Evolution and main controlling factors of the Ordovician karst thermal reservoir in western Shandong-eastern Henan area
SUI Shaoqiang1,2, YANG Zhibo3,4, ZHAO Yajing3,4, JIA Yanyu1,2, SU Yuchi3,4, WANG Xi1,2, GAO Fei1,2, JI Hancheng3,4, BAO Zhidong3,4
1 SINOPEC Star(Beijing)New Energy Research Institute Co. Ltd.,Beijing 100083,China; 2 Key Laboratory of Geothermal Exploration and Utilization,SINOPEC,Beijing 100083,China; 3 National Key Laboratory of Petroleum Resource and Engineering,China University of Petroleum(Beijing),Beijing 102249,China; 4 College of Geosciences,China University of Petroleum(Beijing),Beijing 102249,China
Abstract There are abundant geothermal resources in Ordovician carbonate rocks in the Western Shandong-Eastern Henan Area,but the characteristics and main controlling factors of thermal storage are still unclear. In this paper,geological and geophysical data from outcrops,cores,thin sections,and wells are integrated to investigate the characteristics of the karst thermal reservoirs,evolution processes,and formation of geothermal fields in Ordovician carbonate rocks. The results show that the main reservoir lithologies of the Ordovician in the study area are grainstone,carbonate breccia,calcareous dolostone,crystalline dolostone and siliceous limestone. The residual thickness of the uplifted area is about 500~1000 m,and the average porosity is 2.76%,whereas the residual thickness of the depression area is about 0~500 m,and the average porosity is 2.22%. Compared with the depression area,the residual thickness of the uplifted area is relatively large,and the pore penetration is relatively large;the influence of the Lanlao fracture is obvious,and the “uplift-depression”is distributed in a ring-like pattern. The karst thermal reservoirs experienced a comprehensive transformation by cementation,dolomitization,compaction,compressional solution,dissolution,filling,recrystallization,and tectonic rupture. The karst thermal reservoirs mainly underwent augmentation during the early orogenic period(early-middle Ordovician),during the epigenetic period(late Ordovician-early Carboniferous),during the middle-late burial period(late Carboniferous-early Triassic),and during the epigenetic period(middle Cenozoic,mainly developed in the Heze uplift). The lithology,diagenesis and tectonic stresses controlled the formation and evolution of the Ordovician karst thermal reservoirs in the study area. Analysis of the geothermal source-storage-cover base conditions has clarified the fluid circulation characteristics and geothermal resource prediction of the Ordovician karst thermal reservoirs in the study area.
Fund:Key Scientific and Technological Project of Sinopec(No. JP21005)and National Key Research and Development Program of China(Nos. 2017YFC0603104,2018YFC0604304)
Corresponding Authors:
YANG Zhibo,born in 1995,is engaged in sedimentology and analysis and evaluation of geothermal resources. E-mail: 1132081603@qq.com.
About author: SUI Shaoqiang,born in 1964,is a senior engineer. He is engaged in exploration and development of geothermal resources. E-mail: suishaoqiang.xxsy@sinopec.com.
Cite this article:
SUI Shaoqiang,YANG Zhibo,ZHAO Yajing et al. Evolution and main controlling factors of the Ordovician karst thermal reservoir in western Shandong-eastern Henan area[J]. JOPC, 2023, 25(6): 1364-1378.
SUI Shaoqiang,YANG Zhibo,ZHAO Yajing et al. Evolution and main controlling factors of the Ordovician karst thermal reservoir in western Shandong-eastern Henan area[J]. JOPC, 2023, 25(6): 1364-1378.
[1] 鲍志东,金之钧,孙龙德,王招明,王清华,张清海,时晓章,李伟,吴茂炳,顾乔元,武新民,张宏伟. 2006. 塔里木地区早古生代海平面波动特征: 来自地球化学及岩溶的证据. 地质学报, 80(3): 366-373. [Bao Z D,Jin Z J,Sun D L,Wang Z M,Wang Q H,Zhang Q H,Shi X Z,Li W,Wu M B,Gu Q Y,Wu X M,Zhang H W. 2006. Sea-level fluctuation of Tarim area in the Paleozoic: respondence from geochemistry and karst. Acta Geologica Sinica, 80(3): 366-373] [2] 陈景山,李忠,王振宇,谭秀成,李凌,马青. 2007. 塔里木盆地奥陶系碳酸盐岩古岩溶作用与储层分布. 沉积学报, 25(6): 858-868. [Chen J S,Li Z,Wang Z Y,Tan X C,Li L,Ma Q. 2007. Paleokarstification and reservoir distribution of Ordovician carbonates in Tarim basin. Acta Sedimentologica Sinica, 25(6): 858-868] [3] 陈书平,漆家福,王德仁,程秀申,赵衍彬,徐振强,解晨,孙海龙. 2007. 东濮凹陷断裂系统及变换构造. 石油学报,28(1): 43-49. [Chen S P,Qi J F,Wang D R,Cheng X S,Zhao Y B, Xu Z Q,Xie C,Sun H L. 2007. Fault systems and transfer structures in Dongpu Sag. Acta Petrolei Sinica,28(1): 43-49] [4] 冯超臣,黄文峰. 2015. 山东省菏泽市聊城—兰考断裂带西部地区地热资源评价. 中国地质调查, 2(8): 55-59. [Feng C C,Huang W F. 2015. Evaluation of geothermal resources in the western Liaocheng-LanKao fault zone of Heze city,Shandong Province. Geological Survey of China, 2(8): 55-59] [5] 冯守涛,徐勇,杨询昌. 2013. 山东省深部岩溶热储地热地质特征. 山东国土资源, 29(9): 16-22,30. [Feng S T,Xu Y,Yang X C. 2013. Geothermal characters of deep karst thermal reserve in Shandong Province. Shandong Land and Resources, 29(9): 16-22,30] [6] 冯增昭. 1977. 华北下奥陶统岩相古地理新探. 华东石油学院学报,(3): 57-79. [Feng Z Z. 1977. New exploration of lithofacies palaeogeography of Lower Ordovician in North China. Journal of China University of Petroleum(Edition of Natural Science),(3): 57-79] [7] 冯增昭. 1986. 华北地台东部晋冀鲁京津地区早奥陶世岩相古地理. 沉积学报,(4): 28-40. [Feng Z Z. 1986. Early Ordovician lithofacies paleogeography of Jin-Ji-Lu-Jing-Jin region in eastern North China Platform. Acta Sedimentologica Sinica,(4): 28-40] [8] 冯增昭,陈继新,吴胜和. 1989. 华北地台早古生代岩相古地理. 沉积学报,7(4): 15. [Feng Z Z,Chen J X,Wu S H. 1989. Early Paleozoic lithofacies paleogeography of North China platform. Acta Sedimentologica Sinica,7(4): 15] [9] 季汉成,房超,华南,肖菁,李海泉,黎雪,李晨,马鹏鹏,毛翔. 2016. 鲁西豫东地区奥陶系顶部岩溶储集层特征及有利控制因素. 古地理学报, 18(4): 545-559. [Ji H C,Fang C,Hua N,Xiao J,Li H Q,Li X,Li C,Ma P P,Mao X. 2016. Characteristics and favorable controlling factors of karst reservoirs within the uppermost part of Ordovician in western Shandong-eastern Henan area. Journal of Palaeogeography(Chinese Edition), 18(4): 545-559] [10] 胡秋媛,李理,郭建伟. 2018. 鲁西隆起与济阳坳陷晚中生代—古近纪构造演化对比及数值模拟. 中国石油大学胜利学院学报, 32(1): 1-7. [Hu Q Y,Li L,Guo J W. 2018. Late Mesozoic-Paleogene numerical simulation and evolution between western Shandong rise and Jiyang depression. Journal of Shengli College China University of Petroleum, 32(1): 1-7] [11] 康凤新,徐军祥,张中祥. 2010. 山东省地下水资源及其潜力评价. 山东国土资源, 26(8): 4-12. [Kang F X,Xu J X,Zhang Z X. 2010. Groundwater resources and its potential in Shandong Province. Shandong Land and Resources, 26(8): 4-12] [12] 李理,钟大赉,陈霞飞,陈衍. 2018. 鲁西地块NW走向断层的活动特征及裂变径迹证据. 地质学报, 92(3): 413-436. [Li L,Zhong D L,Chen X F,Chen Y. 2018. Characteristics of NW-Trending faults and evidence of fission track in the Luxi Block. Acta Geologica Sinica, 92(3): 413-436] [13] 李鹏举,卢华复,施央申. 1995. 渤海湾盆地东濮凹陷的形成及断裂构造研究. 南京大学学报(自然科学版),(1): 128-139. [Li P J,Lu H F,Shi Y S. 1995. Study on formation and fault structures of Dongpu depression in Bohai Bay Basin. Journal of Nanjing University(Natural Science),(1): 128-139] [14] 李三忠,周立宏,刘建忠,单业华,高振平,许淑梅. 2004. 华北板块东部新生代断裂构造特征与盆地成因. 海洋地质与第四纪地质, 24(3): 57-66. [Li S Z,Zhou L H,Liu J Z,Shan Y H,Gao Z P,Xu S M. 2004. Cenozoic faulting and basin formation in the eastern north China plate. Marine Geology & Quaternary Geology, 24(3): 57-66] [15] 林玉祥,朱传真,赵承锦,吴玉琛,李佳,李秀芹. 2016. 华北地台东部中奥陶世岩相古地理特征. 石油实验地质, 38(5): 559-568. [Lin Y X,Zhu C Z,Zhao C J,Wu Y S,Li J,Li X Q. 2016. Lithofacies palaeogeography of the Middle Ordovician in the eastern North China platform. Petroleum Geology & Experiment, 38(5): 559-568] [16] 刘波,王英华,钱祥麟. 1997. 华北奥陶系两个不整合面的成因与相关区域性储层预测. 沉积学报,15(1): 25-30. [Liu B,Wang Y H,Qian X L. 1997. The two Ordovician Unconformities in N China: their origins and related regional Reservoirs Prediction. Acta Sedimentologica Sinica,15(1): 25-30] [17] 刘波,钱祥麟,王英华. 1999. 华北板块早古生代构造-沉积演化. 地质科学,(3): 347-356. [Liu B,Qian X L,Wang Y. 1999. Tectono-sedimentary evolution of North China plate in early Paleozoic. Chinese Journal of Geology(Scientia Geologica Sinica),(3): 347-356] [18] 刘春华,王威,卫政润. 2018. 山东省水热型地热资源及其开发利用前景. 中国地质调查, 5(2): 51-56. [Liu C H,Wang W,Wei Z R. 2018. Analysis of hydrothermal geothermal resources and its prospect of development and utilization in Shandong. Geological Survery of China, 5(2): 51-56] [19] 刘金侠,毛翔,季汉成,李海泉. 2017. 东濮凹陷奥陶系岩溶型热储分布特征及成因研究. 地学前缘, 24(3): 180-189. [Liu J X,Mao X,Ji H C,Li H Q. 2017. Distribution and genesis of karstic thermal reservoir in Dongpu Depression. Earth Science Frontiers, 24(3): 180-189] [20] 鲁锴,鲍志东,季汉成,刘金侠,王贵玲,马峰,郭瑞婧,曹瑛倬,杨飞,符勇,李潇博,华盈鑫,阙宜娟,李宗峰,许西挺,胡先才. 2019. 雄安新区蓟县系雾迷山组岩溶热储特征、主控因素及有利区预测. 古地理学报, 21(6): 885-900. [Lu K,Bao Z D,Ji H C,Liu J X,Wang G L,Ma F,Guo R J,Cao Y Z,Yang F,Fu Y,Li X B,Hua Y X,Que Y J,Li Z F,Xu X T,Hu S C. 2019. Characteristics,main controlling factors and favorable area prediction of karstic geothermal reservoirs of the Jixianian Wumishan Formation in Xiong'an New area. Journal of Palaeogeography(Chinese Edition), 21(6): 885-900] [21] 马龙,冯超臣. 2015. 菏泽地区奥陶系地热单井开采权益保护范围的研究. 山东国土资源, 31(1): 40-42. [Ma L,Feng C C. 2015. Study on rights and interests scope protection of Ordovician geothermal single well in Heze city. Shandong Land and Resources, 31(1): 40-42] [22] 马学平,韩作振,王英华. 1998. 华北地区冶里—亮甲山期层序地层及其岩相古地理. 地质科学,33(2): 166-179. [Ma X P,Han Z Z,Wang Y H. 1998. The Tremadocian-early Arenigian(Early Ordovician)sequence stratigraphy and lithofacies paleogeography of North China. Chinese Journal of Geology(Scientia Geologica Sinica),33(2): 166-179] [23] 马振民,何江涛,张锡明. 2000. 菏泽凸起地下热水的水文地球化学特征及成因分析. 山东地质,(2): 24-30. [Ma Z M,He J T,Zhang X M. 2000. Hydro-geochemical characteristics of geothermal water in Heze uplift and its origin analysis. Geology of Shandong,(2): 24-30] [24] 史启朋,宋帅良,孟甲,郑慧铭. 2021. 山东省菏泽凸起地热田岩溶地热水水化学水平演化特征. 中国岩溶, 40(2): 310-318. [Shi Q P,Song S L,Meng J,Zheng H M. 2021. Hydrochemical evolution of karst geothermal water in the Heze uplift geothermal field,Shandong Province. Carsologica Sinica, 40(2): 310-318] [25] 宋明春. 2008. 山东省大地构造单元组成、背景和演化. 地质调查与研究,(3): 165-175. [Song M C. 2008. The composing,setting and evolution of tectonic units in Shandong Province. Geology Survey and Research,(3): 165-175] [26] 谭秀成,肖笛,陈景山,李凌,刘宏. 2015. 早成岩期喀斯特化研究新进展及意义. 古地理学报, 17(4): 441-456. [Tan X C,Xiao D,Chen J S,Li L,Liu H. 2015. New advance and enlightenment of eogenetic karstification. Journal of Palaeogeography(Chinese Edition), 17(4): 16] [27] 陶焰. 2014. 东濮凹陷可利用地热资源量评价. 中国地质大学(北京)硕士论文: 14-16. [Tao Y. 2014. Evaluation of available geothermal energy in Dongpu Depression. Masteral dissertation of China University of Geoscinces(Beijing): 14-16] [28] 汪集旸,邱楠生. 1992. 含油气沉积盆地古地温研究方法. 地球物理学进展,7(4): 46-62. [Wang J Y,Qiu N S. 1992. Methods on studies of paleogeotemperature on sedimentary basins with oil and gas. Progress in Geophysics,7(4): 46-62] [29] 汪集旸,熊亮萍,黄少鹏. 1996. 沉积盆地中热的传递和地下水活动. 第四纪研究,16(2): 147-158. [Wang J Y,Xiong L P,Huang S P. 1996. Heat transfer and groundwater activity in sedimentary basins. Quaternary Science,16(2): 147-158] [30] 王福花,侯欣英,孙鹏,柳耀君. 2008. 山东菏泽地区地热田地质特征. 山东国土资源,22(4): 40-43. [Wang F H,Hou X Y,Sun P,Liu Y J. 2008. Geological characteristics of Geothermal fields in Heze area of Shandong Province. Shandong Land and Resource, 22(4): 40-43] [31] 王贵玲,张薇,梁继运,蔺文静,刘志明,王婉丽. 2017. 中国地热资源潜力评价. 地球学报, 38(4): 449-450,134,451-459. [Wang G L,Zhang W,Liang J Y,Lin W J,Liu Z M,Wang W L. 2017. Evaluation of geothermal resources potential in China. Acta Geoscientica Sinica, 38(4): 449-450,134,451-459] [32] 王奎峰. 2009. 山东省聊城市东部地热田地热资源特征. 中国地质, 36(1): 194-202. [Wang K F. 2009. Geothermal resources in the eastern Liaocheng geothermal field of Shandong Province. Geology in China, 36(1): 194-202] [33] 王龙平,魏永霞,程宏超,康佳,廖安然. 2022. 安徽长江经济带地热资源赋存特征及潜力评价. 中国地质,49(6): 1765-1777. [Wang L P,Wei Y X,Cheng H C,Kang J,Liao A R. 2022. Characteristics and potential evaluation of geothermal resources in Anhui of Yangtze River Economic Zone. Geology in China,49(6): 1765-1777] [34] 王明健,张训华,张运波,何登发,孙衍鹏,李文涛. 2012. 渤海湾盆地临清坳陷东部上侏罗统—下白垩统剥蚀量恢复与原型盆地. 古地理学报, 14(4): 499-506. [Wang M J,Zhang X H,Zhang Y B,He D F,Sun Y P,Li W T. 2012. Restoration of denuded strata thickness and prototype basin of the Upper Jurassic-Lower Cretaceous in eastern Linqing Depression of Bohai Bay Basin. Journal of Palaeogeography(Chinese Edition), 14(4): 499-506] [35] 王迎春,周金林,李亮,文华国,宋荣彩,姜光政,胡杰,张超. 2022. 羊八井地热田地热地质条件及其对超临界地热资源勘探的启示. 天然气工业, 42(4): 35-45. [Wang Y C,Zhou J L,Li L,Wen H G,Song R C,Jiang G Z,Hu J,Zhang C. 2022. Geothermal geological conditions in the Yangbajing geothermal field and its enlightenment to the exploration of supercritical geothermal resources. Natural Gas Industry, 42(4): 35-45] [36] 肖笛,谭秀成,郗爱华,刘宏,山述娇,夏吉文,程遥,连承波. 2015. 四川盆地南部中二叠统茅口组碳酸盐岩岩溶特征: 古大陆环境下层控型早成岩期岩溶实例. 古地理学报, 17(4): 457-476. [Xiao D,Tan X C,Xi A H, Liu H, Shan S J, Xia J W, Cheng Y, Lian C B. 2015. Palaeokarst characteristics of carbonate rocks of the middle Permian Maokou Formation in southern Sichuan Basin: example of strata-bound eogenetic karst in palaeo-continental settings. Journal of Palaeogeography(Chinese Edition), 17(4): 457-476] [37] 肖箐,季汉成,华南,房超,李海泉,马鹏鹏. 2016. 渤海湾盆地东濮凹陷奥陶系沉积相特征及其演化. 岩性油气藏, 28(6): 78-87. [Xiao J,Ji H C,Hua N, Fang C, Li H Q, Ma P P. 2016. Characteristics and evolution of the Ordovician sedimentary facies in Dongpu area,Bohai Bay Basin. Lithologic Reservoirs, 28(6): 78-87] [38] 徐聪,李理,符武才. 2021. 鲁西地块中、新生界裂缝发育特征及构造应力场分析. 地质科学, 56(3): 829-844. [Xu C,Li L,Fu W C. 2021. Development characteristics of fractures in the Mesozoic and Cenozoic and structure stress field analysis of the Luxi block. Chinese Journal of Geology(Scientia Geologica Sinica), 56(3): 829-844] [39] 徐学蓓. 2010. 鲁西地块奥陶纪岩相古地理研究. 山东科技大学硕士论文: 32-59. [Xu X B. 2010. Study on lithofacies palaeogeography of Ordovician in Luxi block. Masteral dissertation of Shandong University of Science and Technology: 32-59] [40] 张保建. 2011. 鲁西北地区地下热水的水文地球化学特征及形成条件研究. 中国地质大学(北京)博士论文: 32-76. [Zhang B J. 2011. Hydrogeochemical characteristics and formation conditions of the geothermal water in Northwestern Shandong Province. Doctoral dissertation of China University of Geoscinces(Beijing): 32-76] [41] 赵国祥,王清斌,杨波,王晓刚,白冰,万琳. 2016. 渤中凹陷奥陶系深埋环境下碳酸盐岩溶蚀成因分析. 天然气地球科学, 27(1): 111-120. [Zhao G X,Wang Q B,Yang B,Wang X G,Bai B,Wan L. 2016. Dissolution mechanism analysis of Ordovician carbonates under burial environment of Bozhong Sag,Bohai Sea area. Natural Gas Geoscience, 27(1): 111-120] [42] 周新科,许化政. 2007. 东濮凹陷地质特征研究. 石油学报,28(5): 20-26. [Zhou X K,Xu H Z. 2007. Discussion on geological features of Dongpu Depression. Acta Petrolei Sinica,28(5): 20-26] [43] Feng J W,Qu J H,Wan H Q,Ren Q Q. 2021. Quantitative prediction of multiperiod fracture distributions in the Cambrian-Ordovician buried hill within the Futai Oilfield,Jiyang Depression,East China. Journal of Structural Geology, 148: 104359. [44] Moore C H,Wade W J. 2013. Carbonate diagenesis: introduction and tools. Developments in Sedimentology, 67: 67-89. [45] Pope M,Read J F. 1998. Ordovician metre-scale cycles: implications for climate and eustatic fluctuations in the central Appalachians during a global greenhouse,non-glacial to glacial transition. Palaeogeography, Palaeoclimatology, Palaeoecology, 138: 27-42. [46] Sun M L,Zhang X,Yuan X C,Yu Z Y,Xiao Y,Wang Y,Zhang Y H. 2022. Hydrochemical characteristics and genetic mechanism of geothermal springs in the Aba Area,western Sichuan Province,China. Sustainability,14: 12824.