Abstract Bioturbation is well developed in the reservoir of the Neogene Sanya Formation in the northern Qiongdongnan Basin. Based on detailed observations of cores,quantitative characterization and connectivity analysis of the microscopic pores of reservoir rock samples with and without bioturbation were carried out using polarized light microscopy,scanning electron microscopy and micro-CT. The reservoir modification effect reflected by the Ophiomorpha-Thalassinoides ichnofabric was studied in detail. The results show that the Ophiomorpha-Thalassinoides ichnofabric in the Neogene Sanya Formation is well developed in northern Qiongdongnan Basin. The burrows obviously modified the initial sedimentary structure of the reservoirs,and the primary sedimentary bedding was destroyed. The burrows are mainly filled with quartz,feldspar,chlorite and a small amount of clay minerals. Many intergranular pores and a small amount of intra-grain dissolution pores developed,while the mud content of the surrounding rocks is high,and the pores were poorly developed. Quantitative analysis shows that the morphological characteristics of the pores and pore throats are consistent. The pore volume,pore area, equivalent radius of pore and throat area all present left-skewed unimodal distribution,while the equivalent radius of throat and throat length show approximate bimodal distribution. The number of large pores and throats,effective porosity,permeability and average coordination number of samples with bioturbation are significantly greater than those of samples without bioturbation. This reveals that the Ophiomorpha-Thalassinoides ichnofabric enhances the reserve capacity and connectivity of microscopic pores in the Sanya Formation reservoir. This study is of great significance for analyzing the modification effect of bioturbation on oil and gas reservoirs,increasing reserve capcity, production and recovery of oil and gas in the study area.
Fund:National Natural Science Foundation of China(No.41472104,42272178),the Program for Innovative Research Team(in Science and Technology)in Universities of Henan Province,China(Grant No.21IRTSTHN007),and the Program for Innovative Research Team(in Science and Technology)of Henan Polytechnic University(Grant No. T2020-4)
About author: NIU Yongbin,born in 1980,is a professor with a doctoral degree. He is engaged in researches on applied ichnology and sedimentology. E-mail: niuyongbin@hpu.edu.cn.
Cite this article:
NIU Yongbin,CHENG Mengyuan,CHENG Yigao et al. Reservoir modification effect of Ophiomorpha-Thalassinoides ichnofabric in the Neogene Sanya Formation in northern Qiongdongnan Basin[J]. JOPC, 2023, 25(6): 1407-1420.
NIU Yongbin,CHENG Mengyuan,CHENG Yigao et al. Reservoir modification effect of Ophiomorpha-Thalassinoides ichnofabric in the Neogene Sanya Formation in northern Qiongdongnan Basin[J]. JOPC, 2023, 25(6): 1407-1420.
[1] 蔡佳. 2017. 琼东南盆地长昌凹陷新近系三亚组沉积相. 岩性油气藏, 29(5): 46-54. [Cai J. 2017. Sedimentary facies of Neogene Sanya Formation in Changchang Sag,Qiongdongnan Basin. Lithologic Reservoirs, 29(5): 46-54] [2] 付超,于兴河,金丽娜,董亦思,单新,何玉林. 2017. 琼东南盆地莺歌海组重力流沉积演化过程. 沉积学报, 35(3): 552-560. [Fu C,Yu X H,Jin L N,Dong Y S,Shan X,He Y L. 2017. Sedimentary evolution of gravity flow disposition of Yinggehai Formation in Qiongdongnan Basin. Acta Sedimentologica Sinica, 35(3): 552-560] [3] 郝乐伟,王琪,唐俊. 2013. 储层岩石微观孔隙结构研究方法与理论综述. 岩性油气藏, 25(5): 123-128. [Hao L W,Wang Q,Tang J. 2013. Research progress of reservoir microscopic pore structure. Lithologic Reservoirs, 25(5): 123-128] [4] 何小胡,王亚辉,焦详燕,何卫军,董贵能. 2017. 电成像测井在莺琼盆地大型重力流储集体勘探中的应用. 测井技术, 41(3): 336-344. [He X H,Wang Y H,Jiao X Y,He W J,Dong G N. 2017. Application of electrical imaging logging in exploration of large deep-water gravity flow deposits in Yingqiong Basin. Well Logging Technology, 41(3): 336-344] [5] 黄卫,解习农,何云龙,吴景富,赵志刚,王西杰. 2015. 琼东南盆地中央峡谷西段莺歌海组沉积演化及储层预测. 沉积学报, 33(4): 809-816. [Huang W,Xie X N,He Y L,Wu J F,Zhao Z G,Wang X J. 2015. Evolution and reservoir prediction of Yinggehai Formation in western central canyon in Qiongdongnan Basin. Acta Sedimentologica Sinica, 33(4): 809-816] [6] 雷超,任建业,张静. 2015. 南海构造变形分区及成盆过程. 地球科学, 40(4): 744-762. [Lei C,Ren J Y,Zhang J. 2015. Tectonic Province divisions in the South China Sea: Implications for Basin geodynamics. Earth Science-Journal of China University of Geosciences, 40(4): 744-762] [7] 雷振宇,苏明,张莉,帅庆伟,孙鸣,刘杰,杨睿. 2016. 南海北部陆坡琼东南盆地晚中新世以来沉积物来源及输送样式. 海洋学研究, 34(2): 35-42. [Lei Z Y,Su M,Zhang L,Shuai Q W,Sun M,Liu J,Yang R. 2016. Sediment sources and transport patterns of Qiongdongnan Basin in northern slope of South China Sea since Late Miocene. Journal of Marine Sciences, 34(2): 35-42] [8] 李超,陈国俊,张功成,吕成福,杨海长,马明,韩银学,毕广旭. 2017. 琼东南盆地深水区东段中中新世深水扇发育特征及物源分析. 天然气地球科学, 28(10): 1555-1564. [Li C,Chen G J,Zhang G C,Lü C F,Yang H C,Ma M,Han Y X,Bi G X. 2017. Developmental characteristics and provenances of the submarine fans developed during the Middle Miocene in the eastern deepwater area of the Qiongdongnan Basin. Natural Gas Geoscience, 28(10): 1555-1564] [9] 林景星,杨慧宁,姜仕军,王绍芳,张静,魏明瑞,许波. 2007. 南海盆地新近纪浮游有孔虫带、气候、生物生产力爆炸事件和沉降速度的转换时限. 地质学报, 81(3): 285-294. [Lin J X, Yang H N,Jiang S J,Wang S F,Zhang J,Wei M R,Xu B. 2007. The planktonic foraminiferal zone,climate,bioproductivity explosion event,and time limit of change subsidence velocity in the South China Sea Basion during the Neogene. Acta Geologica Sinica, 81(3): 285-294] [10] 刘见宝,孙珍,刘彦宾,赵中贤,王章稳. 2012. 琼东南盆地新生代构造研究现状及展望. 海洋地质前沿, 28(4): 1-9. [Liu J B,Sun Z. 2012. Progress of Cenozoic tectonic studies in Qiongdongnan Basin. Marine Geology Frontiers, 28(4): 1-9] [11] 刘向君,熊健,梁利喜,袁雯. 2017. 基于微 CT 技术的致密砂岩孔隙结构特征及其对流体流动的影响. 地球物理学进展, 32(3): 1019-1028. [Liu X J,Xiong J,Liang L X,Yuan W. 2017. Study on the characteristics of pore structure of tight sand based on micro-CT scanning and its influence on fluid flow. Progress in Geophysics, 32(3): 1019-1028] [12] 麦文,祝幼华,马瑞芳,覃军干,李君. 2016. 南海北部琼东南盆地渐新世—上新世沟鞭藻指示的沉积环境. 古生物学报, 55(1): 108-121. [Mai W,Zhu Y H,Ma R F,Qin J G,Li J. 2016. Oligocene to Pliocene palaeoenvironmental evolution based on dinoflagellate cysts from the Qiongdongnan Basin,Northern South China Sea. Acta Palaeontologica Sinica, 55(1): 108-121] [13] 麦文,祝幼华,马兆亮,谢金有,罗辉,赵鹏肖. 2015. 南海北部琼东南盆地BD-2井中新世有孔虫生物地层及沉积环境. 微体古生物学报, 32(4): 350-360. [Mai W,Zhu Y H,Ma Z L,Xie J Y,Luo H,Zhao P X. 2015. Miocene foraminifera stratigraphy and palaeoenvironment of well BD-2 in the Qiongdongnan Basin,northern South China Sea,China. Acta Micropalaeontologica Sinica, 32(4): 350-360] [14] 牛永斌,徐资璐,刘圣鑫,钟建华,赵佳如,王培俊. 2020. 塔河油田奥陶系生物扰动碳酸盐岩储集层微观孔隙结构的数字化表征与连通性分析. 古地理学报, 22(4): 785-798. [Niu Y B,Xu Z L,Liu S X,Zhong J H,Zhao J R,Wang P J. 2020. Digital characterization and connectivity analysis of microcosmic pore structures of the Ordovician bioturbated carbonate rock reservoirs in Tahe Oilfield. Journal of Palaeogeography(Chinese Edition), 22(4): 785-798] [15] 盛军,杨晓菁,李纲,徐立,李雅楠,王靖茹,张彩燕,崔海栋. 2019. 基于多尺度X-CT成像的数字岩心技术在碳酸盐岩储层微观孔隙结构研究中的应用. 现代地质, 33(3): 653-661. [Sheng J,Yang X J,Li G,Xu L,Li Y N,Wang J R,Zhang C Y,Cui H D. 2019. Application of multiscale X-CT imaging digital core technique on observing micro-pore structure of carbonate reservoirs. Geoscience, 33(3): 653-661] [16] 汪品先,田军,黄恩清,马文涛. 2018. 地球系统与演变. 北京: 科学出版社,248-257. [Wang P X,Tian J,Huang E Q,Ma W T. 2018. Earth Systems and Evolution. Beijing: Science Press,248-257] [17] 王彬,张强,吕福亮,杨涛涛,杨志力,孙国忠,吴敬武. 2018. 南海海域新生界沉积盆地天然气成藏条件及资源前景. 天然气地球科学, 29(10): 1542-1552. [Wang B,Zhang Q,Lü F L,Yang T T,Yang Z L,Sun G Z,Wu J W. 2018. Accumulations and resource prospects of natural gas of Cenozoic basinsin the South China Sea. Natural Gas Geoscience, 29(10): 1542-1552] [18] 吴敬武,张强,吴时国,吕福亮,王彬,贺晓苏,毛超林. 2013. 南海大中型油气田成藏特征与控制因素. 地球物理学进展, 28(6): 3106-3116. [Wu J W,Zhang Q,Wu S G,Lü F L,Wang B,He X S,Mao C L. 2013. Reservoir characteristics and controls of huge oilfields in the South China Sea. Progress in Geophysics, 28(6): 3106-3116] [19] 谢金有,祝幼华,李绪深,麦文,赵鹏肖. 2012. 南海北部大陆架莺琼盆地新生代海平面变化. 海相油气地质, 17(1): 49-58. [Xie J Y,Zhu Y H,Li X S,Mai W,Zhao P X. 2013. The Cenozoic sea-level changes in Yinggehai-Qiongdongnan Basin,northern South China Sea. Marine Origin Petroleum Geology, 17(1): 49-58] [20] 张伟,何家雄,李晓唐,刘志杰. 2015. 南海北部大陆边缘琼东南盆地含油气系统. 地球科学与环境学报, 37(5): 80-92. [Zhang W,He J X,Li X T,Liu Z J. 2015. Petroleum system in Qiongdongnan Basin of the continental margin,the Northern South China Sea. Journal of Earth Sciences and Environment, 37(5): 80-92] [21] 赵民,张晓宝,吉利明,张功成. 2010. 琼东南盆地构造演化特征及其对油气藏的控制浅析. 天然气地球科学, 21(3): 494-502. [Zhao M,Zhang X B,Ji L M,Zhang G C. 2010. Characteristics of tectonic evolution in the Qiongdongnan Basin and brief discussion about its controlling on reservoirs. Natural Gas Geoscience, 21(3): 494-502] [22] An S Y,Yao J,Yang Y F,Zhang L,Zhao J L,Gao Y. 2016. Influence of pore structure parameters on flow characteristics based on a digital rock and the pore network model. Journal of Natural Gas Science and Engineering, 31: 156-163. [23] Baniak G M,La Croix A D,Polo C A,Playter T L,Pemberton S G,Gingras M K. 2014. Associating X-ray microtomography with permeability contrasts in bioturbated media. Ichnos, 21(4): 234-250. [24] Baniak G M,La Croix A D,Gingras M K. 2022. Recent advancements in characterizing permeability and porosity distributions in bioturbated flow media. Earth-Science Reviews, 232: 104162. [25] Bear J. 1972. Dynamics of Fluids in Porous Media. New York: Elsevier,19-20. [26] Ben-Awuah J,Eswaran P. 2015. Effect of bioturbation on reservoir rock quality of sandstones: a case from the Baram Delta,offshore Sarawak,Malaysia. Petroleum Exploration and Development, 42(2): 223-231. [27] Bera B,Mitra S K,Vick D. 2011. Understanding the micro structure of Berea Sandstone by the simultaneous use of micro-computed tomography(micro-CT)and focused ion beam-scanning electron microscopy(FIB-SEM). Micron, 42(5): 412-418. [28] Chalmers G R,Bustin R M,Power I M. 2012. Characterization of gas shale pore systems by porosimetry,pycnometry,surface area,and field emission scanning electron microscopy/transmission electron microscopy image analyses: examples from the Barnett,Woodford,Haynesville,Marcellus,and Doig units. AAPG Bulletin, 96(6): 1099-1119. [29] Clarkson C R,Freeman M,He L,Agamalian M,Melnichenko Y B,Mastalerz M,Bustin R M,Radliński A P,Blach T P. 2012a. Characterization of tight gas reservoir pore structure using USANS/SANS and gas adsorption analysis. Fuel, 95: 371-385. [30] Clarkson C R,Wood J M M,Burgis S E E,Aquino S D D,Freeman M. 2012b. Nanopore-structure analysis and permeability predictions for a tight gas siltstone reservoir by use of low-pressure adsorption and mercury-intrusion techniques. SPE Reservoir Evaluation & Engineering, 15(6): 648-661. [31] Curtis M E,Sondergeld C H,Ambrose R J,Rai C S. 2012. Microstructural investigation of gas shales in two and three dimensions using nanometer-scale resolution imaging. AAPG Bulletin, 96(4): 665-677. [32] Dey J,Sen S. 2017. Impact of bioturbation on reservoir quality and production-A Review. Journal of the Geological Society of India, 89(4): 460-470. [33] Dong H,Blunt M J. 2009. Pore-network extraction from micro-computerized-tomography images. Physical Review E, 80(3): 036307. [34] Gingras M K,Mendoza C A,Pemberton S G. 2004. Fossilized worm burrows influence the resource quality of porous media. AAPG Bulletin, 88(7): 875-883. [35] Ketcham R A,Carlson W D. 2001. Acquisition,optimization and interpretation of X-ray computed tomographic imagery: applications to the geosciences. Computers and Geosciences, 27(4): 381-400. [36] Knaust D. 2012. Methodology and techniques. Developments in Sedimentology, 64: 245-271. [37] Knaust D. 2013. The ichnogenus Rhizocorallium: classification,trace makers,palaeoenvironments and evolution. Earth-Science Reviews, 126: 1-47. [38] Knaust D. 2017. Atlas of Trace Fossils in Well Core: Appearance,Taxonomy and Interpretation. Switzerland: Springer,21-26. [39] Li Z Q,Shen X,Qi Z Y,Hu R L. 2018. Study on the pore structure and fractal characteristics of marine and continental shale based on mercury porosimetry,N2 adsorption and NMR methods. Journal of Natural Gas Science and Engineering, 53: 12-21. [40] Liu S Q,Sang S X,Wang G,Ma J S,Wang X,Wang W F,Du Y,Wang T. 2017. FIB-SEM and X-ray CT characterization of interconnected pores in high-rank coal formed from regional metamorphism. Journal of Petroleum Science and Engineering, 148: 21-31. [41] Loucks R G,Reed R M,Ruppel S C,Jarvie D M. 2009. Morphology,genesis,and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett shale. Journal of Sedimentary Research, 79(12): 848-861. [42] Niu Y B,Marshall J D,Song H B,Hu B,Hu Y Z,Jin Y,Pan J N,Wu W. 2020. Ichnofabrics and their roles in the modification of petrophysical properties: a case study of the Ordovician Majiagou Formation,Northwest Henan Province,China. Sedimentary Geology, 409: 105773. [43] Oliveira de Araújo O M,Aguilera O,Coletti G,Valencia F L,Buatois L A,Lopes R. 2021. X-ray micro-computed tomography of burrow-related porosity and permeability in shallow-marine equatorial carbonates: a case study from the Miocene Pirabas Formation,Brazil. Marine and Petroleum Geology, 127: 104966. [44] Pemberton S G,Gingras M K. 2005. Classification and characterizations of biogenically enhanced permeability. AAPG Bulletin, 89: 1493-1517. [45] Quaye J A,Jiang Z X,Zhou X W. 2019. Bioturbation influence on reservoir rock quality: a case study of Well Bian-5 from the second member Paleocene Funing Formation in the Jinhu sag,Subei Basin,China. Journal of Petroleum Science and Engineering, 172: 1165-1173. [46] Raeini A Q,Yang J,Bondino I,Bultreys T,Blunt M J,Bijeljic B. 2019. Validating the generalized pore network model using micro-CT images of two-phase flow. Transport in Porous Media, 130(2): 405-424. [47] Shi X H,Pan J N,Pang L L,Wang R,Li G F,Tian J J,Wang H C. 2020. 3D microfracture network and seepage characteristics of low-volatility bituminous coal based on nano-CT. Journal of Natural Gas Science and Engineering, 83: 103556. [48] Silin D,Patzek T. 2006. Pore space morphology analysis using maximal inscribed spheres. Physica A: Statistical Mechanics and its Applications, 371(2): 336-360. [49] Singh A,Jha N K,Mandal P P,Esteban L,Desai B G. 2022. Pore throat characterization of bioturbated heterogeneous sandstone,Bhuj Formation,Kachchh India: an integrated analysis using NMR and HPMI studies. Journal of Petroleum Science and Engineering, 211: 110221. [50] Su M,Xie X N,Wang Z F,Jiang T,Zhang C,He Y L. 2016. Sedimentary evolution of the Central Canyon System in the Qiongdongnan Basin,northern South China Sea. Petroleum Research, 1(1): 81-92. [51] Tiwari P,Deo M,Lin C L,Miller J D. 2013. Characterization of oil shale pore structure before and after pyrolysis by using X-ray micro CT. Fuel, 107: 547-554. [52] Tonkin N S,McIIroy D,Meyer R. 2010. Bioturbation influence on reservoir quality: a case study from the Cretaceous Ben Nevis Formation,Jeanne d'Arc Basin,offshore Newfoundland,Canada. AAPG Bulletin, 94: 1059-1078. [53] Wang Y,Pu J,Wang L,Wang J,Jiang Z,Song Y F,Wang C C,Wang Y,Jin C. 2016. Characterization of typical 3D pore networks of Jiulaodong formation shale using nano-transmission X-ray microscopy. Fuel, 170: 84-91. [54] Yu X H,Wang J Z,Liang J P,Li S L,Zeng X M,Li W. 2014. Depositional characteristics and accumulation model of gas hydrates in northern South China Sea. Marine and Petroleum Geology, 56: 74-86. [55] Yuan S Q,Wu S G,Thomas L,Yao G S,Lü F L,Cao F,Wang H R,Li L. 2009. Fine-grained Pleistocene deepwater turbidite channel system on the slope of Qiongdongnan Basin,northern South China Sea. Marine and Petroleum Geology, 26(8): 1441-1451.