[1] 白斌,戴朝成,侯秀林,刘显阳,王瑞,杨亮,李士祥,贺君玲,董若婧. 2022. 陆相湖盆页岩自生硅质特征及其油气意义. 石油勘探与开发, 49(5): 896-907.
[Bai B,Dai C C,Hou X L,Liu X Y,Wang R,Yang L,Li S X,He J L,Dong R J.2022. Authigenic silica in continental lacustrine shale and its hydrocarbon significance. Petroleum Exploration and Development, 49(5): 896-907]
[2] 蔡全升,陈孝红,张保民,刘安,韩京,张国涛,李炎桂. 2020. 鄂西宜昌地区五峰组—龙马溪组黑色岩系硅质来源及其油气地质意义. 地质学报, 94(3): 931-946.
[Cai Q S,Chen X H,Zhang B M,Liu A,Han J,Zhang G T,Li Y G.2020. Origin of siliceous minerals in the black shale of the Wufeng and Longmaxi Formations in the Yichang area,western Hubei Province: geological significance for shale gas. Acta Geologica Sinica, 94(3): 931-946]
[3] 程日辉,沈艳杰,颜景波,李庆峰,李晓辉,王英武,李飞,许中杰. 2010. 海拉尔盆地火山碎屑岩的成岩作用. 岩石学报, 26(1): 47-54.
[Cheng R H,Shen Y J,Yan J B,Li Q F,Li X H,Wang Y W,Li F,Xiu Z J.2010. Diagenesis of volcaniclastic rocks in Hailaer Basin. Acta Petrologica Sinica, 26(1): 47-54]
[4] 管全中,董大忠,张华玲,孙莎莎,张素荣,郭雯. 2021. 富有机质页岩生物成因石英的类型及其耦合成储机制: 以四川盆地上奥陶统五峰组—下志留统龙马溪组为例. 石油勘探与开发, 48(4): 700-709.
[Guan Q Z,Dong D Z,Zhang H L,Sun X X,Zhang S R,Guo W.2021. Types of biogenic quartz and its coupling storage mechanism in organic-rich shales: a case study of the Upper Ordovician Wufeng Formation to Lower Silurian Longmaxi Formation in the Sichuan Basin,SW China. Petroleum Exploration and Development, 48(4): 700-709]
[5] 郭雯,董大忠,李明,孙莎莎,管全中,张素荣. 2021. 富有机质页岩中石英的成因及对储层品质的指示意义:以四川盆地东南部及周缘龙马溪组龙-1亚段为例. 天然气工业, 41(2): 65-74.
[Guo W,Dong D Z,Li M,Sun X X,Guan Q Z,Zhang S R.2021. Quartz genesis in organic-rich shale and its indicative significance to reservoir quality: a case study on the first submember of the first Member of Lower Silurian Longmaxi Formation in the southeastern Sichuan Basin and its periphery. Natural Gas Industry, 41(2): 65-74]
[6] 黄思静,黄可可,冯文立,佟宏鹏,刘丽红,张雪花. 2009. 成岩过程中长石、高岭石、伊利石之间的物质交换与次生孔隙的形成: 来自鄂尔多斯盆地上古生界和川西凹陷三叠系须家河组的研究. 地球化学, 38(5): 498-506.
[Huang S J,Huang K K,Feng W L,Tong H P,Liu L H,Zhang X H.2009. Mass exchanges among feldspar,kaolinite and illite and their influences on secondary porosity formation in clastic diagenesis: a case study on the Upper Paleozoic,Ordos Basin and Xujiahe Formation,Western Sichuan Depression. Geochimica, 38(5): 498-506]
[7] 焦鑫,柳益群,周鼎武,李红,孟子圆,赵敏茹,杨奕曜. 2021. 湖相烃源岩中的火山—热液深源物质与油气生成耦合关系研究进展. 古地理学报, 23(4): 789-809.
[Jiao X,Liu Y Q,Zhou D W,Li H,Meng Z Y,Zhao M R,Yang Y Y.2021. Progress on coupling relationship between volcanic and hydrothermal-originated sediments and hydrocarbon generation in lacustrine source rocks. Journal of Palaeogeography(Chinese Edition), 23(4): 789-809]
[8] 江新胜,徐金沙,潘忠习. 2003. 鄂尔多斯盆地白垩纪沙漠石英沙颗粒表面特征. 沉积学报,21(3): 416-422.
[Jiang X S,Xu J S,Pan Z X.2003. Microscopic features on quartz sand grain surface in the Cretaceous desert of Ordos Basin. Acta Sedimentologica Sinica,21(3): 416-422]
[9] 姜在兴,张文昭,梁超,王永诗,刘惠民,陈祥. 2014. 页岩油储层基本特征及评价要素. 石油学报, 35(1): 184-196.
[Jiang Z X,Zhang W Z,Liang C,Wang Y S,Liu H M,Chen X.2014. Characteristics and evaluation elements of shale oil reservoir. Acta Petrolei Sinica, 35(1): 184-196]
[10] 金之钧,胡宗全,高波,赵建华. 2016. 川东南地区五峰组—龙马溪组页岩气富集与高产控制因素. 地学前缘, 23(1): 1-10.
[Jin Z J,Hu Z Q,Gao B,Zhao J H.2016. Controlling factors on the enrichment and high productivity of shale gas in the Wufeng-Longmaxi Formations,southeastern Sichuan Basin. Earth Science Frontiers, 23(1): 1-10]
[11] 梁超,姜在兴,杨镱婷,魏小洁. 2012. 四川盆地五峰组—龙马溪组页岩岩相及储集空间特征. 石油勘探与开发, 39(6): 691-698.
[Liang C,Jiang Z X,Yang Y T,Wei X J.2012. Characteristics of shale lithofacies and reservoir space of the Wufeng-Longmaxi Formation,Sichuan Basin. Petroleum Exploration and Development, 39(6): 691-698]
[12] 林春明,张霞,赵雪培,李鑫,黄舒雅,江凯禧. 2021. 沉积岩石学的室内研究方法综述. 古地理学报, 23(2): 223-244.
[Lin C M,Zhang X,Zhao X P,Li X,Huang S Y,Jiang K X.2021. Review of laboratory research methods for sedimentary petrology. Journal of Palaeogeography(Chinese Edition), 23(2): 223-244]
[13] 刘国恒,黄志龙,郭小波,刘再振,高潇玉,陈常超,张成林,王昕. 2016. 新疆三塘湖盆地马朗凹陷中二叠统芦草沟组泥页岩层系SiO2赋存状态与成因. 地质学报, 90(6): 1220-1235.
[Liu G H,Huang Z L,Guo X B,Liu Z Z,Gao X Y,Chen C C,Zhang C L,Wang X.2016. The SiO2 occurrence and origin in the shale system of Middle Permian series Lucaogou Formation in Malang Sag,Santanghu Basin,Xinjiang. Acta Geologica Sinica, 90(6): 1220-1235]
[14] 刘国恒,翟刚毅,邹才能,黄志龙,夏响华,石砥石,周志,陈榕,张聪,于抒放. 2019. 鄂尔多斯盆地延长组泥页岩硅质来源与油气富集. 石油实验地质, 41(1): 45-55, 67.
[Liu G H,Zhai G Y,Zou C N,Huang Z L,Xia X H,Shi D S,Zhou Z,Chen R,Zhang C,Yu S F.2019. Silicon sources and hydrocarbon accumulation in shale,Triassic Yanchang Formation,Ordos Basin. Petroleum Geology & Experiment, 41(1): 45-55, 67]
[15] 刘洪林,郭伟,刘德勋,周尚文,邓继新. 2018. 海相页岩成岩过程中的自生脆化作用. 天然气工业, 38(5): 17-25.
[Liu H L,Guo W,Liu D X,Zhou S W,Deng J X.2018. Authigenic embrittlement of marine shale in the process of diagenesis. Natural Gas Industry, 38(5): 17-25]
[16] 刘金库,彭军,石岩,鲍作帆,孙永亮,刘学敏,张泽. 2015. 致密砂岩储层石英溶蚀成因及对孔隙发育的影响:以川中—川南过渡带须家河组为例. 石油学报, 36(9): 1090-1097.
[Liu J K,Peng J,Shi Y,Bao Z F,Sun Y L,Liu X M,Zhang Z.2015. The genesis of quartz dissolution in tight sand reservoirs and its impact on pore development: a case study of Xujiahe Formation in the transitional zone of Central-Southern Sichuan Basin. Acta Petrolei Sinica, 36(9): 1090-1097]
[17] 刘树根,马文辛,Luba J,黄文明,曾祥亮,张长俊. 2011. 四川盆地东部地区下志留统龙马溪组页岩储层特征. 岩石学报, 27(8): 2239-2252.
[Liu S G,Ma W X,Luba J,Huang W M,Zeng X L,Zhang C J.2011. Characteristics of the shale gas reservoir rocks in the Lower Silurian Longmaxi Formation,East Sichuan basin,China. Acta Petrologica Sinica, 27(8): 2239-2252]
[18] 马剑,黄志龙,刘再振,陈常超,高潇玉. 2015. 三塘湖盆地条湖组含沉积有机质凝灰岩致密储层特征. 地学前缘, 22(6): 185-196.
[Ma J,Huang Z L,Liu Z Z,Chen C C,Gao X Y.2015. Tight reservoir characteristics of sedimentary organic matter-bearing tuff in Tiaohu Formation of Santanghu Basin. Earth Science Frontiers, 22(6): 185-196]
[19] 孟子圆. 2022. 富深源物质的湖相烃源岩及其与有机质富集关系研究:以新疆北部二叠系芦草沟组为例. 西北大学博士学位论文.
[Meng Z Y.2022. Deep-derived sediments-rich lacustrine hydrocarbon source rocks and their relationship with organic matter accumulation: example from Permian Lucaogou Formation in northern Xinjiang. Doctoral dissertation of Northwest University]
[20] 聂海宽,张金川. 2012. 页岩气聚集条件及含气量计算: 以四川盆地及其周缘下古生界为例. 地质学报, 86(2): 349-361.
[Nie H K,Zhang J C.2012. Shale Gas Accumulation conditions and gas content calculation: a case study of Sichuan Basin and its periphery in the Lower Paleozoic. Acta Geologica Sinica, 86(2): 349-361]
[21] 彭军,田景春,伊海生,夏文杰. 2000. 扬子板块东南大陆边缘晚前寒武纪热水沉积作用. 沉积学报,18(1): 107-113.
[Peng J,Tian J C,Yi H S,Xia W J.2000. The Late Precambrian hot water sedimentation of the Southeast Yangtze Plate Continental Margin. Acta Sedimentologica Sinica,18(1): 107-113]
[22] 秦亚超. 2010. 生物硅早期成岩作用研究进展. 地质论评, 56(1): 89-98.
[Qin Y C.2010. Research progress in early diagenesis of Biogenic Silica. Geological Review, 56(1): 89-98]
[23] 邱隆伟,姜在兴,操应长,邱荣华,陈文学. 2001. 泌阳凹陷碱性成岩作用及其对储层的影响. 中国科学(D辑: 地球科学), 31(9): 752-759.
[Qiu L W,Jiang Z X,Cao Y C,Qiu R H,Chen W X.2001. Alkali diagenesis and their effect on the reservoirs in Biyang Sag. Science in China(Series D), 31(9): 752-759]
[24] 孙川翔,聂海宽,刘光祥,张光荣,杜伟,王濡岳. 2019. 石英矿物类型及其对页岩气富集开采的控制: 以四川盆地及其周缘五峰组—龙马溪组为例. 地球科学, 44(11): 3692-3704.
[Sun C X,Nie H K,Liu G X,Zhang G R,Du W,Wang R Y.2019. Quartz type and its control on shale gas enrichment and production: a case study of the Wufeng-Longmaxi Formations in the Sichuan Basin and its surrounding areas,China. Earth Science, 44(11): 3692-3704]
[25] 汤海磊. 2020. 楚雄盆地东北部白垩纪风成沉积特征与古气候研究. 成都理工大学硕士学位论文.
[Tang H L.2020. Sedimentary characteristics and palaeoclimatic implications of the Cretaceous aeolian Erg System in the Northeastern Chuxiong Basin,China. Masteral dissertation of Chengdu University of Technology]
[26] 唐颖,邢云,李乐忠,张滨海,蒋时馨. 2012. 页岩储层可压裂性影响因素及评价方法. 地学前缘, 19(5): 356-363.
[Tang Y,Xing Y,Li L Z,Zhang B H,Jiang S X.2012. InfIuence factors and evaluation methods of the eas shale fracability. Earth Science Frontiers, 19(5): 356-363]
[27] 万友利,丁晓琪,白晓亮,黄方方,朱志良. 2014. 塔中地区志留系海相碎屑岩储层石英溶蚀成因及影响因素分析. 沉积学报, 32(1): 138-147.
[Wan Y L,Ding X Q,Bai X L,Huang F F,Zhu Z L.2014. Quartz dissolution causes and influencing factors in the Silurian marine clastic reservoir rocks in Central Tarim Basin. Acta Sedimentologica Sinica, 32(1): 138-147]
[28] 王拔秀,张鹏辉,梁杰,陈建文,孟祥豪,付奕霖,鲍衍君. 2022. 生物成因微晶石英特征及其对海相页岩储层孔隙发育的影响. 沉积学报, 143: 1-20.
[Wang B X,Zhang P H,Liang J,Chen J W,Meng X H,Fu Y L,Bao Y J.2022. Biogenic microcrystalline quartz and its influence on pore development in marine shale reservoirs. Acta Sedimentologica Sinica, 143: 1-20]
[29] 王濡岳,胡宗全,龙胜祥,杜伟,吴靖,邬忠虎,聂海宽,王鹏威,孙川翔,赵建华. 2022. 四川盆地上奥陶统五峰组—下志留统龙马溪组页岩储层特征与演化机制. 石油与天然气地质, 43(2): 353-364.
[Wang R Y,Hu Z Q,Long S X,Du W,Wu J,Wu Z H,Nie H K,Wang P W,Sun C X,Zhao J H.2022. Reservoir characteristics and evolution mechanisms of the Upper Ordovician Wufeng-Lower Silurian Longmaxi shale,Sichuan Basin. Oil & Gas Geology, 43(2): 353-364]
[30] 王昕尧,金振奎,朱毅秀,胡宗全,刘光祥,赵国伟,李硕史,书婷. 2022. 四川盆地自流井组陆相页岩石英成因研究. 沉积学报, 40(4): 1010-1018.
[Wang X Y,Jin Z K,Zhu Y X,Hu Z Q,Liu G X,Zhao G W,Li S S,Shu T.2022. The genesis of quartz in Ziliujing nonmarine Shale,Sichuan Basin. Acta Sedimentologica Sinica, 40(4): 1010-1018]
[31] 王秀平,牟传龙,葛祥英,陈小炜,周恳恳,王启宇,梁薇,陈超. 2014. 四川盆地南部及其周缘龙马溪组黏土矿物研究. 天然气地球科学, 25(11): 1781-1794.
[Wang X P,Mou C L,Ge X Y,Chen X W,Zhou K K,Wang Q Y,Liang W,Chen C.2014. Study on clay minerals in the Lower Silurian Longmaxi Formation in Southern Sichuan Basin and its periphery. Natural Gas Geoscience, 25(11): 1781-1794]
[32] 易婷,周文,杨璠,陈文玲,张昊天,徐浩,刘瑞崟,赵欣,蒋柯. 2020. 四川盆地龙马溪组页岩气储层石英类型与特征. 矿物学报, 40(2): 127-136.
[Yi T,Zhou W,Yang F,Chen W L,Zhang H T,Xiu H,Liu R Y,Zhao X,Jiang K.2020. Types and characteristics of quartzs in shale gas reservoirs of the Longmaxi Formation,Sichuan Basin,China. Acta Mineralogica Sinica, 40(2): 127-136]
[33] 于振锋,程日辉,赵小青,孙凤贤. 2012. 海拉尔盆地乌尔逊—贝尔凹陷下白垩统火山碎屑岩成岩作用类型及序列. 地球科学(中国地质大学学报), 37(4): 851-859.
[Yu Z F,Cheng R H,Zhao X Q,Sun F X.2012. Types and succession of pyroclastic rocks diagenesis in Lower Cretaceous of Wuerxun and Bei'er Depression in Hailaer Basin. Earth Science(Journal of China University of Geosciences), 37(4): 851-859]
[34] 远光辉,操应长,葸克来,王艳忠,李晓艳,杨田. 2013. 东营凹陷北带古近系碎屑岩储层长石溶蚀作用及其物性响应. 石油学报, 34(5): 853-866.
[Yuan G H,Cao Y C,Xi K L,Wang Y Z,Li X Y,Yang T.2013. Feldspar dissolution and its impact on physical properties of Paleogene clastic reservoirs in the northern slope zone of the Dongying sag. Acta Petrolei Sinica, 34(5): 853-866]
[35] 曾维特,张金川,丁文龙,王香增,朱定伟,刘珠江. 2014. 延长组陆相页岩含气量及其主控因素:以鄂尔多斯盆地柳坪171井为例. 天然气地球科学, 25(2): 291-301.
[Zeng W T,Zhang J C,Ding W L,Wang X Z,Zhu D W,Liu Z J.2014. The gas content of continental Yanchang Shale and its main controlling factors: a case study of Liuping-171 well in Ordos Basin. Natural Gas Geoscience, 25(2): 291-301]
[36] 赵国连. 1999. 生物作用在二氧化硅聚集沉淀过程中的意义:以皖南浙西的硅岩为例. 沉积学报,17(1): 30-32,34-37.
[Zhao G L.1999. The influence of biogenic procession on the accumulation and precipiation of silica: an example from south of Anhui and west of Zhejiang. Acta Sedimentologica Sinica,17(1): 30-32,34-37]
[37] 赵海玲,黄微,王成,狄永军,齐井顺,肖勇,刘杰. 2009. 火山岩中脱玻化孔及其对储层的贡献. 石油与天然气地质, 30(1): 47-52,58.
[Zhao H L,Huang W,Wang C,Di Y J,Qi J S,Xiao Y,Liu J.2009. Micropores from devitrification in volcanic rocks and their contribution to reservoirs. Oil & Gas Geology, 30(1): 47-52,58]
[38] 赵建华,金之钧,金振奎,温馨,耿一凯,颜彩娜. 2016. 四川盆地五峰组—龙马溪组含气页岩中石英成因研究. 天然气地球科学, 27(2): 377-386.
[Zhao J H,Jin Z J,Jin Z K,Wen X,Geng Y K,Yan C N.2016. The genesis of quartz in Wufeng-Longmaxi gas shales,Sichuan Basin. Natural Gas Geoscience, 27(2): 377-386]
[39] 张本琪,余宏忠,姜在兴,王玉静,王卫红. 2003. 应用阴极发光技术研究母岩性质及成岩环境. 石油勘探与开发,30(3): 117-120.
[Zhang B Q,Xu H Z,Jiang Z X,Wang Y J,Wang W H.2003. Characteristics and diagenetic environments of source rocks by cathodoluminescence. Petroleum Exploration and Development,30(3): 117-120]
[40] 张永旺,蒋善斌,李峰. 2021. 东营凹陷沙河街组砂岩储层砂泥岩界面对长石溶蚀的影响. 地质学报, 95(3): 883-894.
[Zhang Y W,Jiang S B,Li F.2021. Influence of sandstone-shale contacts on feldspar diagenesis in the sandstone reservoir of the Shahejie Formation in the Dongying depression,Bohai Bay basin. Acta Geologica Sinica, 95(3): 883-894]
[41] 张瑜,黄德将,张六六,万传辉,罗欢,邵德勇,孟康,闫建萍,张同伟. 2022. 鄂西宜昌地区寒武系水井沱组页岩生物成因硅特征及其对页岩气富集的影响. 地学前缘,23(3): 83-100.
[Zhang Y,Huang D J,Zhang L L,Wan C H,Luo H,Shao D Y,Meng K,Yan J P,Zhang T W.2022. Biogenic silica of the Lower Cambrian Shuijingtuo Formation in Yichang,western Hubei Province: features and influence on shale gas accumulation. Earth Science Frontiers,23(3): 83-100]
[42] 翟立国. 2020. 陆相湖盆热液喷流沉积的硅质岩研究:以新疆三塘湖盆地二叠系芦草沟组为例. 西北大学硕士学位论文.
[Zhai L G.2020. The study on siliceous rocks of exhalative hydrothermal deposition in Lacustrine Basin:a case study of the permian Lucaogou Formation in Santanghu Basin,Xinjiang. Masteral dissertation of Northwest University]
[43] 钟秋. 2021. 海相、海陆交互相页岩中石英成因及脆性指数对比研究. 中国矿业大学硕士学位论文.
[Zhong Q.2021. Comparative study on the origin of quartz and brittleness index in marine and marine continental shale. Masteral dissertation of China University of Mining and Technology]
[44] 周晓峰,郭伟,李熙喆,张晓伟,梁萍萍,于均民. 2022. 四川盆地五峰组—龙马溪组有机质类型与有机孔配置的放射虫硅质页岩岩石学证据. 中国石油大学学报(自然科学版), 46(5): 12-22.
[Zhou X F,Guo W,Li X Z,Zhang X W,Liang P P,Yu J M.2022. Mutual relation between organic matter types and pores with petrological evidence of radiolarian siliceous shale in Wufeng-Longmaxi Formation,Sichuan Basin. Journal of China University of Petroleum(Edition of Natural Science), 46(5): 12-22]
[45] 朱筱敏. 2008. 沉积岩石学(第四版). 北京: 石油工业出版社, 132-136.
[Zhu X M.2008. Sedimentary Petrology(Vol. 4). Beijing: Petroleum Industry Press, 132-136]
[46] 邹才能,董大忠,王社教,李建忠,李新景,王玉满,李登华,程克明. 2010. 中国页岩气形成机理、地质特征及资源潜力. 石油勘探与开发, 37(6): 641-653.
[Zou C N,Dong D Z,Wang S J,Li J Z,Li X J,Wang Y M,Li D H,Chen K M.2010. Geological characteristics,formation mechanism and resource potential of shale gas in China. Petroleum Exploration and Development, 37(6): 641-653]
[47] Aplin A C,Macquaker J H S.2011. Mudstone diversity: origin and implications for source,seal,and reservoir properties in petroleum systems. AAPG Bulletin, 95(12): 2031-2059.
[48] Bjorlykke K.1998. Clay mineral diagenesis in sedimentary basins-a key to the prediction of rock properties: examples from the North Sea Basin. Clay Minerals, 33(1): 15-34.
[49] Blatt H,Schultz D J.1976. Size distribution of quartz in mudrocks. Sedimentology, 23(6): 857-866.
[50] Boström K,Joensuu O,Valdes S,Riera M.1972. Geochemical history of South Atlantic Ocean sediments since Late Cretaceous. Marine Geology, 12(2): 85-121.
[51] Bowker K A.2003. Recent developments of the Barnett Shale play,Fort Worth Basin. West Texas Geological Society Bulletin, 42(6): 4-11.
[52] Dong T,He S,Chen M F,Hou Y G,Guo X W,Wei C,Han Y J,Yang R.2019. Quartz types and origins in the paleozoic Wufeng-Longmaxi Formations,Eastern Sichuan Basin,China: implications for porosity preservation in shale reservoirs. Marine and Petroleum Geology, 106: 62-73.
[53] Hart B S,Macquaker J,Taylor K G.2013. Mudstone(“shale”)depositional and diagenetic processes: implications for seismic analyses of source-rock reservoirs. Interpretation, 1(1): B7-B26.
[54] Hower J,Eslinger E V,Hower M E,Perry E A.1976. Mechanism of burial metamorphism of argillaceous sediment: 1. Mineralogical and chemical evidence. Geo Science World,87(5): 725-737.
[55] Liang C,Cao Y C,Liu K Y,Jiang Z X,Wu J,Hao F.2018. Diagenetic variation at the lamina scale in lacustrine organic-rich shales: implications for hydrocarbon migration and accumulation. Geochimica et Cosmochimica Acta, 229: 112-128.
[56] Licht A,Cappelle M V,Abels H A,Ladant J B,Trabucho-Alexandre J,France-Lanord C,Donnadieu Y,Vandenberghe J,Rigaudier T,Lécuyer C.2014. Asian monsoons in a late Eocene greenhouse world. Nature, 513(7519): 501-506.
[57] Loucks R G,Ruppel S C.2007. Mississippian Barnett Shale: lithofacies and depositional setting of a deep-water shale-gas succession in the Fort Worth Basin,Texas. AAPG Bulletin, 91(4): 579-601.
[58] Loucks R G,Reed R M,Ruppel S C,Hammes U.2012. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores. AAPG Bulletin, 96(6): 1071-1098.
[59] Matheney R K,Knauth L P.1993. New isotopic temperature estimates for early silica diagenesis in bedded cherts. Geology, 21(6): 519-522.
[60] Metwally Y M,Chesnokov E M.2011. Clay mineral transformation as a major source for authigenic quartz in thermo-mature gas shale. Applied Clay Science, 55: 138-150.
[61] Milliken K L.1994. Cathodoluminescent textures and the origin of quartz silt in Oligocene mudrocks,South Texas. Journal of Sedimentary Research,64(3a): 567-571.
[62] Milliken K L,Ergene S M,Ozkan A.2016. Quartz types,authigenic and detrital,in the Upper Cretaceous Eagle Ford Formation,South Texas,USA. Sedimentary Geology, 339: 273-288.
[63] Peltonen C,Marcussen O,Bjorlykke K, Jahren J.2008. Clay mineral diagenesis and quartz cementation in mudstones: the effects of smectite to illite reaction on rock properties. Marine and Petroleum Geology, 26(6): 887-898.
[64] Ross D,Bustin R M.2009. Investigating the use of sedimentary geochemical proxies for paleoenvironment interpretation of thermally mature organic-rich strata: examples from the Devonian-Mississippian shales,Western Canadian Sedimentary Basin. Chemical Geology, 260(1-2): 1-19.
[65] Rowe H D,Loucks R G,Ruppel S C,Rimmer S M.2008. Mississippian Barnett Formation,Fort Worth Basin,Texas: bulk geochemical inferences and Mo-TOC constraints on the severity of hydrographic restriction. Chemical Geology, 257(1-2): 16-25.
[66] Schieber J,Krinsley D,Riciputi L.2000. Diagenetic origin of quartz silt in mudstones and implications for silica cycling. Nature, 406(6799): 981-985.
[67] Sun D H,Bloemendal J,Rea D K,Vandenberghe J,Jiang F C,An Z S,Su R X.2002. Grain-size distribution function of polymodal sediments in hydraulic and aeolian environments,and numerical partitioning of the sedimentary components. Sedimentary Geology, 152(3-4): 263-277.
[68] Tan J Q,Wang Z H,Wang W H,Hilton J,Guo J H,Wang X K.2021. Depositional environment and hydrothermal controls on organic matter enrichment in the lower Cambrian Niutitang shale,southern China. AAPG Bulletin, 105(7): 1329-1356.
[69] Thyberg B,Jahren J,Winje T,Bjorlykke K,Faleide J I,Marcussen Ø.2010. Quartz cementation in Late Cretaceous mudstones,northern North Sea: changes in rock properties due to dissolution of smectite and precipitation of micro-quartz crystals. Marine and Petroleum Geology, 27(8): 1752-1764.
[70] Van de Kamp P C.2008. Smectite-illite-muscovite transformations,quartz dissolution,and silica release in shales. Clays and Clay Minerals, 56(1): 66-81.
[71] Vos K,Vandenberghe N,Elsen J.2014. Surface textural analysis of quartz grains by scanning electron microscopy(SEM): from sample preparation to environmental interpretation. Earth-Science Reviews, 128: 93-104.
[72] Wedepohl K H.1971. Environmental influences on the chemical composition of shales and clays. Physics & Chemistry of the Earth, 8: 305-333.
[73] White R J,Spinelli G A,Mozley P S,Dunbar N W.2011. Importance of volcanic glass alteration to sediment stabilization: offshore Japan. Sedimentology, 58: 1138-1154.
[74] Worden R H,French M W,Mariani E.2012. Amorphous silica nanofilms result in growth of misoriented microcrystalline quartz cement maintaining porosity in deeply buried sandstones. Geology, 40(2): 179-182.
[75] Williams L A,Parks G A,Crerar D A.1985. Silica diagenesis: l. Solubility controls. Journal of Sedimentary Petrology, 55(3): 301-311.
[76] Xu H,Zhou W,Hu Q H,Yi T,Ke J,Zhao A K,Lei Z H,Yu Y.2021. Quartz types,silica sources and their implications for porosity evolution and rock mechanics in the Paleozoic Longmaxi Formation shale,Sichuan Basin. Marine and Petroleum Geology,128: 105036.
[77] Ye Y P,Tang S H,Xi Z D,Jiang D X,Duan Y.2022. Quartz types in the Wufeng-Longmaxi Formations in southern China: implications for porosity evolution and shale brittleness. Marine and Petroleum Geology,137: 105479.
[78] Yamamoto K.1987. Geochemical characteristics and depositional environments of cherts and associated rocks in the Franciscan and Shimanto Terranes. Sedimentary Geology, 52(1-2): 65-108.
[79] Zhao J H,Jin Z K,Jin Z J,Wen X,Geng Y K.2016. Origin of authigenic quartz in organic-rich shales of the Wufeng and Longmaxi Formations in the Sichuan Basin,South China: implications for pore evolution. Journal of Natural Gas Science and Engineering, 38: 21-38. |