[1] 毕磊,杨守业,李超,赵云,郭玉龙,梁小龙. 2015.14 ka以来东亚季风区典型流域硅酸盐岩化学风化过程. 中国矿物岩石地球化学学会第15届学术年会论文摘要集(3).
[Bi L,Yang S Y,Li C,Zhao Y,Guo Y L,Liang X L.2015. Chemical weathering process of silicate rocks in typical basins of East Asian monsoon region since 14 ka. Proceedings of the 15th Annual Conference of Chinese Society of Mineralogy,Petrology and Geochemistry(3)]
[2] 傅寒晶,简星,梁杭海. 2021. 硅酸盐化学风化强度评估的沉积物指标与方法研究进展. 古地理学报, 23(6): 1192-1209.
[Fu H J,Jian X,Liang H H.2021. Research progress of sediment indicators and methods for evaluation of silicate chemical weathering intensity. Journal of Palaeogeography(Chinese Edition), 23(6): 1192-1209]
[3] 李荐华,郑芳文,吴超,黄诚,唐春,彭艺伟,徐春霞,杨海全. 2021. 长江中下游典型硅酸盐岩流域自然风化与人类活动影响下的水化学特征: 以抚河流域为例. 地球与环境, 49(4): 347-357.
[Li J H,Zheng F W,Wu C,Huang C,Tang C,Peng Y W,Xu C X,Yang H Q.2021. Hydrochemical characteristics of river in a representative silicate rock region under natural weathering and anthropogenic activities: a case study of the Fuhe River in the middle and lower reaches of the Yangtze River. Earth and Environment, 49(4): 347-357]
[4] 李晶莹. 2003. 中国主要流域盆地的风化剥蚀作用与大气CO2的消耗及其影响因子研究. 中国海洋大学博士学位论文.
[Li J Y.2003. A study on the chemical weathering,mechanical denudation correlative with river water and sediment geochemistry and CO2 consumption budget and controlling factors in the major drainage basins of China. Doctoral dissertation of Ocean University of China]
[5] 李朝君. 2020. 全球碳酸盐岩与硅酸盐岩风化碳汇估算. 贵州师范大学硕士学位论文.
[Li C J.2020. Estimation of weathering carbon sinks in global carbonate and silicate rocks. Masteral dissertation of Guizhou Normal University]
[6] 蒲俊兵,蒋忠诚,袁道先,章程. 2015. 岩石风化碳汇研究进展: 基于IPCC第五次气候变化评估报告的分析. 地球科学进展, 30(10): 1081-1090.
[Pu J B,Jiang Z C,Yuan D X,Zhang C.2015. Some opinions on rock-weathering-related carbon sinks from the IPCC fifth assessment report. Advances in Earth Science, 30(10): 1081-1090]
[7] 吴卫华,杨杰东,徐士进. 2007. 青藏高原化学风化和对大气CO2的消耗通量. 地质论评, 53(4): 515-528.
[Wu W H,Yang J D,Xu S J.2007. Chemical weathering and atmospheric CO2 consumption of Qinghai—Xizang(tibet)plateau. Geological Review, 53(4): 515-528]
[8] 吴涛,陈骏,连宾. 2007. 微生物对硅酸盐矿物风化作用研究进展. 矿物岩石地球化学通报, 26(3): 263-268,275.
[Wu T,Chen J,Lian B.2007. Advance in studies on the function of microbes to the weathering of silicate minerals. Bulletin of Mineralogy,Petrology and Geochemistry, 26(3): 263-268,275]
[9] 王尹,李祥辉,刘玲. 2012. 古大气CO2浓度重建方法技术研究现状. 地质科技情报, 31(2): 90-98.
[Wang Y,Li X H,Liu L.2012. On methods and technologies for reconstruction of paleoatmospheric CO2 concentration. Geological Science and Technology Information, 31(2): 90-98]
[10] 孙明照,瞿书逸,李来峰,李乐,吴卫华. 2018. 岩性对化学风化的影响: 来自亚热带气候条件下花岗岩和安山岩的对比. 地球科学与环境学报, 40(5): 627-636.
[Sun M Z,Qu S Y,Li L F,Li L,Wu W H.2018. Effects of lithology on chemical weathering: comparison of granite and andesite in subtropical climate. Journal of Earth Sciences and Environment, 40(5): 627-636]
[11] Amiotte-Suchet P,Probst J L,Ludwig W.2003. Worldwide distribution of continental rock lithology: implications for the atmospheric/soil CO2 uptake by continental weathering and alkalinity river transport to the oceans. Global Biogeochemical Cycles, 17(2): 1038.
[12] Barman A K,Varadachari C,Ghosh K.1992. Weathering of silicate minerals by organic acids. I. Nature of cation solubilisation. Geoderma, 53(1-2): 45-63.
[13] Beerling D J,Royer D L.2002. Fossil plants as indicators of the Phanerozoic global carbon cycle. Annual Review of Earth and Planetary Sciences, 30(1): 527-556.
[14] Beerling D J,Berner R A.2005. Feedbacks and the coevolution of plants and atmospheric CO2. Proceedings of the National Academy of Sciences of the United States of America, 102(5): 1302-1305.
[15] Berner R A,Lasaga A C,Garrels R M.1983a. The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. American Journal of Science, 283(7): 641-683.
[16] Berner R A,Raiswell R.1983b. Burial of organic carbon and pyrite sulfur in sediments over Phanerozoic time: a new theory. Geochimica et Cosmochimica Acta, 47(5): 855-862.
[17] Berner R A,Caldeira K.1997. The need for mass balance and feedback in the geochemical carbon cycle. Geology, 25(10): 955-956.
[18] Berner R A.1991. A model for atmospheric CO2 over Phanerozoic time. American Journal of Science, 291(4): 339-376.
[19] Berner R A.1994. GEOCARB Ⅱ;A revised model of atmospheric CO2 over Phanerozoic time. American Journal of Science, 294(1): 56-91.
[20] Berner R A.2001. GEOCARB Ⅲ: A revised model of atmospheric CO2 over Phanerozoic time. American Journal of Science, 301(2): 182-204.
[21] Berner R A.2004. The Phanerozoic Carbon Cycle: CO2 and O2. New York: Oxford University Press.
[22] Berner R A.2006. Geocarbsulf: a combined model for Phanerozoic atmospheric O2 and CO2. Geochimica et Cosmochimica Acta, 70(23): 5653-5664.
[23] Bluth G J S,Kump L R.1994. Lithologic and climatologic controls of river chemistry. Geochimica et Cosmochimica Acta, 58(10): 2341-2359.
[24] Bosecker K.1993. Bioleaching of silicate manganese ores. Geomicrobiology Journal, 11(3-4): 195-203.
[25] Brault M O,Matthews H D,Mysak L A.2017. The importance of terrestrial weathering changes in multimillennial recovery of the global carbon cycle: a two-dimensional perspective. Earth System Dynamics, 8(2): 455-475.
[26] Broecker W S,Sanyal A.1998. Does atmospheric CO2 police the rate of chemical weathering?Global Biogeochemical Cycles, 12(3): 403-408.
[27] Caldeira K,Kasting J F.1992. The life span of the biosphere revisited. Nature, 360(6406): 721-723.
[28] Caves J K,Jost A B,Lau K V,Maher K.2016. Cenozoic carbon cycle imbalances and a variable weathering feedback. Earth and Planetary Science Letters, 450: 152-163.
[29] Clift P D,Wan S M,Blusztajn J.2014. Reconstructing chemical weathering,physical erosion and monsoon intensity since 25 Ma in the northern South China Sea: a review of competing proxies. Earth-Science Reviews, 130: 86-102.
[30] Dalai T K,Krishnaswami S,Sarin M M.2002. Major ion chemistry in the headwaters of the Yamuna River system. Geochimica et Cosmochimica Acta, 66(19): 3397-3416.
[31] Deng K,Yang S Y,Guo Y L.2022. A global temperature control of silicate weathering intensity. Nature Communications, 13(1): 1781.
[32] Dessert C,Dupré B,Gaillardet J,François L M,Allègre C J.2003. Basalt weathering laws and the impact of basalt weathering on the global carbon cycle. Chemical Geology, 202(3-4): 257-273.
[33] Dupré B,Dessert C,Oliva P,Goddéris Y,Viers J,François L,Millot R,Gaillardet J.2003. Rivers,chemical weathering and Earth's climate. Comptes Rendus Geoscience, 335(16): 1141-1160.
[34] Drever J I.1994. The effect of land plants on weathering rates of silicate minerals. Geochimica et Cosmochimica Acta, 58(10): 2325-2332.
[35] Dunne T.1978. Rates of chemical denudation of silicate rocks in tropical catchments. Nature, 274(5668): 244-246.
[36] Eiriksdottir E S,Gislason S R,Oelkers E H.2013. Does temperature or runoff control the feedback between chemical denudation and climate?insights from NE Iceland. Geochimica et Cosmochimica Acta, 107: 65-81.
[37] Fischer J,Grassl H.1984. Radiative transfer in an atmosphere-ocean system: an azimuthally dependent matrix-operator approach. Applied Optics, 23(7): 1032-1039.
[38] Foster G L,Royer D L,Lunt D J.2017. Future climate forcing potentially without precedent in the last 420 million years. Nature Communications, 8(1): 14845.
[39] Gaillardet J,Dupré B,Louvat P,Allègre C J.1999. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chemical Geology, 159(1-4): 3-30.
[40] Garrels R M,Berner R A.1983. The global carbonate-silicate sedimentary system: some feedback relations. In: Westbroek P,de Jong E W(eds). Biomineralization and Biological Metal Accumulation. Dordrecht: Springer, 73-87.
[41] Galy V,France-Lanord C,Beyssac O,Faure P,Kudrass H,Palhol F.2007. Efficient organic carbon burial in the Bengal fan sustained by the Himalayan erosional system. Nature, 450(7168): 407-410.
[42] Goddéris Y,Roelandt C,Schott J,Pierret M C,François L M.2009. Towards an integrated model of weathering,climate,and biospheric processes. In: Oelkers E H,Schott J(eds). Thermodynamics and Kinetics of Water-Rock Interaction, 70: 411-434.
[43] Goddéris Y,Donnadieu Y,Carretier S,Aretz M,Dera G,Macouin M,Regard V.2017. Onset and ending of the late Palaeozoic ice age triggered by tectonically paced rock weathering. Nature Geoscience, 10(5): 382-386.
[44] Hakim K,Bower D J,Tian M,Deitrick R,Auclair-Desrotour P,Kitzmann D,Dorn C,Mezger K,Heng K.2021. Lithologic controls on silicate weathering regimes of temperate planets. The Planetary Science Journal, 2(2): 49.
[45] Hartmann J,Jansen N,Dürr H H,Kempe S,Köhler P.2009. Global CO2-consumption by chemical weathering: What is the contribution of highly active weathering regions?Global and Planetary Change, 69(4): 185-194.
[46] Henderson M E K,Duff R B.1963. The release of metallic and silicate ions from minerals,rocks,and soils by fungal activity. Journal of Soil Science, 14(2): 236-246.
[47] Hilley G E,Porder S.2008. A framework for predicting global silicate weathering and CO2 drawdown rates over geologic time-scales. Proceedings of the National Academy of Sciences of the United States of America, 105(44): 16855-16859.
[48] Hilton R G,Gaillardet J,Calmels D,Birck J L.2014. Geological respiration of a mountain belt revealed by the trace element rhenium. Earth and Planetary Science Letters, 403: 27-36.
[49] Hilton R G,West A J.2020. Mountains,erosion and the carbon cycle. Nature Reviews Earth & Environment, 1(6): 284-299.
[50] Hinsinger P,Fernandes Barros O N,Benedetti M F,Noack Y,Callot G.2001. Plant-induced weathering of a basaltic rock: experimental evidence. Geochimica et Cosmochimica Acta, 65(1): 137-152.
[51] Hodell D A,Mead G A,Mueller P A.1990. Variation in the strontium isotopic composition of seawater(8 Ma to present): implications for chemical weathering rates and dissolved fluxes to the oceans. Chemical Geology: Isotope Geoscience Section, 80(4): 291-307.
[52] Kasting J F.2019. The goldilocks planet?How silicate weathering maintains earth “just right”. Elements, 15(4): 235-240.
[53] Kempe S.1979. Carbon in the freshwater cycle. The Global Carbon Cycle, 13: 317-342.
[54] Kempe S,Degens E T.1985. An early soda ocean?Chemical Geology, 53(1-2): 95-108.
[55] Labat D,Goddéris Y,Probst J L,Guyot J L.2004. Evidence for global runoff increase related to climate warming. Advances in Water Resources, 27(6): 631-642.
[56] Lee C T A,Jiang H H,Ronay E,Minisini D,Stiles J,Neal M.2018. Volcanic ash as a driver of enhanced organic carbon burial in the Cretaceous. Scientific Reports, 8(1): 4197.
[57] Lenton T M,Britton C.2006. Enhanced carbonate and silicate weathering accelerates recovery from fossil fuel CO2 perturbations. Global Biogeochemical Cycles, 20(3): GB3009.
[58] Lenton T M,Crouch M,Johnson M,Pires N,Dolan L.2012. First plants cooled the Ordovician. Nature Geoscience, 5(2): 86-89.
[59] Lerman A,Mackenzie F T,Garrels R M.1975. Modeling of geochemical cycles: phosphorus as an example. Geological Society of America Memrior, 142: 205-218.
[60] Li C,Yang S.2010. Is chemical index of alteration(CIA)a reliable proxy for chemical weathering in global drainage basins?American Journal of Science, 310(2): 111-127.
[61] Li G J,Hartmann J,Derry L A,West A J,You C F,Long X Y,Zhan T,Li L F,Li G,Qiu W H,Li T,Liu L W,Chen Y,Ji J F,Zhao L,Chen J.2016. Temperature dependence of basalt weathering. Earth and Planetary Science Letters, 443: 59-69.
[62] Liu F,Chai J,Wang B,Liu J,Zhang X,Wang Z.2016. Global monsoon precipitation responses to large volcanic eruptions. Scientific Reports, 6(1): 24331.
[63] Maffre P,Ladant J B,Moquet J S,Carretier S,Labat D,Goddéris Y.2018. Mountain ranges,climate and weathering. Do orogens strengthen or weaken the silicate weathering carbon sink?Earth and Planetary Science Letters, 493: 174-185.
[64] Maher K,Chamberlain C P.2014. Hydrologic regulation of chemical weathering and the geologic carbon cycle. Science, 343(6178): 1502-1504.
[65] Meybeck M.1987. Global chemical weathering of surficial rocks estimated from river dissolved loads. American Journal of Science, 287(5): 401-428.
[66] Millot R,Gaillardet J,Dupré B,Allègre C J.2002. The global control of silicate weathering rates and the coupling with physical erosion: new insights from rivers of the Canadian Shield. Earth and Planetary Science Letters, 196(1-2): 83-98.
[67] Millot R,Vigier N,Gaillardet J.2010. Behaviour of lithium and its isotopes during weathering in the Mackenzie Basin,Canada. Geochimica et Cosmochimica Acta, 74(14): 3897-3912.
[68] Moon S,Chamberlain C P,Hilley G E.2014. New estimates of silicate weathering rates and their uncertainties in global rivers. Geochimica et Cosmochimica Acta, 134: 257-274.
[69] Nesbitt H W,Young G M.1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299(5885): 715-717.
[70] Oeser R A,von Blanckenburg F.2020. Do degree and rate of silicate weathering depend on plant productivity?Biogeosciences, 17: 4883-4917.
[71] Pagani M,Caldeira K,Berner R,Beerling D J.2009. The role of terrestrial plants in limiting atmospheric CO2 decline over the past 24 million years. Nature, 460(7251): 85-88.
[72] Penman D E,Caves Rugenstein J K,Ibarra D E,Winnick M J.2020. Silicate weathering as a feedback and forcing in Earth's climate and carbon cycle. Earth-Science Reviews, 209: 103298.
[73] Pereira H M,Ferrier S,Walters M,Geller G N,Jongman R H G,Scholes R J,Bruford M W,Brummitt N,Butchart S H M,Cardoso A C,Coops N C,Dulloo E,Faith D P,Freyhof J,Gregory R D,Heip C,Höft R,Hurtt G,Jetz W,Karp D S,McGeoch M A,Obura D,Onoda Y,Pettorelli N,Reyers B,Sayre R,Scharlemann J P W,Stuart S N,Turak E,Walpole M,Wegmann M.2013. Essential biodiversity variables. Science, 339(6117): 277-278.
[74] Porada P,Ekici A,Beer C.2016. Effects of bryophyte and lichen cover on permafrost soil temperature at large scale. The Cryosphere, 10(5): 2291-2315.
[75] Pu J P,MacDonald F A,Schmitz M D,Rainbird R H,Bleeker W,Peak B A,Flowers R M,Hoffman P F,Rioux M,Hamilton M A.2022. Emplacement of the Franklin large igneous Province and initiation of the Sturtian Snowball Earth. Science Advances, 8(47): eadc9430.
[76] Riebe C S,Kirchner J W,Granger D E,Finkel R C.2001. Strong tectonic and weak climatic control of long-term chemical weathering rates. Geology, 29(6): 511.
[77] Rocha W,Metcalfe D B,Doughty C E,Brando P,Silvério D,Halladay K,Nepstad D C,Balch J K,Malhi Y.2014. Ecosystem productivity and carbon cycling in intact and annually burnt forest at the dry southern limit of the Amazon rainforest(Mato Grosso,Brazil). Plant Ecology & Diversity, 7(1-2): 25-40.
[78] Roelandt C,Goddéris Y,Bonnet M P,Sondag F.2010. Coupled modeling of biospheric and chemical weathering processes at the continental scale. Global Biogeochemical Cycles, 24(2): GB2004.
[79] Royer D L.2001. Stomatal density and stomatal index as indicators of paleoatmospheric CO2 concentration. Review of Palaeobotany and Palynology, 114(1-2): 1-28.
[80] Roy S,Gaillardet J,Allègre C J.1999. Geochemistry of dissolved and suspended loads of the Seine River,France: anthropogenic impact,carbonate and silicate weathering. Geochimica et Cosmochimica Acta, 63(9): 1277-1292.
[81] Ruddiman W F,Raymo M E,Prell W L,Kutzbach J E.1997. The uplift-climate connection: a synthesis. In: Ruddiman W F(ed). Tectonic Uplift and Climate Change. New York: Plenum Press, 471-515.
[82] Suchet P A,Probst J L.1995. A global model for present-day atmospheric/soil CO2 consumption by chemical erosion of continental rocks(GEM-CO2). Tellus B, 47(1-2): 273-280.
[83] Sklar L S,Riebe C S,Marshall J A,Genetti J,Leclere S,Lukens C L,Merces V.2017. The problem of predicting the size distribution of sediment supplied by hillslopes to rivers. Geomorphology, 277: 31-49.
[84] Stallard R F,Edmond J M.1983. Geochemistry of the Amazon: 2. The influence of geology and weathering environment on the dissolved load. Journal of Geophysical Research: Oceans, 88(C14): 9671-9688.
[85] Street-Perrott F A,Barker P A.2008. Biogenic silica: a neglected component of the coupled global continental biogeochemical cycles of carbon and silicon. Earth Surface Processes and Landforms, 33(9): 1436-1457.
[86] Soreghan G S,Soreghan M J,Heavens N G.2019. Explosive volcanism as a key driver of the Late Paleozoic ice age. Geology, 47(7): 600-604.
[87] Taylor A S,Lasaga A C.1999. The role of basalt weathering in the Sr isotope budget of the oceans. Chemical Geology, 161(1-3): 199-214.
[88] Volk T.1987. Feedbacks between weathering and atmospheric CO2 over the last 100 million years. American Journal of Science, 287: 763-779.
[89] Walker J C G,Hays P B,Kasting J F.1981. A negative feedback mechanism for the long-term stabilization of Earth's surface temperature. Journal of Geophysical Research, 86(C10): 9776.
[90] Wan S M,Clift P D,Li A C,Yu Z J,Li T G,Hu D K.2012. Tectonic and climatic controls on long-term silicate weathering in Asia since 5 Ma. Geophysical Research Letters, 39(15): L15611.
[91] West A J,Galy A,Bickle M.2005. Tectonic and climatic controls on silicate weathering. Earth and Planetary Science Letters, 235(1-2): 211-228.
[92] White A F,Blum A E.1995. Effects of climate on chemical weathering in watersheds. Geochimica et Cosmochimica Acta, 59(9): 1729-1747.
[93] White A,Cannell M G R,Friend A D.1999. Climate change impacts on ecosystems and the terrestrial carbon sink: a new assessment. Global Environmental Change, 9: S21-S30.
[94] Yang S H,Wu H Y,Dong Y E,Zhao X R,Song X D,Yang J L,Hallett P D,Zhang G L.2020. Deep nitrate accumulation in a highly weathered subtropical critical zone depends on the regolith structure and planting year. Environmental Science & Technology, 54(21): 13739-13747.
[95] Zech M,Tuthorn M,Detsch F,Rozanski K,Zech R,Zöller L,Zech W,Glaser B.2013. A 220 ka terrestrial δ18O and deuterium excess biomarker record from an eolian permafrost paleosol sequence,NE-Siberia. Chemical Geology, 360: 220-230.
[96] Zeebe R E, Zachos J C, Dickens G R.2009. Carbon dioxide forcing alone insufficient to explain Palaeocene-Eocene Thermal Maximum warming. Nature Geoscience, 2(8): 576-580.
[97] Zeebe R E,Caldeira K.2008. Close mass balance of long-term carbon fluxes from ice-core CO2 and ocean chemistry records. Nature Geoscience, 1(5): 312-315.
[98] Zhang S R,Bai X Y,Zhao C W,Tan Q,Luo G J,Wang J F,Li Q,Wu L H,Chen F,Li C J,Deng Y H,Yang Y J,Xi H P.2021. Global CO2 consumption by silicate rock chemical weathering: its past and future. Earth's Future, 9(5): e2020EF001938.
[99] Zhou R,Yu X Q,Wen J,Jensen N B,dos Santos T M,Wu Z H,Rosenqvist E,Ottosen C.2020. Interactive effects of elevated CO2 concentration and combined heat and drought stress on tomato photosynthesis. BMC Plant Biology, 20: 1-12. |