Composition and particle characteristics of suspended heavy minerals in Yangtze River estuary and East China Sea inner continental shelf
LIU Mengjia1, HUANG Xiangtong1, LIAN Ergang1,4, HU Zhongya1, YUE wei2, WANG Zhongbo3, YANG Shouye1
1 State Key Laboratory of Marine Geology,Tongji University,Shanghai 200092,China; 2 School of Geography,Geomatics & Planning,Jiangsu Normal University,Jiangsu Xuzhou 221116,China; 3 Guangdong Key Laboratory of Marine Disaster Early Warning and Protection,Institute of Marine Sciences, Shantou University,Guangdong Shantou 515000,China; 4 Ecological Environment Monitoring and Scientific Research Center,Ministry of Ecology and Environment Taihu Lake Basin East China Sea Ecological Environment Supervision Administration, Shanghai 200125,China
Abstract The mineral composition and particle size of heavy minerals in sediment are important indicator for revealing sediment sources and hydrodynamic sorting processes. However,due to the limitations of research methods,there is still no research on the relationship between the heavy mineral composition, provenance and hydrodynamic sorting of fine-grained sediments in the Yangtze River. In this study,the TESCAN Integrated Mineral Analyzer(TIMA)was used to study the composition and particle size of heavy minerals in different water layers of the Yangtze River Estuary and East China Sea inner continental shelf. In parallel, the automatic identification results of fine-grained heavy minerals were verified by electronic probe analysis. The study shows that the characteristic heavy mineral assemblages in the suspended solids in the Yangtze River Estuary is hornblende,epidote and ferruginous metal minerals,which is consistent with the characteristic heavy mineral assemblages in the sediments of the lower reaches of the Yangtze River. There is an excellent correlation between the heavy mineral composition of suspended matter in the Yangtze River estuary and sediment in the lower reaches of the Yangtze River,indicating that its source is related to the Yangtze River. However,hematite/magnetite is relatively enriched in the suspended matter outside the Yangtze River estuary,which may be the result of the reworking and diffusion of medium density heavy minerals caused by strong tide. It is worth noting that abnormal enrichment of chromite appears in suspended matter samples at stations near Zhoushan Islands,which may be related to human production activities in the sea area. The vast majority of suspended heavy mineral particles in the Yangtze River Estuary are coarse silt to extremely fine sand,enriched in the coarser fractions(Ф<D0.5)of suspended solids,which are mainly carried and transported by runoff. There is no significant difference in the particle size between different types of heavy minerals in suspended solids in different water layers, indicating that they are less affected by sedimentation differences.
Fund:Financially supported by the National Natural Science Foundation of China(No.42176054)
Corresponding Authors:
HUANG Xiangtong,born in 1977, is an associate professor at Tongji University,and is mainly engaged in studies of continental margin sedimentology. E-mail: xiangtong@tongji.edu.cn.
About author: LIU Mengjia,born in 2000,is a master degree candidate in marine science at the School of Ocean and Earth Sciences,Tongji University. E-mail: lmjtz@tongji.edu.cn.
Cite this article:
LIU Mengjia,HUANG Xiangtong,LIAN Ergang et al. Composition and particle characteristics of suspended heavy minerals in Yangtze River estuary and East China Sea inner continental shelf[J]. JOPC, 2024, 26(2): 431-445.
LIU Mengjia,HUANG Xiangtong,LIAN Ergang et al. Composition and particle characteristics of suspended heavy minerals in Yangtze River estuary and East China Sea inner continental shelf[J]. JOPC, 2024, 26(2): 431-445.
[1] 陈沈良,张国安,杨世伦,虞志英. 2004. 长江口水域悬沙浓度时空变化与泥沙再悬浮. 地理学报, 59(2): 260-266. [Chen S L,Zhang G A,Yang S L,Yu Z Y.2004. Temporal and spatial changes of suspended sediment concentration and Resuspension in the Yangtze River Estuary and its adjacent waters. Acta Geographica Sinica, 59(2): 260-266] [2] 冯惠彬,孟繁聪,李胜荣,贾丽辉. 2015. 东昆仑清水泉蛇纹岩中铬铁矿特征及其构造意义. 岩石学报, 31(8): 2129-2144. [Feng H B,Meng F C,Li S R,Jia L H.2015. Characteristics and tectonic significance of chromites from Qingshuiquan serpentinite of East Kunlun,northwest China. Acta Petrologica Sinica, 31(8): 2129-2144] [3] 郭磊城,朱春燕,何青,Wang Zheng Bing,万远扬. 2017. 长江河口潮波时空特征再分析. 海洋通报, 36(6): 652-661. [Guo L C,Zhu C Y,He Q,Wang Z B,Wan Y Y.2017. Examination of tidal wave properties in the Yangtze River Estuary. Marine Science Bulletin, 36(6): 652-661] [4] 何哲峰,蒋荣宝,刘树臣. 2016. 我国铬铁矿资源安全分析. 中国矿业, 25(6): 7-11,29. [He Z F,Jiang R B,Liu S C.2016. Analysis of chromite ore resources security in China. China Mining Magazine, 25(6): 7-11,29] [5] 胡敦欣,杨作升. 2011. 东海海洋通量关键过程. 北京: 海洋出版社,25-30. [Hu D X,Yang Z S.2011. Key Processes of Ocean Flux in the East China Sea. Beijing: China Ocean Press,25-30] [6] 李军,高抒,贾建军,曾志刚. 2003.1998年11月长江河口悬浮体粒度特征的空间分布. 海洋通报, 22(6): 21-29. [Li J,Gao S,Jia J J,Zeng Z G.2003. Spatial variation of the suspended particulate matter grain-size in the Yangtze Estuary. Marine Science Bulletin, 22(6): 21-29] [7] 李一鸣,张国安,游博文,李占海. 2019. 长江河口河槽近期沉积特征及影响因子分析. 地理学报, 74(1): 178-190. [Li Y M,Zhang G A,You B W,Li Z H.2019. Recent sediment characteristics and their impact factors in the Yangtze Estuary riverbed. Acta Geographica Sinica, 74(1): 178-190] [8] 李宇芊,刘万锋,吴建伟. 2021. 浙江省沿海港口铁矿石运输发展建议. 水运管理, 43(5): 6-11. [Li Y Q,Liu W F,Wu J W.2021. Suggestions on the development of iron ore transportation in coastal ports of Zhejiang Province. Shipping Management, 43(5): 6-11] [9] 林春明,张妮,张霞,张志萍,李艳丽,周健,岳信东,姚玉来. 2020. 陆相断陷盆地物源体系和沉积演化:以苏北高邮凹陷为例. 北京: 科学出版社,34-54. [Lin C M,Zhang N,Zhang X,Zhang Z P,Li Y L,Zhou J,Yue X D,Yao Y L.2020. Provenance System and Sedimentary Evolution of Continental Faulted Basin. Beijing: Science Press,34-54] [10] 罗向欣,杨世伦,张文祥,张经. 2012. 近期长江口—杭州湾邻近海域沉积物粒径的时空变化及其影响因素. 沉积学报, 30(1): 137-147. [Luo X X,Yang S L,Zhang W X,Zhang J.2012. Recent spatial pattern and temporal variation in sediment grain size in the inshore area adjacent to the Yangtze Estuary and Hangzhou Bay. Acta Sedimentologica Sinica, 30(1): 137-147] [11] 沈金山,朱珍妹,张新琴. 1983. 长江口南槽拦门沙的成因和演变. 海洋与湖沼, 14(6): 582-590. [Shen J S,Zhu Z M,Zhang X Q.1983. Origin and evolution of the entrance sandbars in the south passage of the Changjiang River Estuary. Oceanologia et Limnologia Sinica, 14(6): 582-590] [12] 宋红瑛,刘金庆,印萍,王松涛,吴振,衣伟虹. 2016. 日照近海表层沉积物粒度特征与沉积环境. 中国海洋大学学报(自然科学版), 46(3): 96-104. [Song H Y,Liu J Q,Yin P,Wang S T,Wu Z,Yi W H.2016. Grain size characteristics of the surface sediment and sedimentary environment in Rizhao offshore. Periodical of Ocean University of China, 46(3): 96-104] [13] 王昆山,王国庆,蔡善武,窦衍光,石学法,程振波,姜晓黎. 2007. 长江水下三角洲沉积物的重矿物分布及组合. 海洋地质与第四纪地质, 27(1): 7-12. [Wang K S,Wang G Q,Cai S W,Dou Y G,Shi X F,Cheng Z B,Jiang X L.2007. Heavy mineral characteristics of surface sediments in the subaqueous Yangtze River Delta. Marine Geology & Quaternary Geology, 27(1): 7-12] [14] 王腊春,陈晓玲,储同庆. 1997. 黄河、长江泥沙特性对比分析. 地理研究, 16(4): 72-79. [Wang L C,Chen X L,Chu T Q.1997. A contrast analysis on the loads character of the Changjiang River and the Yellow River. Geographical Research, 16(4): 72-79] [15] 王孟瑶,金秉福,岳伟. 2019. 长江口表层沉积物重矿物在不同粒级中的分布与研究意义. 海洋学报, 41(11): 89-100. [Wang M Y,Jin B F,Yue W.2019. Patterns of heavy mineral combination in different grain-size categories and their sedimentary significance: a case study for surficial sediments in the Changjiang River Estuary. Haiyang Xuebao, 41(11): 89-100] [16] 王中波,杨守业,李萍,李从先,蔡进功. 2006. 长江水系沉积物碎屑矿物组成及其示踪意义. 沉积学报, 24(4): 570-578. [Wang Z B,Yang S Y,Li P,Li C X,Cai J G.2006. Detrital mineral composition of the Changjiang River sediments and their tracing implication. Acta Sedimentologica Sinica, 24(4): 570-578] [17] 王中波,杨守业,张志珣,何起祥,蓝先洪. 2012. 东海西北部陆架表层沉积物重矿物组合及其沉积环境指示. 海洋学报, 34(6): 114-125. [Wang Z B,Yang S Y,Zhang Z X,He Q X,Lan X H.2012. The heavy mineral assemblages of the surface sediments on the northeast shelf of the East China Sea and their environment implication. Acta Oceanologica Sinica, 34(6): 114-125] [18] 王重洋,周成虎,陈水森,Xie Yichun,李丹,杨骥,周霞,李勇,王丹妮,刘杨晓月. 2021. 河口最大浑浊带研究的回顾与展望. 科学通报, 66(18): 2328-2342. [Wang C Y,Zhou C H,Chen S S,Xie Y C,Li D,Yang J,Zhou X,Li Y,Wang D N,Liu Y X Y.2021. Retrospect and perspective of the estuarine turbidity maximum zone researches. Chinese Science Bulletin, 66(18): 2328-2342] [19] 徐峰. 2021. 依托宁波舟山港平抑铁矿石价格的设想. 港口科技,(10): 45-48. [Xu F.2021. Assumption of stabilizing iron ore price by relying on Zhoushan Port in Ningbo. Port Science & Technology,(10): 45-48] [20] 许苗苗,魏晓椿,杨蓉,王平,程晓敢. 2021. 重矿物分析物源示踪方法研究进展. 地球科学进展, 36(2): 154-171. [Xu M M,Wei X C,Yang R,Wang P,Cheng X G.2021. Research progress of provenance tracing method for heavy mineral analysis. Advances in Earth Science, 36(2): 154-171] [21] 严肃庄,曹沛奎. 1994. 长江口悬浮体的粒度特征. 上海地质, 15(3): 50-58. [Yan Z S,Cao P K.1994. The grain size characteristics of the suspended matters in the Changjiang Estuary. Shanghai Geology, 15(3): 50-58] [22] 杨斌虎,白海强,戴亚权,查理,李健,靳文奇,刘新菊. 2008. 鄂尔多斯盆地庆阳地区晚三叠世延长期长8沉积期物源与沉积体系研究. 古地理学报, 10(3): 251-259. [Yang B H,Bai H Q,Dai Y Q,Zha L,Li J,Jin W Q,Liu X J.2008. Provenance and depositional systems during the depositional period of interval 8 of Upper Triassic Yanchang Formation in Qingyang area,Ordos Basin. Journal of Palaeogeography(Chinese Edition), 10(3): 251-259] [23] 杨守业,李从先,朱金初,张文兰. 2000. 长江与黄河沉积物中磁铁矿成分标型意义. 地球化学, 29(5): 480-484. [Yang S Y,Li C X,Zhu J C,Zhang W L.2000. Provenance indicator of chemical fingerprint of magnetite from the Yangtze River and the Yellow River sediments. Geochimica, 29(5): 480-484] [24] 杨毅恒,曾乐,邓凡,胡建中. 2018. 中国铬铁矿资源潜力分析及找矿方向. 地学前缘, 25(3): 138-147. [Yang Y H,Zeng L,Deng F,Hu J Z.2018. Geological characteristics and mineralization potential of chromite resources in China. Earth Science Frontiers, 25(3): 138-147] [25] 恽才兴. 2004. 长江河口近期演变基本规律. 北京: 海洋出版社,8-14. [Yun C X.2004. Basic Law of Recent Evolution of the Yangtze River Estuary. Beijing: China Ocean Press,8-14] [26] 张凯棣,李安春,董江,张晋. 2016. 东海表层沉积物碎屑矿物组合分布特征及其物源环境指示. 沉积学报, 34(5): 902-911. [Zhang K D,Li A C,Dong J,Zhang J.2016. Detrital mineral distributions in surface sediments of the East China Sea: implications for sediment provenance and sedimentary environment. Acta Sedimentologica Sinica, 34(5): 902-911] [27] 张伟,金秉福,岳伟,王孟瑶. 2020. 黄河口和长江口沉积绿帘石地球化学特征及物源意义. 矿物岩石地球化学通报, 39(3): 576-586. [Zhang W,Jin B F,Yue W,Wang M Y.2020. Geochemical characteristics and provenance of epidote grains in sediments in estuaries of the Yellow River and Yangtze River. Bulletin of Mineralogy,Petrology and Geochemistry, 39(3): 576-586] [28] 赵利. 2014. 长江、黄河入海沉积角闪石的矿物化学特征及对中国陆架泥质沉积的物源指示意义. 中国海洋大学硕士学位论文:22. [Zhao L.2014. Mineral chemical characteristics of the Yangtze River,Yellow River sediments and provenance implications in the mud area of East China Sea. Masteral dissertation of Ocean University of China: 22] [29] 邹亮,窦衍光,陈晓辉,胡邦琦,林曦. 2021. 冲绳海槽中南部不同环境表层沉积物质来源. 海洋地质与第四纪地质, 41(1): 115-124. [Zou L,Dou Y G,Chen X H,Hu B Q,Lin X.2021. Provenance analysis for surface sediments in different depositional environments of the middle-south Okinawa Trough. Marine Geology & Quaternary Geology, 41(1): 115-124] [30] 左鹏飞. 2016. 豫西南中元古代—早古生代构造演化和黑色岩系成矿作用. 中国地质大学(北京)博士学位论文: 50. [Zuo P F.2016. Meso-neoproterozoic to Early Paleozoic tectonics and mineralization of black shales in southwest Henan,China. Doctoral dissertation of China University of Geosciences(Beijing): 50] [31] Caroff M,Maury R C,Cotton J,Clément J P.2000. Segregation structures in vapor-differentiated basaltic flows. Bulletin of Volcanology, 62: 171-187. [32] Clément J P,Caroff M,Dudoignon P,Launeau P,Bohn M,Cotten J,Blais S,Guille G.2007. A possible link between gabbros bearing high temperature iddingsite alteration and huge pegmatoid intrusions: the Society Islands,French Polynesia. Lithos, 96(3-4): 524-542. [33] Deer W A,Howie R A,Zussman J.2013. An Introduction to the Rock-Forming Minerals(Third Edition). London: The Mineralogical Society,24-549. [34] Garzanti E,Andò S,Vezzoli G.2008. Settling equivalence of detrital minerals and grain-size dependence of sediment composition. Earth and Planetary Science Letters, 273: 138-151. [35] Garzanti E,Andò S,France-Lanord C,Vezzoli G,Censi P,Galy V,Najman Y.2010. Mineralogical and chemical variability of fluvial sediments 1. Bedload sand(Ganga-Brahmaputra,Bangladesh). Earth and Planetary Science Letters, 299: 368-381. [36] Garzanti E,Vezzoli G,Andó S,Lavé J,Attal M,France-Lanord C,DeCelles P.2007. Quantifying sand provenance and erosion(Marsyandi River,Nepal Himalaya). Earth and Planetary Science Letters, 258: 500-515. [37] Heroy D C,Kuehl S A,Goodbred S L.2003. Mineralogy of the Ganges and Brahmaputra Rivers: implications for river switching and Late Quaternary climate change. Sedimentary Geology, 155: 343-359. [38] Hrstka T,Gottlieb P,Skala R,Breiter K,Motl D.2018. Automated mineralogy and petrology: applications of TESCAN Integrated Mineral Analyzer(TIMA). Journal of Geosciences, 63: 47-63. [39] Meyer M C,Austin P,Tropper P.2013. Quantitative evaluation of mineral grains using automated SEM-EDS analysis and its application potential in optically stimulated luminescence dating. Radiation Measurements, 58: 1-11. [40] Nechaev V P,Isphording W C.1993. Heavy-mineral assemblages of continental margins as indicators of plate-tectonic environments. Journal of Sedimentary Research, 63: 1110-1117. [41] Resentini A,Malusà M G,Garzanti E.2013. MinSORTING: an excel worksheet for modelling mineral grain-size distribution in sediments,with application to detrital geochronology and provenance studies. Computers & Geosciences, 59: 90-97. [42] Totten M W,Hanan M A.2007. Chapter 12: Heavy Minerals in Shales. Developments in Sedimentology. Amsterdam: Elsevier,323-341. [43] Wentworth C K.1922. A scale of grade and class terms for clastic sediments. Journal of Geology, 30(5): 377-392. [44] Xie X P,Wang Z Y,Melching C S.2009. Formation and evolution of the Jiuduansha Shoal over the past 50 year. Journal of Hydraulic Engineering, 135: 741-754. [45] Yang S L,Eisma D,Ding P X.2000. Sedimentary processes on an estuarine marsh island within the turbidity maximum zone of the Yangtze River mouth. Geo-Marine Letters, 20: 87-92. [46] Yang S Y,Li C X.2000. Elemental composition in the sediments of the Yangtze and the Yellow Rivers and their tracing implication. Progress in Natural Science, 10(8): 54-60. [47] Yang S Y,Wang Z B,Guo Y,Li C X,Cai J G.2009. Heavy mineral compositions of the Changjiang(Yangtze River)sediments and their provenance-tracing implication. Journal of Asian Earth Sciences, 35: 56-65. [48] Yang Y P,Li Y T,Sun S H,Fan Y Y.2014. Suspended sediment load in the turbidity maximum zone at the Yangtze River Estuary: the trends and causes. Journal of Geographical Sciences, 24: 129-142. [49] Yang Z S,Wang H J,Saito Y,Milliman J D,Xu K,Qiao S,Shi G.2006. Dam impacts on the Changjiang(Yangtze)River sediment discharge to the sea: the past 55 years and after the Three Gorges Dam. Water Resources Research, 42: W04407. [50] Yue W,Jin B F,Zhao B C.2018. Transparent heavy minerals and magnetite geochemical composition of the Yangtze River sediments: implication for provenance evolution of the Yangtze Delta. Sedimentary Geology, 364: 42-52. [51] Zhang E F,Savenije H H G,Chen S L,Mao X H.2012. An analytical solution for tidal propagation in the Yangtze Estuary,China. Hydrology and Earth System Sciences, 16(9): 3327-3339. [52] Zhang X,Lin C M,Dalrymple R W,Yang S Y.2021. Source-to-sink analysis for the mud and sand in the late-Quaternary Qiantang River incised-valley fill and its implications for delta-shelf-estuary dispersal systems globally. Sedimentology, 68(7): 3228-3252.