Study on the development of high-quality reservoirs of deep clastic rock based on diagenetic facies: taking the Kepingtage Formation in Shun 9 well area of Tarim Basin as an example
CHEN Haiying1,2, ZHANG Liqiang1
1 School of Geosciences,China University of Petroleum(East China),Shandong Qingdao 266580,China; 2 Xianhe Oil Production Plant,Shengli Oilfield Company,SINOPEC,Shandong Dongying 257000,China
Abstract In order to understand the influence of diagenetic facies on the development of high-quality reservoirs of deep clastic rock,this paper takes the reservoir of the Silurian Kepingtage Formation in the Shun 9 well area of Shuntuogole region in Tarim Basin as an example for study. The reservoir petrology and diagenetic characteristics were analyzed by using core observation,thin section identification,scanning electron microscope,cathodoluminescence and other data. The diagenetic facies types were classified,and differential diagenesis and control factors of high-quality reservoir development were clarified. The results show that the reservoir of the Kepingtage Formation is dominated by lithic sandstone,feldspar lithic sandstone and lithic quartz sandstone,and the diagenesis is dominated by compaction,carbonate cementation and dissolution. Diagenetic facies can be divided into four types according to diagenesis and diagenetic minerals. Different diagenetic facies have undergone different evolution processes. The unstable-components dissolution facies retains a certain amount of intergranular pores after porosity reduction by compaction and cementation,and its physical properties are significantly improved after dissolution transformation. The carbonate cemented facies and rich-rigid-grains compacted facies reduce porosity and density under the influence of compression and cementation,resulting in relatively difficult dissolution and finally forming tight reservoirs. The compaction of the rich-plastic-grains compacted facies is most intense. During the whole deposition process,continuous compaction leads to final compaction. The distribution of different diagenetic facies is generally controlled by sedimentary facies. The unstable-components dissolution facies sand body developed in the tidal flat,tidal channel and delta distributary channel comprises the high-quality reservoir of the Kepingtage Formation. This distribution pattern will provide guidance for finding deep effective reservoirs.
About author: CHEN Haiying,born in 1995,is a master and an assistant engineer. She is mainly engaged in research on reservoir microscopic characteristics and sedimentary characteristics. E-mail: chenhaiying_upc@163.com.
Cite this article:
CHEN Haiying,ZHANG Liqiang. Study on the development of high-quality reservoirs of deep clastic rock based on diagenetic facies: taking the Kepingtage Formation in Shun 9 well area of Tarim Basin as an example[J]. JOPC, 2023, 25(6): 1379-1393.
CHEN Haiying,ZHANG Liqiang. Study on the development of high-quality reservoirs of deep clastic rock based on diagenetic facies: taking the Kepingtage Formation in Shun 9 well area of Tarim Basin as an example[J]. JOPC, 2023, 25(6): 1379-1393.
[1] 操应长,远光辉,杨海军,王艳忠,刘可禹,昝念民,葸克来,王健. 2022. 含油气盆地深层—超深层碎屑岩油气勘探现状与优质储层成因研究进展. 石油学报, 43(1): 112-140. [Cao Y C,Yuan G H,Yang H J,Wang Y Z,Liu K Y,Zan N M,Xi K L,Wang J. 2022. Current situation of oil and gas exploration and research progress of the origin of high-quality reservoirs in deep-ultra-deep clastic reservoirs of petroliferous basins. Acta Petrolei Sinica, 43(1): 112-140] [2] 陈波,尤新才,张银,张顺存,史基安. 2016. 玛南地区乌尔禾组成岩作用对储层物性的影响. 西南石油大学学报(自然科学版), 38(1): 10-20. [Chen B,You X C,Zhang Y,Zhang S C,Shi J A. 2017. Effects of diagenesis and reservoir of the Urho Formation in Manan Region. Journal of Southwest Petroleum University(Science & Technology Edition), 38(1): 10-20] [3] 陈强路,范明,尤东华. 2006. 塔里木盆地志留系沥青砂岩储集性非常规评价. 石油学报, 27(1): 30-33. [Chen Q L,Fan M,You D H. 2006. Non-traditional method for evaluating physical property of Silurian bitumen sandstone reservoirs in Tarim Basin. Acta Petrolei Sinica, 27(1): 30-33] [4] 陈彦华,刘莺. 1994. 成岩相: 储集体预测的新途径. 石油实验地质, 16(3): 274-281. [Chen Y H,Liu Y. 1994. Diagenetic facies: a new approach to the prediction of reservoir rocks. Petroleum Geology & Experiment, 16(3): 274-281] [5] 方维萱. 2020. 论沉积盆地内成岩相系划分及类型. 地质通报, 39(11): 1692-1714. [Fang W X. 2020. Classification and types of diagenetic lithofacies systems in the sedimentary basin. Geological Bulletin of China, 39(11): 1692-1714] [6] 黄思静,黄可可,冯文立,佟宏鹏,刘丽红,张雪花. 2009. 成岩过程中长石、高岭石、伊利石之间的物质交换与次生孔隙的形成: 来自鄂尔多斯盆地上古生界和川西凹陷三叠系须家河组的研究. 地球化学, 38(5): 498-506. [Huang S J,Huang K K,Feng W L,Tong H P,Liu L H,Zhang X H. 2009. Mass exchanges among feldspar,kaolinite and illite and their influences on secondary porosity formation in clastic diagenesis: a case study on the Upper Paleozoic,Ordos Basin and Xujiahe Formation. Geochimica, 38(5): 498-506] [7] 贾承造,魏国齐. 2002. 塔里木盆地构造特征与含油气性. 科学通报,47(S1): 1-8. [Jia C Z,Wei G Q. 2002. Tectonic characteristics and petroliferous properties of the Tarim Basin. Science Bulletin,47(S1): 1-8] [8] 赖锦,王贵文,黄龙兴,官斌,蒋晨,冉冶,张晓涛,李梅,王迪. 2015. 致密砂岩储集层成岩相定量划分及其测井识别方法. 矿物岩石地球化学通报, 34(1): 128-138. [Lai J,Wang G W,Huang L X,Guan B,Jiang C,Ran Y,Zhang X T,Li M,Wang D. 2015. Quantitative classification and logging identification method for diagenetic facies of tight sandstones. Bulletin of Mineralogy,Petrology and Geochemistry, 38(2): 179-180,184] [9] 李进步,刘子豪,徐振华,李娅,王艳. 2021. 苏里格气田岩石相控制的致密砂岩储层质量差异机理. 特种油气藏, 28(1): 10-17. [Li J B,Liu Z H,Xu Z H,Li Y,Wang Y. 2021. Quality difference mechanism of tight sandstone reservoir controlled by lithofacies in Sulige Gasfield. Special Oil & Gas Reservoirs, 28(1): 10-17] [10] 李锟,于炳松,刘清俊,任艳. 2012. 塔里木盆地塔中—巴楚地区志留系柯坪塔格组成岩作用及成岩相. 石油天然气学报, 34(7): 39-44,5. [Li K,Yu B S,Liu Q J,Ren Y. 2012. Diagenesis and diagenetic facies of Kepingtage Formation of the Silurian in Tazhong-Bachu area of Tarim Basin. Journal of Oil and Gas Technology, 34(7): 39-44,5] [11] 李明强,张立强,李政宏,张亮,毛礼鑫,徐小童. 2021. 塔里木盆地下侏罗统阿合组下砂砾岩段致密砂岩成岩相划分及测井识别: 库车坳陷依奇克里克地区为例. 天然气地球科学, 32(10): 1559-1570. [Li M Q,Zhang L Q,Li Z H,Zhang L,Mao L X,Xu X T. 2021. Diagenetic facies division and logging identification of tight sandstone in the lower conglomerate Member of Lower Jurassic Ahe Formation in Tarim Basin: case study of Yiqikelike area in Kuqa Depression. Natural Gas Geoscience, 32(10): 1559-1570] [12] 李扬,刘波,田昌炳,高计县,李保柱,王玉玺,刘建强,田泽普. 2016. 伊拉克Y油田上白垩统Mishrif组碳酸盐岩储层及其测井响应特征. 油气地质与采收率, 23(6): 8-15. [Li Y,Liu B,Tian C B,Gao J X,Li B Z,Wang Y X,Liu J Q,Tian Z P. 2016. Carbonate reservoir characteristics and well logging responses of the upper Cretaceous Mishrif Formation: a case study of Y oilfield,southeast Iraq. Petroleum Geology and Recovery Efficiency, 23(6): 8-15] [13] 李阳,薛兆杰,程喆,蒋海军,王濡岳. 2020. 中国深层油气勘探开发进展与发展方向. 中国石油勘探, 25(1): 45-57. [Li Y,Xue Z J,Cheng Z,Jiang H J,Wang R Y. 2020. Progress and development directions of deep oil and gas exploration and development in China. China Petroleum Exploration, 25(1): 45-57] [14] 李政宏. 2020. 库车坳陷东部下侏罗统阿合组致密砂岩成岩相测井识别. 中国石油大学(华东)硕士论文. [Li Z H. 2020. Logging identification for diagenetic facies of tight sandstone in the Lower Jurassic Ahe Formation in the eastern Kuqa Depression. Masteral dissertation of China University of Petroleum] [15] 李祖兵,李剑,崔俊峰,杨萍,邢立平,吴雪松. 2020. 大港探区港北潜山中生界碎屑岩储层特征及发育主控因素. 大庆石油地质与开发, 39(2): 9-20. [Li Z B,Li J,Cui J F,Yang P,Xing L P,Wu X S. 2020. Reservoirs characteristics and main development controlling factors of Mesozoic clastic rocks in Gangbei buried hill of Dagang exploration area. Petroleum Geology & Oilfield Development in Daqing, 39(2): 9-20] [16] 吕洲,杜潇,王友净,张杰,李楠,王鼐,王君,洪亮,郝晋进. 2022. 伊拉克H油田上白垩统Hartha组孔隙型碳酸盐岩储层成岩相特征及地质建模. 海相油气地质, 27(1): 21-32. [Lü Z,Du X,Wang Y J,Zhang J,Li N,Wang N,Wang J,Hong L,Hao J J. 2022. Diagenetic facies and geological modeling of porous carbonate reservoir of the Upper Cretaceous Hartha Formation in H Oilfield,Iraq. Marine Origin Petroleum Geology, 27(1): 21-32] [17] 彭军,张涵冰,鲁明,李斌,夏青松. 2016. 顺托果勒柯坪塔格组储层成岩作用与孔隙演化. 西南石油大学学报(自然科学版), 38(4): 173-182. [Peng J,Zhang H B,Lu M,Li B,Xia Q S. 2016. Diagenesis and porosity evolution of Kepingtage Formation in Shuntuoguole Block. Journal of Southwest Petroleum University(Science & Technology Edition), 38(4): 173-182] [18] 尚静. 2018. 塔北地区志留系柯坪塔格组沉积体系分析. 长江大学硕士论文. [Shang J. 2018. Analysis of depositional system of Silurian Kepingtage Formation in Northern Tarim Basin. Masteral dissertation of Yangtze University] [19] 尚凯,郭娜,张睿. 2016. 塔里木盆地S1井区志留系柯坪塔格组下沥青砂岩段沉积相新认识. 沉积与特提斯地质, 36(4): 14-20. [Shang K,Guo N,Zhang R. 2016. Sedimentary facies of the lower bitumen-bearing sandstone member of the Silurian Kepingtage Formation in the S1 well area,Tarim Basin. Sedimentary Geology and Tethyan Geology, 36(4): 14-20] [20] 宋丹丹. 2016. 塔里木盆地顺托果勒低隆志留系油气成藏特征研究. 中国石油大学(北京)硕士论文. [Song D D. 2016. Hydrocarbon accumulation characteristics for Silurian Reservoirs in Shuntuoguole Low Uolift,Tarim Basin. Masteral dissertation of China University of Petroleum(Beijing)] [21] 孙龙德,邹才能,朱如凯,张云辉,张水昌,张宝民,朱光有,高志勇. 2013. 中国深层油气形成、分布与潜力分析. 石油勘探与开发, 40(6): 641-649. [Sun L D,Zou C N,Zhu R K,Zhang Y H,Zhang S C,Zhang B M,Zhu G Y,Gao Z Y. 2013. Formation,distribution and potential of deep hydrocarbon resources in China. Petroleum Exploration and Development, 40(6): 641-649] [22] 孙乃泉. 2013. 塔里木盆地顺9井区柯坪塔格组沉积相与地震储层识别. 西北大学博士论文. [Sun N Q. 2013. Sedimentary facies and seismic reservoir recognition of Kepingtage Formation in Shun 9 Well Block of Tarim Basin. Doctoral dissertation of Northwest University] [23] 田双良. 2020. 塔里木盆地塔中—顺北地区柯坪塔格组层序地层与沉积相研究. 中国石油大学(华东)硕士论文. [Tian S L. 2020. Research on sequence stratigraphy and sedimentary facies of Kepingtage Formation in Tazhong-Shunbei area,Tarim Basin. Masteral dissertation of China University of Petroleum(East China)] [24] 万友利. 2014. 低渗透沥青砂岩储层致密化成因分析. 成都理工大学博士论文. [Wan Y L. 2014. Cause analysis of the densification of ultra-low permeability asphalt sandstone reservoir: an example from the kepingtage formation in Silurian shuntuoguole low-upwelling area, Tarim. Doctoral dissertation of Chengdu University of Technology] [25] 王莹莹. 2017. 塔里木盆地志留系层序地层与沉积相研究. 成都理工大学硕士论文. [Wang Y Y. 2017. The study of sequence stratigraphy and depositional facies of Silurian in the Tarim Basin. Masteral dissertation of Chengdu University of Technology] [26] 远光辉,操应长,贾珍臻,王艳忠,杨田. 2015. 含油气盆地中深层碎屑岩储层异常高孔带研究进展. 天然气地球科学, 26(1): 28-42. [Yuan G H,Cao Y C,Jia Z Z,Wang Y Z,Yang T. 2015. Research progress on anomalously high porosity zones in deeply buried clastic reservoirs in petroliferous basin. Natural Gas Geoscience, 26(1): 28-42] [27] 张光亚,赵文智,王红军,李洪辉,刘磊. 2007. 塔里木盆地多旋回构造演化与复合含油气系统. 石油与天然气地质, 28(5): 653-663. [Zhang G Y,Zhao W Z,Wang H J,Li H H,Liu L. 2007. Multicycle tectonic evolution and composite petroleum systems in the Tarim Basin. Oil & Gas Geology, 28(5): 653-663] [28] 张涵冰. 2017. 深埋藏致密砂岩储层成因机理及评价: 以塔中地区志留系柯坪塔格组为例. 西南石油大学博士论文. [Zhang H B. 2017. Genetic mechanism for deep buried tight sandstone reservoir and its evaluation. Doctoral dissertation of Southwest Petroleum University] [29] 张涵冰,彭军,杨素举,鲁明,夏青松,李斌. 2016. 致密砂岩储层成岩作用及其控制因素分析: 以塔里木盆地顺托果勒地区志留系柯坪塔格组下段为例. 石油实验地质, 38(4): 543-550. [Zhang H B,Peng J,Yang S J,Lu M,Xia Q S,Li B. 2016. Diagenesis and controlling factors of tight sandstone reservoirs: a case study of the lower member of Silurian Kepingtage Formation in Shuntuoguole area,Tarim Basin. Petroleum Geology & Experiment, 38(4): 543-550] [30] 张少华,蒲仁海,云露,孙乃泉. 2012. 塔北地区柯坪塔格组下段储层特征. 岩性油气藏, 24(6): 76-81. [Zhang S H,Pu R H,Yun L,Sun N Q. 2012. Reservoir characteristics of lower Kepingtage Formation in Tabei area. Lithologic Reservoirs, 24(6): 76-81] [31] 张世祥,李松源. 2016. 松辽盆地三肇凹陷扶杨油层碳酸盐胶结物发育特征. 地下水, 38(2): 179-180,184. [Zhang S X,Li S Y. 2016. Development characteristics of carbonate cement in Fuyang oil layer in Sanzhao sag,Songliao basin. Ground Water, 38(2): 179-180,184] [32] 张伟. 2019. 塔里木盆地顺托果勒地区志留系储层致密化过程与油气充注关系. 中国石油大学(华东)硕士论文. [Zhang W. 2019. Relationship between the densification and hydrocarbon charging of the Silurian reservoirs in the Shuntuoguole Area,Tarim Basin. Masteral dissertation of China University of Petroleum(East China)] [33] 郑浚茂,庞明. 1989. 碎屑储集岩的成岩作用研究. 湖北武汉: 中国地质大学出版社. [Zheng J M,Pang M. 1989. Diagenesis of clastic reservoir rocks. Hubei Wuhan: China University of Geosciences Press] [34] 朱如凯,罗平,何东博,郭宏莉,高志勇,王雪松,张兴阳. 2005. 塔里木盆地塔中地区志留系柯坪塔格组沉积相与沉积模式. 古地理学报, 7(2): 197-206. [Zhu R K,Luo P,He D B,Guo H L,Gao Z Y,Wang X S,Zhang X Y. 2005. Sedimentary facies and models of the Kepingtage Formation of Silurian in Tazhong area,Tarim Basin. Journal of Palaeogeography(Chinese Edition), 7(2): 197-206] [35] 朱秀香,陈绪云,曹自成. 2017. 塔里木盆地顺托果勒低隆起顺托1井区油气成藏模式. 石油实验地质, 39(1): 41-49. [Zhu X X,Chen X Y,Cao Z C. 2017. Hydrocarbon accumulation mode of Shuntuo 1 well block in the Shuntuoguole lower uplift,Tarim Basin. Petroleum Geology & Experiment, 39(1): 41-49] [36] Beard D C,Weyl P K. 1973. Influence of texture on porosity and permeability of unconsolidated sand. AAPG Bulletin, 57(2): 349-369. [37] Canham A. 1997. Reservoir quality prediction insandstones and carbonates. Journal of Petroleum Science and Engineering, 30(3): 260-261. [38] Cao Y C,Yuan G H,Li X Y,Wang Y Z,Xi K L,Wang X M,Jia Z Z,Yang T. 2014. Characteristics and origin of abnormally high porosity zones in buried Paleogene clastic reservoirs in the Shengtuo area,Dongying Sag,East China. Petroleum Science, 11(3): 346-362. [39] Jeans C V,Wray D S,Merriman R J,Fisher M J. 2000. Volcanogenic clays in Jurassic and Cretaceous strata of England and the North Sea Basin. Clay Minerals, 35(1): 25-56. [40] Li D,Jiang X. 2014. Diagenesis and high quality rreservoir forecast of the Qingshankou Sandstones in the southern Songliao Basin of northeast China. Petroleum Science and Technology, 32(17): 2038-2048. [41] Railsback L B. 1984. Carbonate diagenetic facies in the Upper Pennsylvanian Dennis Formation in Iowa,Missouri,and Kansas. Journal of Sedimentary Research, 54(3): 986-999. [42] Yuan G H,Cao Y C,Zhang Y C,Gluyas J. 2017. Diagenesis and reservoir quality of sandstones with ancient “deep”incursion of meteoric freshwater: an example in the Nanpu Sag,Bohai Bay Basin,East China. Marine and Petroleum Geology, 82: 444-464. [43] Zaid S M. 2012. Provenance,diagenesis,tectonic setting and geochemistry of Rudies sandstone(Lower Miocene),Warda Field,Gulf of Suez,Egypt. Journal of African Earth Sciences, 66-67: 56-71.