Sedimentary characteristics of delta front from a hydrodynamic perspective
MAO Xiaoping1, CHEN Xiurong2, LI Zhen1, LI Shuxian1, ZHU Qixuan1
1 School of Energy and Resources,China University of Geosciences(Beijing),Beijing 100083,China; 2 Beijing Huajiezhihe Technology Co.,Ltd,Beijing 100083,China
Abstract The in-depth analysis of the development process of the delta front is of great significance for the judgment of the sedimentary environment,and it is necessary to deeply explore the formation characteristics and mechanism of the delta front from the perspective of hydrodynamics. In this study,the vertical distribution of the flow velocity in river water bodies and the development characteristics of delta front sedimentary bodies are investigated,from multiple perspectives of hydrodynamics,flume experiments,and underwater geomorphological observations. The results show that the phenomenon of river flow velocity,exhibiting a monotonic decrease with depth,has not been given sufficient attention. The terrain undulation of the middle and lower reaches of the riverbed increases with the flow direction,resulting in the underwater sand waves perpendicular to the flow direction,while the terrain undulation of the river section perpendicular to the flow direction becomes more and more gentle. During the process of rivers entering the sea,there will be a mainstream channel without branching channels underwater. Additionally,the originally undulating riverbed will gradually be filled up,changing from a sharp V-shaped or W-shaped to a U-shaped. It can be concluded that most of the front edge of the delta are sheet-like or fan-shaped,rather than a strip of erosion surface along the flow direction. Microfacies such as underwater distributary channels and bays do not develop in the delta front subfacies,which cannot be found in the modern delta front subfacies and are not supported by flume experiments. Furthermore,a water depth velocity interaction model for river channel and delta sedimentation is proposed.
Fund:Financially supported by the innovation project “Metallogenic regularity of phosphorus,manganese and aluminum superior resources in Guizhou and research and demonstration of fast and efficient intelligent exploration technology: Guizhou Science and Technology Strategic Prospecting”(No.[2022]ZD003)
About author: MAO Xiaoping,born in 1965,is an associate professor at the School of Energy and Resources,China University of Geosciences(Beijing). He is mainly engaged in oil and gas geology research. E-mail: maoxp9@163.com.
Cite this article:
MAO Xiaoping,CHEN Xiurong,LI Zhen et al. Sedimentary characteristics of delta front from a hydrodynamic perspective[J]. JOPC, 2024, 26(3): 509-524.
MAO Xiaoping,CHEN Xiurong,LI Zhen et al. Sedimentary characteristics of delta front from a hydrodynamic perspective[J]. JOPC, 2024, 26(3): 509-524.
[1] 陈全红,李文厚,高永祥,郭艳琴,冯娟萍,张道峰,曹红霞,梁积伟. 2007. 鄂尔多斯盆地上三叠统延长组深湖沉积与油气聚集意义. 中国科学D辑: 地球科学,37(S1): 39-48. [Chen Q H,Li W H,Gao Y X,Guo Y Q, Feng J P,Zhang D F,Cao H X,Liang J W.2007. Significance of deep lake sedimentation and hydrocarbon accumulation in Yanchang Formation of Upper Triassic in Ordos Basin. Science China: Earth Sciences,37(S1): 39-48] [2] 陈肖慧,张国安,张卫国,李茂田. 2021. 长江输沙量减少对河口典型浅滩断面泥沙输运的影响研究. 泥沙研究, 46(6): 44-50. [Chen X H,Zhang G A,Zhang W D,Li M T.2021. Influence of sediment transport reduction in the Yangtze River on sediment transport in typical shoal sections of the estuary. Journal of Sediment Research, 46(6): 44-50] [3] 杜威,纪友亮,张艺楼,周淋,吕文睿,杨佳奇,罗妮娜,张宸赫. 2021. 湖泊缓坡带细粒河控三角洲沉积演化和形态特征: 沉积正演数值模拟和现代沉积实例的启示. 石油学报, 42(1): 33-44. [Du W,Ji Y L,Zhang Y L,Zhou L,Lü W R,Yang J Q,Luo N N,Zhang C H.2021. Depositional evolution and geometrical features of lacustrine fine-grained river-dominated deltas at the gentle slope zone: insights from sedimentary forward numerical modeling and modern case analyses. Acta Petrolei Sinica, 42(1): 33-44] [4] 郭兴杰,程和琴,莫若瑜,杨忠勇. 2015. 长江口沙波统计特征及输移规律. 海洋学报, 37(5): 148-158. [Guo X J,Cheng H Q,Mo R Y,Yang Z Y.2015. Statistical characteristics and transport law of sand waves in the Yangtze Estuary. Acta Oceanologica Sinica, 37(5): 148-158] [5] 厚刚福,孙靖,王力宝,李亚哲,李啸,沈金龙,窦洋,陈扬,韩守华. 2019. 不同古地貌单元水下分流河道沉积特征及其意义: 以准噶尔盆地夏盐地区三工河组二段为例. 沉积学报, 37(4): 825-833. [Hou G F,Sun J,Wang L B,Li Y Z,Li X,Shen J L,Dou Y,Chen Y,Han S H.2019. Sedimentary characteristics and significance of underwater distributary channel in different paleogeomorphic units: a case study of the second Member of the Sangonghe Formation in Xiayan district,Junggar Basin. Acta Sedimentologica Sinica, 37(4): 825-833] [6] 黄宇航,周晓泉,周文桐,陈骏峰,姚畅. 2022. 矩形明渠层流垂向流速分布类型研究. 水电能源科学, 40(8): 109-112,117. [Huang Y H,Zhou X Q,Zhou W T,Chen J F,Yao C.2022. Study on vertical velocity distribution of rectangular open channel. Water Resources and Power, 40(8): 109-112,117] [7] 姜在兴,赵澂林,熊继辉. 1989. 皖中下志留统的等深积岩及其地质意义. 科学通报, 34(20): 1575-1576. [Jiang Z X,Zhao C L,Xiong J H.1989. The contourite and its geological significance in Lower Silurian,Middle Anhui Province. Chinese Science Bulletin, 34(20): 1575-1576] [8] 姜在兴,田继军,陈桂菊,李熙喆,张满郎. 2007. 川西前陆盆地上三叠统沉积特征. 古地理学报, 9(2): 143-154. [Jiang Z X,Tian J J,Chen G J,Li X Z,Zhang M L.2007. Sedimentary characteristics of the Upper Triassic in western Sichuan foreland basin. Journal of Palaeogeography(Chinese Edition), 9(2): 143-154] [9] 焦养泉,李思田,杨士恭,陈俊亮. 1993. 湖泊三角洲前缘砂体内部构成及不均一性露头研究. 地球科学, 18(4): 441-451. [Jiao Y Q,Li S T,Yang S G,Chen J L.1993. An outcrop study on internal architecture and heterogeneity of lacustrine delta-front sandbodies. Earth Science, 18(4): 441-451] [10] 金振奎,何苗. 2011. 三角洲沉积模式新认识. 新疆石油地质, 32(5): 443-446. [Jin Z K,He M.2011. New understanding of delta depositional model. Xinjiang Petroleum Geology, 32(5): 443-446] [11] 金振奎,李燕,高白水,宋宝全,何宇航,石良,李桂仔. 2014. 现代缓坡三角洲沉积模式: 以鄱阳湖赣江三角洲为例. 沉积学报, 32(4): 710-723. [Jin Z K,Li Y,Gao B S,Song B Q,He Y H,Shi L,Li G Z.2014. Depositional model of modern gentle-slope delta: a case study from Ganjiang Delta in Poyang Lake. Acta Sedimentologica Sinica, 32(4): 710-723] [12] 金振奎,王金艺, 梁婷, 朱小二. 2021. 沉积地质学. 北京: 石油工业出版社,679-680. [Jin Z K,Wang J Y,Liang T,Zhu X E.2021. Sedimentary Geology. Beijing: Petroleum Industry Press,679-680] [13] 李磊,王小刚,曹冰,申雯龙,杨林. 2013. 东海陆架沙脊三维地震地貌学、演化及成因. 现代地质, 27(4): 783-790. [Li L,Wang X G,Cao B,Shen W L,Yang L.2013.3D seismic geomorphology,evolution and genesis of shelf sand ridge,East China Sea. Geoscience, 27(4): 783-790] [14] 李原,李任伟,尚榆民,李宁波. 1999. 云南洱海的环境沉积学研究: 表层沉积物的粒度分布、水流方向和能量. 沉积学报,17(S1): 769-774. [Li Y,Li R W,Shang Y M,Li N B.1999. The environment sedimentological study on Erhai Lake,Yunnan Province: sediments particle size distribution,flow direction and energy distribution. Acta Sedimentologica Sinica,17(S1): 769-774] [15] 林春明. 2019. 沉积岩石学. 北京: 科学出版社,303-304. [Lin C M.2019. Sedimentary Petrology. Beijing: Science Press,303-304] [16] 蔺毓秀. 1986. 松辽盆地北部姚家组水进三角洲沉积和嫩一段浊流沉积. 沉积学报, 4(2): 101-110. [Lin Y X.1986. Water progressive delta deposits of Yaojia formation and turbidites in the northern part of Songliao basin. Acta Sedimentologica Sinica, 4(2): 101-110] [17] 刘飞,张小峰,邓安军. 2015. 内陆河三角洲堆积体形成发展过程. 水科学进展, 26(3): 378-387. [Liu F,Zhang X F,Deng A J.2015. Formation and development process of inland river delta deposition. Advances in Water Science, 26(3): 378-387] [18] 刘雨佳,韩志勇,李徐生,泮燕红,杨倩倩,周玉文. 2022. 涌潮沉积揭示长江河口湾全新世最高海面. 海洋地质与第四纪地质, 42(3): 160-169. [Liu Y J,Han Z Y,Li X S,Pan Y H,Yang Q Q,Zhou Y W.2022. The sea-level highstand of the Changjiang River estuary in the Holocene revealed from tidal bore deposits. Marine Geology & Quaternary Geology, 42(3): 160-169] [19] 卢金友. 1990. 长江河道水流流速分布研究. 长江科学院院报, 7(1): 40-49. [Lu J Y.1990. Review of velocity distribution and study on velocity distribution of Yangtze River Flow. Journal of Changjiang River Scientific Research Institute, 7(1): 40-49] [20] 罗启后. 2015. 再论水进型三角洲: 兼论四川盆地须家河组巨厚砂层成因. 沉积学报, 33(5): 845-854. [Luo Q H.2015. Further discussion on water-transgression delta: genesis of great thickness large distributed sandstone of Xujiahe Formation in Sichuan Basin. Acta Sedimentologica Sinica, 33(5): 845-854] [21] 毛宁. 2011. 论泥沙砾石的起动流速. 长江科学院院报, 28(1): 7-11. [Mao N.2011. On the threshold velocity of silt-sand and gravel-stone. Journal of Changjiang River Scientific Research Institute, 28(1): 7-11] [22] 齐亚林,刘显阳,杨时雨,张涛,李程善,谢先奎. 2015. 内陆湖泊三角洲河口区水动力特征及地质意义. 岩性油气藏, 27(3): 49-55. [Qi Y L,Liu X Y,Yang S Y,Zhang T,Li C S,Xie X K.2015. Hydrodynamic characteristics and geological significance of estuaries of inland lake delta. Lithologic Reservoirs, 27(3): 49-55] [23] 钱涛,王宗秀,柳永清,刘少峰,高万里,李王鹏,胡俊杰,李磊磊. 2018. 柴达木盆地北缘侏罗纪沉积物源分析: 地层序列及LA-ICP-MS年代学信息. 中国科学: 地球科学, 48(2): 224-242. [Qian T,Wang Z G,Liu Y Q,Liu S F,Gao W L,Li W P,Hu J J,Li L L.2018. Provenance analysis of the Jurassic northern Qaidam Basin: stratigraphic succession and LA-ICP-MS geochronology. Scientia Sinica Terrae, 48(2): 224-242] [24] 施韩臻,李占海,汪亚平,贾建军,常洋,陈雅望. 2021. 枯季长江口南槽悬沙输运过程和机制研究. 海洋通报, 40(6): 664-674. [Shi H Z,Li Z H,Wang Y P,Jia J J,Chang Y,Chen Y W.2021. Suspended sediment transports and mechanism in the south passage of the Changjiang Estuary during the dry season. Marine Science Bulletin, 40(6): 664-674] [25] 石良,金振奎,李桂仔,高白水,闫伟. 2014. 内蒙古岱海现代辫状河三角洲沉积特征及沉积模式. 天然气工业, 34(9): 33-39. [Shi L,Jin Z K,Li G Z,Gao B S,Yan W.2014. Depositional characteristics and models of the modern braided river delta in the Daihai Lake,Inner Mongolia. Natural Gas Industry, 34(9): 33-39] [26] 宋亚开,尹太举,张昌民,刘志伟. 2021. 分支河道型三角洲的数值模拟. 大庆石油地质与开发, 40(3): 42-50. [Song Y K,Yin T J,Zhang C M,Liu Z W.2021. Numerical simulation of a branch-channel delta. Petroleum Geology & Oilfield Development in Daqing, 40(3): 42-50] [27] 王杨君,尹太举,邓智浩,程钊. 2016. 水动力数值模拟的河控三角洲分支河道演化研究. 地质科技情报, 35(1): 44-52. [Wang Y J,Yin T J,Deng Z H,Cheng Z.2016. Terminal distributary channels in fluvial-dominated delta systems from numerical simulation of hydrodynamics. Geological Science and Technology Information, 35(1): 44-52] [28] 吴崇筠. 1983. 构造湖盆三角洲与油气分布. 沉积学报, 1(1): 5-23. [Wu C Y.1983. Structural lake deltas and oil-gas distribution. Acta Sedimentologica Sinica, 1(1): 5-23] [29] 武富礼,李文厚,李玉宏,席胜利. 2004. 鄂尔多斯盆地上三叠统延长组三角洲沉积及演化. 古地理学报, 6(3): 307-315. [Wu F L,Li W H,Li Y H,Xi S L.2004. Delta sediments and evolution of the Yanchang Formation of Upper Triassic in Ordos Basin. Journal of Palaeogeography(Chinese Edition), 6(3): 307-315] [30] 谢建磊,张克信,马小林,赵宝成,张平. 2017. 长江三角洲上新世以来磁性地层及天文调谐年代标尺. 地球科学, 42(10): 1760-1773. [Xie J L,Zhang K X,Ma X L,Zhao B C,Zhang P.2017. Magnetostratigraphy and astronomically tuned time scale of Yangtze delta since Pliocene. Earth Sciences, 42(10): 1760-1773] [31] 杨正东,朱建荣,宋云平,顾靖华. 2021. 长江口余水位时空变化及其成因. 华东师范大学学报(自然科学版),(2): 12-20. [Yang Z D,Zhu J R,Song Y P,Gu J H.2021. Spatial and temporal variations in the residual water level of the Changjiang Estuary and its cause. Journal of East China Normal University(Natural Science),(2): 12-20] [32] 尹力,冯文杰,尹艳树,雷诚,徐庆岩,何一鸣. 2022. 波浪作用下砂质滩坝的沉积过程与沉积模式: 基于水槽沉积模拟实验研究. 沉积学报, 40(5): 1393-1405. [Yin L,Feng W J,Yin Y S,Lei C,Xu Q Y,He Y M.2022. Process and model of sedimentation of sandy beach bar due to wave action: an experimental study based on sink sedimentation simulation. Acta Sedimentologica Sinica, 40(5): 1393-1405] [33] 尹太举,李宣玥,张昌民,朱永进,龚福华. 2012. 现代浅水湖盆三角洲沉积砂体形态特征: 以洞庭湖和鄱阳湖为例. 石油天然气学报, 34(10): 1-7. [Yin T J,Li X Y,Zhang C M,Zhu Y J,Gong F H.2012. Sandbody shape of modern shallow lake basin delta sediments: taking Dongting Lake and Poyang Lake for example. Journal of Oil and Gas Technology, 34(10): 1-7] [34] 于兴河,王德发,郑浚茂,孙志华. 1994. 辫状河三角洲砂体特征及砂体展布模型: 内蒙古岱海湖现代三角洲沉积考察. 石油学报, 15(1): 26-37. [Yu X H,Wang D F,Zheng J M,Sun Z H.1994.3D extension models of braided deltaic sandbody in rerrestrial facies: an observation on deposition of modern deltas in Daihai Lake,Inner Mingolia. Acta Petrolei Sinica, 15(1): 26-37] [35] 张晨晨,张顺,魏巍,吴朝东,梁江平,牛文,杜锦霞,付秀丽,崔坤宁,王超,王辉. 2014. 松辽盆地嫩江组T-R 旋回控制下的层序结构与沉积响应. 中国科学: 地球科学, 44(12): 2618-2636. [Zhang C C,Zhang S,Wei W,Wu C D,Liang J P,Niu W,Du J X,Fu X L,Cui K N,Wang C,Wang H.2014. Sedimentary filling and sequence structure dominated by T-R cycles of the Nenjiang Formation in the Songliao Basin. Science China: Earth Sciences, 44(12): 2618-2636] [36] 张俊勇,陈立,吴华林,赵德招. 2015. 长江口近期河道演变特征. 泥沙研究,(2): 74-80. [Zhang J Y,Chen L,Wu H L,Zhao D Z.2015. Study on recent evolution characteristics of the Yangtze River Estuary. Journal of Sediment Research,(2): 74-80] [37] 曾灿,尹太举,宋亚开. 2017. 湖平面升降对浅水三角洲影响的沉积数值模拟实验. 地球科学, 42(11): 2095-2104. [Zeng C,Yin T J,Song Y K.2017. Experimental on numerical simulation of the impact of lake level plane fluctuation on shallow water delta. Earth Sciences, 42(11): 2095-2104] [38] 曾定勇,倪晓波,黄大吉. 2012. 南麂岛附近海域潮汐和潮流的特征. 海洋学报, 34(3): 1-10. [Zeng D Y,Ni X B,Huang D J.2012. Harmonic analysis of tide and tidal current near Nanji Island,Zhejiang Province. Acta Oceanologica Sinica, 34(3): 1-10] [39] 曾慧俊. 2023.2020年洪水后长江下游东流河段河床演变新特征. 水运工程, (4): 161-165. [Zeng H J.2023. New evolution characteristics of riverbed in Dongliu reach of lower Yangtze River after flood in 2020. Port & Waterway Engineering, (4): 161-165] [40] 张冠杰,方石,张新荣,高先超,沈伟. 2018. 水进砂研究进展. 吉林大学学报(地球科学版), 48(3): 626-639. [Zhang G J,Fang S,Zhang X R,Gao X C,Shen W.2018. Research status of water-transgressive sand. Journal of Jilin University(Earth Science Edition), 48(3): 626-639] [41] 张家栋,关德范. 1982. 对三肇凹陷油气聚集及其控制因素的几点认识. 大庆石油学院学报, 15(3): 61-70. [Zhang J D,Guan D F.1982. Several understandings on oil and gas accumulation and its control factors in the Sanzhao Depression. Journal of Daqing Petroleum Institute, 15(3): 61-70] [42] 郑树伟,程和琴,石盛玉,徐韦,周权平,姜月华,周丰年,曹民雄. 2018. 长江大通至徐六泾水下地形演变的人为驱动效应. 中国科学: 地球科学, 48(5): 628-638. [Zheng S W,Cheng H Q,Shi S Y,Xu W,Zhou Q P,Jiang Y H,Zhou F N,Cao M X.2018. Impact of anthropogenic drivers on subaqueous topographical change in the Datong to Xuliujing reach of the Yangtze River. Science China: Earth Sciences, 48(5): 628-638] [43] 朱伟林,李建平,周心怀,郭永华. 2008. 渤海新近系浅水三角洲沉积体系与大型油气田勘探. 沉积学报, 26(4): 575-582. [Zhu W L,LI J P,Zhou X H,Guo Y H.2008. Neogene shallow water deltaic system and large hydrocarbon accumulations in Bohai Bay,China. Acta Sedimentologica Sinica, 26(4): 575-582] [44] 朱筱敏. 2008. 沉积岩石学. 北京: 石油工业出版社,307-308. [Zhu X M.2008. Sedimentary Petrology. Beijing: Petroleum Industry Press,307-308] [45] 朱筱敏,刘媛,方庆,李洋,刘云燕,王瑞,宋静,刘诗奇,曹海涛,刘相男. 2012. 大型坳陷湖盆浅水三角洲形成条件和沉积模式: 以松辽盆地三肇凹陷扶余油层为例. 地学前缘, 19(1): 89-99. [Zhu X M,Liu Y,Fang Q,Li Y,Liu Y Y,Wang R,Song J,Liu S Q,Cao H T,Liu X N.2012. Formation and sedimentary model of shallow delta in large-scale lake: example from cretaceous Quantou Formation in Sanzhao Sag,Songliao Basin. Earth Science Frontiers, 19(1): 89-99] [46] 朱筱敏,赵东娜,曾洪流,孙玉,朱如凯,黄薇,朱世发. 2013. 松辽盆地齐家地区青山口组浅水三角洲沉积特征及其地震沉积学响应. 沉积学报, 31(5): 889-897. [Zhu X M,Zhao D N,Zeng H L,Sun Y,Zhu R K,Huang W,Zhu S F.2013. Sedimentary characteristics and seismic sedimentologic responses of shallow-water delta of Qingshankou Formation in Qijia area,Songliao Basin. Acta Sedimentologica Sinica, 31(5): 889-897] [47] 朱秀,朱红涛,曾洪流,杨香华. 2017. 云南洱海现代湖盆源-汇系统划分、特征及差异. 地球科学, 42(11): 2010-2024. [Zhu X,Zhu H T,Zeng H L,Yang X H.2017. Subdivision,characteristics,and varieties of the source-to-sink systems of the modern lake Erhai Basin,Yunnan Provinc. Earth Sciences, 42(11): 2010-2024] [48] 邹才能,赵文智,张兴阳,罗平,王岚,刘柳红,薛叔浩,袁选俊,朱如凯,陶士振. 2008. 大型敞流坳陷湖盆浅水三角洲与湖盆中心砂体的形成与分布. 地质学报, 82(6): 813-825. [Zou C N,Zhao W Z,Zhang X Y,Luo P,Wang L,Liu L H,Xue S H,Yuan X J,Zhu R K,Tao S Z.2008. Formation and distribution of shallow water deltas and central basin sandbodies in large open depression lake basins. Acta Geologica Sinica, 82(6): 813-825] [49] Cao Z,Azmy Karem,Lin C Y,Don C,Ren L,Qin M,Li Z,Tan X,Zhang L,Li X.2022. Diagenetic evolution of the lower Yaojia Formation of Songliao Basin,China: impact on reservoir quality. Journal of Petroleum Science and Engineering, 213: 1-20. [50] Coleman J M,Gagliano S M.1964. Cyclic sedimentation in the Mississippi River deltaic plain. Gulf Coast Association of Geological Societies Transactions, 14: 67-80. [51] Edmonds D A,Slingerland R L.2009. Significant effect of sediment cohesion on delta morphology. Nature Geoscience, 3(2): 105-109. doi: 10.1038/NGEO730. [52] Frazier D E.1967. Recent deltaic deposits of the Mississippi River: their development and chronology. Gulf Coast Association of Geological Societies Transactions, 14: 67-80. [53] Galloway W E.1976. Sediments and stratigraphic framework of the Copper river fan?delta,Alaska. Journal of Sedimentary Research, 46(3): 726-737. [54] Reineck H E,Singh I B.1975. Depositional Sedimentary Environments With Reference to Terrigenous Clastics. New York: Springer-Verlag Berlin Heidelberg,266-269. [55] Sundborg A.1956. The river Klar Lven: a study of fluvial processes. Geografiska Annaler,38($\frac{2}{3}$): 125-316. [56] Van Dijk M,Postma G,Kleinhans M G.2009. Autocyclic behaviour of fan deltas: an analogue experimental study. Sedimentology, 56(5): 1569-1589. [57] Wang J H,Jiang Z X,Zhang Y F,Gao L,Wei X,Zhang W,Liang Y,Zhang H.2015. Flume tank study of surface morphology and stratigraphy of a fan delta. Terra Nova, 27(1): 42-53. [58] Wescott W A,Ethridge F G.1980. Fan delta sedimentology and tectonic setting: Yallahs fan delta,Southeast Jamaica. AAPG Bulletin, 64(3): 374-399. [59] Zhang R H,Wang J P,Ma Y J,Ghen G,Zeng Q,Zhou C.2016. Sedimentary microfacies and palaeogeomorphology as well as their controls on gas accumulation within the deep-buried Cretaceous in Kuqa Depression,Tarim Basin,China. Journal of Natural Gas Geoscience, 1(1): 45-59.