Lang A,Mauz B,Selby I,Plater A J. 2012. Preservation of a drowned gravel barrier complex: a landscape evolution study from the north-eastern English Channel. Marine Geology, 315-318: 115-131. [44] Moore L J,List J H,Williams S J,Stolper D. 2010. Complexities in barrier island response to sea level rise: insights from numerical model experiments,North Carolina Outer Banks. Journal of Geophysical Research, 115: F03004. [45] Mulhern J S,Johnson C L,Green A N. 2021. When is a barrier island not an island?when it is preserved in the rock record. Front Earth Science, 8: 560437. [46] Nummedal D,Swift D J P. 1987. Transgressive stratigraphy at sequence-bounding unconformities: some principles derived from Holocene and Cretaceous examples. Sea-Level Fluctuations and Coastal Evolution. SEPM(Society for Sedimentary Geology): 241-260. [47] Oertel G F. 1985. The barrier island system. Marine Geology, 63: 1-18. [48] Otvos E G. 2012. Coastal barriers—Nomenclature,processes,and classification issues. Geomorphology, 139-140: 39-52. [49] Rampino M R,Sanders J E. 1980. Holocene transgression in south-central long island,New York. Journal of Sedimentary Research, 50(4): 1063-1079. [50] Reinson G E. 1992. Transgressive barrier island and estuarine systems. In: Walker R G, James N P(eds). Facies models: response to sea level change. Geological Association of Canada, (1): 179-194. [51] Schwab W C,Thieler E R,Allen J R,Foster D. S,Swift B A,Denny J F. 2000. Influence of inner-continental shelf geologic framework on the evolution and behavior of the barrier-island system between Fire Island Inlet and Shinnecock Inlet,Long Island,New York. Journal of Coastal Research, 16(2): 408-422. [52] Steers J A,Davies J L. 1973. Geographical variation in coastal development. The Geographical Journal, 139: 350. [53] Wang Q F,Deng J,Liu X F,Zhao R,Cai S H. 2016. Provenance of Late Carboniferous bauxite deposits in the North China Craton: new constraints on marginal arc construction and accretion processes. Gondwana Research, 38: 86-98. [54] Warrick J A,Bountry J A,East A E,Magirl C S,Randle T J,Gelfenbaum G,Ritchie A C,Pess G R,Leung V,Duda J J. 2015. Large-scale dam removal on the Elwha River,Washington,USA: Source-to-sink sediment budget and synthesis. Geomorphology, 246: 729-750.