Tectonic-sedimentary evolution of the Shizigou and Qigequan Formations in Qigequan Anticline in Qaidam Basin: implications for the mineralization of sandstone-type uranium deposits
SHI Yuan1, LIU Weihong2, QIU Longwei1, GAO Xuefeng3, DONG Daotao4, WANG Yuzhe5
1 School of Geosciences,China University of Petroleum(East China),Shandong Qingdao 266580,China; 2 PetroChina Research Institute of Petroleum Exploration & Development,Beijing 100083,China; 3 Exploration Enterprise Department of Qinghai Oilfield Company,PetroChina,Qinghai Dunhuang 736202,China; 4 Sanya Offshore Oil & Gas Research Institute,Northeast Petroleum University,Hainan Sanya 572025,China; 5 Exploration and Development Research Institute of Daqing Oilfield Company,PetroChina,Heilongjiang Daqing 163712,China
Abstract It is of great significance for understanding the initiation and evolution of sandstone-type uranium deposits from the perspective of tectono-sedimentary evolution. In this study,based on a literature review,fieldwork,logging and seismic data,the tectono-sedimentary evolution of the Shizigou and Qigequan Formations in Qigequan Anticline in the Qaidam Basin and its links to the mineralization of sandstone-type uranium deposits are revealed. Our findings indicate that: (1)The Shizigou Formation is characterized by argillaceous-sandstone-rich stratum associated with retrogradation,while the Qigequan Formation is characterized by conglomerate-rich stratum associated with progradation. The Neogene-Quaternary angular unconformity developed between the Shizigou and Qigequan Formations and the Intra-Quaternary angular unconformity developed inside the Qigequan Formation. Large-scale alluvial fans,composed of debris flow,incised-valley-fill,and sheet flow deposits,were developed in the Shizigou and Qigequan Formations,and the sandy earthquake-induced soft-sediment deformation layers were frequently developed in the Shizigou and Qigequan Formations. (2)The most intensive uplift and denudation events occurred between the Neogene and the Quaternary,resulting in the initiation of the Neogene-Quaternary angular unconformity and the tectonic setting of the Qigequan Anticline. (3)It can be inferred that these potential uranium mineralization columns of the Shizigou Formation in the Qigequan Anticline developed in the uplift and denudation events between the Neogene and the Quaternary. The uplift and denudation events led to the initiation and evolution of the uranium-bearing structure,and increased the uranium flux from the source area and dominated the spatial distribution of the potential uranium mineralization columns ultimately. The Neogene-Quaternary angular unconformity can be used for the spatial distribution predicting of the potential uranium mineralization columns as a key tectonic identification mark. In addition,the thin interbeds of sandstone(including the conglomerate)and mudstone in the middle and distal parts of alluvial fans,with sand(including the conglomerate)percentage ranging from 20% to 50%,can be used for the spatial distribution predicting of the potential uranium mineralization columns as a key sedimentary identification mark. This research provides sedimentary and stratigraphic evidence for the basin analysis of the northeastern Tibetan Plateau and is of great reference value for the exploration of sandstone-type uranium deposits in other anticlines in the Qaidam Basin.
Fund:Financially supported by the National Natural Science Foundation of China(No.42172115)
Corresponding Authors:
QIU Longwei,born in 1967,is a professor in China University of Petroleum(East China). He is engaged in the research of sedimentology and reservoir geology. E-mail: qiulwsd@163.com.
About author: SHI Yuan,born in 2000,is a postgraduate in China University of Petroleum(East China). She is engaged in the research of mineralogy,petrology and mineral deposit. E-mail: hoosylvia@163.com.
Cite this article:
SHI Yuan,LIU Weihong,QIU Longwei et al. Tectonic-sedimentary evolution of the Shizigou and Qigequan Formations in Qigequan Anticline in Qaidam Basin: implications for the mineralization of sandstone-type uranium deposits[J]. JOPC, 2024, 26(3): 700-713.
SHI Yuan,LIU Weihong,QIU Longwei et al. Tectonic-sedimentary evolution of the Shizigou and Qigequan Formations in Qigequan Anticline in Qaidam Basin: implications for the mineralization of sandstone-type uranium deposits[J]. JOPC, 2024, 26(3): 700-713.
[1] 陈擎,王继斌,陈斌,康利刚,叶雷刚,张胜龙,时志浩,鲁宝龙. 2020. 柴达木盆地古—新近系砂岩型铀矿找矿新发现及其找矿意义. 东华理工大学学报(自然科学版), 43(4): 346-354. [Chen Q,Wang J B,Chen B,Kang L G,Ye L G,Zhang S L,Shi Z H,Lu B L.2020. New discovery and significance of paleo-Neogene sandstone uranium ore prospecting in Qaidam Basin. Journal of East China University of Technology(Natural Science), 43(4): 346-354] [2] 董道涛. 2023. 柴达木盆地砂岩型铀矿源汇分析. 中国石油大学(华东)博士学位论文. [Dong D T.2023. Source-to-sink analysis of sandstone-type uranium deposits in the Qaidam Basin. Doctoral dissertation of China University of Petroleum(East China)] [3] 韩积斌. 2018. 尕斯库勒盐湖盆地水文系统中高浓度铀的迁移富集行为. 中国地质大学博士学位论文. [Han J B.2018. Migration and enrichment of high concentration uranium in the hydrological system of Gas Hure Salt Lake,Qaidam Basin. Doctoral dissertation of China University of Geosciences] [4] 焦养泉,吴立群,荣辉,张帆,乐亮,宋昊,陶振鹏,彭虎,孙钰函,向尧. 2022. 沉积、成岩与铀成矿: 中国砂岩型铀矿研究的创新发现与认知挑战. 地球科学,47(10): 3580-3602. [Jiao Y Q,Wu L Q,Rong H,Zhang F,Le L,Song H,Tao Z P,Peng H,Sun Y H,Xiang Y.2022. Sedimentation,diagenesis and uranium mineralization: innovative discoveries and cognitive challenges in study of sandstone-type uranium deposits in China. Earth Science,47(10): 3580-3602] [5] 金之钧,张兵山. 1998. 柴达木盆地地质图. 中国石油青海油田分公司. [Jin Z J,Zhang B S.1998. Geological Map of the Qaidam Basin. Qinghai Oilfield Company of PetroChina] [6] 李晨阳,王新春,何春珍,吴轩,孔昭煜,李晓蕾. 1957. 全国1︰200000数字地质图(公开版)空间数据库(V1). 中国地质调查局发展研究中心. [Li C Y,Wang X C,He C Z,Wu X,Kong Z Y,Li X L.1957. National 1︰200000 Digital Geological Map(Public Version)Spatial Database(V1). Development and Research Center(National Geological Archives of China)] [7] 秦明宽,李子颖,蔡煜琦,郭强,宋继叶,刘章月,黄少华. 2022. 对加强我国铀资源勘查“三新”突破的战略性思考. 世界核地质科学, 39(3): 383-398. [Qin M K,Li Z Y,Cai Y Q,Guo Q,Song J Y,Liu Z Y,Huang S H.2022. Strategic thinking on strengthening three new breakthroughs for the uranium exploration in China. World Nuclear Geoscience, 39(3): 383-398] [8] 苏妮娜,金振奎,宋璠,顾军锋,陈英,张卫丹. 2015. 柴达木盆地新近系沉积特征及演化. 中南大学学报(自然科学版), 46(11): 4155-4164. [Su N N,Jin Z K,Song F,Gu J F,Chen Y,Zhang W D.2015. Sedimentary characteristics and evolution of Neogene in Qaidam Basin. Journal of Central South University(Science and Technology), 46(11): 4155-4164] [9] 王继斌,张未,陈擎,陈斌,康利刚. 2022. 英雄岭地区新生代构造特征及其对砂岩型铀矿的控制作用. 铀矿地质, 38(5): 815-827. [Wang J B,Zhang W,Chen Q,Chen B,Kang L G.2022. Cenozoic structure characteristics in Yingxiongling area and its control on sandstone-type uranium deposit. Uranium Geology, 38(5): 815-827] [10] 晏文权. 2020. 柴达木盆地西部跃进—七个泉地区新近系—第四系沉积环境及物源分析. 成都理工大学硕士学位论文. [Yan W Q.2020. Sedimentary environment and provenance analysis of Neogene-Quaternary in Yuejin-Qigequan area,western Qaidam Basin. Masteral dissertation of Chengdu University of Technology] [11] 杨平. 2007. 柴达木盆地西部七个泉_红柳泉地区第三系层序生物地层学研究. 中国地质大学(北京)博士学位论文. [Yang P.2007. Study on Tertiary sequence biostratigraphy in Qigequan-Hongliuquan region,Western Qaidam Basin. Doctoral dissertation of China University of Geosciences(Beijing)] [12] 张闯. 2023. 晚中生代—新生代亚洲砂岩型铀矿幕式大爆发. 中国科学(地球科学), 53(9): 2059-2071. [Zhang C.2023. Episodic sandstone-type uranium mineralization in Asia during the Late Mesozoic-Cenozoic. Science China: Earth Sciences,53(9): 2059-2071] [13] 张超,司庆红,俞礽安,王善博,程银行,于航,冯平,石广顺,奥琮,李志丹,高雪峰. 2023. 柴西北缘花土沟地区新近系狮子沟组沉积特征与砂岩型铀矿关系分析. 中国地质, 50(5): 1327-1342. [Zhang C,Si Q H,Yu R A,Wang S B,Cheng Y H,Yu H,Feng P,Shi G S,Ao C,Li Z D,Gao X F.2023. Analysis of the relationship between sedimentary characteristics and uranium deposits from the Neogene Shizigou Formation in Huatugou area,Northwest Qaidam Basin. Geology in China, 50(5): 1327-1342] [14] 张胜龙,陈云杰,陈擎,龚奇福,李天石. 2023. 柴达木盆地七个泉地区构造沉积演化与铀成矿作用. 铀矿地质, 39(2): 228-237. [Zhang S L,Chen Y J,Chen Q,Gong Q F,Li T S.2023. Structural-sedimentary evolution and its control on uranium mineralization in Qigequan area of Qaidam Basin. Uranium Geology, 39(2): 228-237] [15] 周晓龙. 2013. 南阿尔金山地区晚新生代沉积过程及地貌演化. 西北大学硕士学位论文. [Zhou X L.2013. Late Cenozoic sedimentary process and geomorphological evolution in south altun mountain area.Masteral dissertation of Northwest University] [16] 左群超,叶天竺,冯艳芳,葛佐,王英超. 2006. 中国陆域1︰25万分幅建造构造图空间数据库(V1). 中国地质调查局发展研究中心. [Zuo Q C,Ye T Z,Feng Y F,Ge Z,Wang Y C.2006. National 1︰250000 architecture and tectonic map spatial database(V1). Development and Research Center(National Geological Archives of China)] [17] Abudukeyumu A,Song H,Chi G X,Li Q,Zhang C J.2022. Quaternary uranium mineralization in the Qaidam Basin,northern Tibetan Plateau: insights from petrographic and C-O isotopic evidences. Ore Geology Reviews, 140: 104628. [18] Dong D T,Liu R H,Qiu L W,Li Q C,Wang D,Li X,Yang Y Q,Yu G D,Ma P J,Zhou T F,Liu Z W,Tian W,Sun Y L.2022. Source-to-sink analysis of Mesozoic-Cenozoic sandstone-type uranium deposits in the Qaidam Basin. Ore Geology Reviews, 149: 105049. [19] Hall S M,Mihalasky M J,Tureck K R,Hammarstrom J M,Hannon M T.2017. Genetic and grade and tonnage models for sandstone-hosted roll-type uranium deposits,Texas Coastal Plain,USA. Ore Geology Reviews, 80: 716-753. [20] Hu F,Li J G,Liu Z J,Zhao D M,Wan T,Xu C.2019. Sequence and sedimentary characteristics of Upper Cretaceous Sifangtai Formation in northern Songliao Baisn,northeast China: implications for sandstone-type uranium mineralization. Ore Geology Reviews, 111: 102927. [21] Jaireth S,Roach I C,Bastrakov E,Liu S F.2016. Basin-related uranium mineral systems in Australia: a review of critical features. Ore Geology Reviews, 76: 360-394. [22] Jin R S,Miao P S,Sima X Z,Li J G,Zhao H L,Zhao F Q,Fen X X,Chen Y,Chen L L,Zhao L J,Zhu Q A.2016. Structure styles of mesozoic-cenozoic U-bearing rock series in northern China. Acta Geologica Sinica, 90: 2104-2116. [23] Jin R S,Yu R G,Yang J,Zhou X X,Teng X M,Wang S B,Si Q H,Zhu Q,Zhang T F.2019. Paleo-environmental constraints on uranium mineralization in the Ordos Basin: evidence from the color zoning of U-bearing rock series. Ore Geology Reviews, 104: 175-189. [24] Liu D L,Li H B,Sun Z M,Pan J W,Wang M,Wang H.2017. AFT dating constrains the Cenozoic uplift of the Qimen Tagh Mountains,Northeast Tibetan Plateau,comparison with LA-ICPMS Zircon U-Pb ages. Gondwana Research, 41: 438-450. [25] Nie F J,Yan Z B,Wang Y N,Zhang J,Xia F,Yang D G,Wang S L,Chen M Y,Peng Y B,Miao A S.2021. Intracontinental deformation of the western Ordos Basin in North China and sandstone-type uranium mineralization: constraints from AFT chronology of the Helan Mountain. Geological Journal, 56: 5404-5425. [26] Pan J W,Li H B,Sun Z M,Liu D L,Wu C,Yu C Q.2015. Tectonic responses in the Qaidam Basin induced by Cenozoic activities of the Altyn Tagh Fault. Acta Petrologica Sinica, 31(12): 3701-3712. [27] Qin M K,Huang S H,He Z B,Xu Q A,Song J Y,Liu Z Y,Guo Q A.2018. Evolution of tectonic uplift,hydrocarbon migration,and uranium mineralization in the NW Junggar Basin: an apatite fission-track thermochronology study. Acta Geologica Sinica, 92: 1901-1916. [28] Rong H,Jiao Y Q,Liu W H,Cao M Q,Yu J X,Wu L Q,Li Q C.2021. Influence mechanism of palaeoclimate of uranium-bearing strata on mineralization: a case study from the Qianjiadian sandstone-hosted uranium deposit,Songliao Basin,China. Ore Geology Reviews, 138: 104336. [29] Sanford R F.1994. A quantitative model of ground-water flow during formation of tabular sandstone uranium deposits. Economic Geology, 89: 341-360. [30] Staisch L M,Niemi N A,Clark M K,Chang H.2020. The Cenozoic evolution of crustal shortening and left-lateral shear in the central East Kunlun Shan: implications for the uplift history of the Tibetan Plateau. Tectonics, 39(9): 1-30. [31] Wu C,Li J,Zuza A V,Liu C F,Liu W C,Chen X H,Jiang T,Li B.2020. Cenozoic cooling history and fluvial terrace development of the western domain of the Eastern Kunlun Range,northern Tibet. Palaeogeography,Palaeoclimatology,Palaeoecology, 560: 109971. [32] Wu L,Xiao A C,Ma D D,Li H G,Xu B,Shen Y,Mao L G.2014. Cenozoic fault systems in southwest Qaidam Basin,northeastern Tibetan Plateau: geometry,temporal development,and significance for hydrocarbon accumulation. AAPG Bulletin, 98: 1213-1234. [33] Wu L,Xiao A C,Wang L Q,Mao L G,Wang L,Dong Y P,Xu B.2012. EW-trending uplifts along the southern side of the central segment of the Altyn Tagh Fault,NW China: insight into the rising mechanism of the Altyn Mountain during the Cenozoic. Science China Earth Sciences, 55: 926-939. [34] Wu L Q,Jiao Y Q,Roger M,Yang S K.2009. Sedimentological setting of sandstone-type uranium deposits in coal measures on the southwest margin of the Turpan-Hami Basin,China. Journal of Asian Earth Sciences, 36: 223-237. [35] Xue C J,Chi G X,Xue W.2010. Interaction of two fluid systems in the formation of sandstone-hosted uranium deposits in the Ordos Basin: geochemical evidence and hydrodynamic modeling. Journal of Geochemical Exploration, 106: 226-235. [36] Yuan W M,Dong J Q,Wang S C,Carter A.2006. Apatite fission track evidence for Neogene uplift in the eastern Kunlun Mountains,northern Qinghai-Tibet Plateau,China. Journal of Asian Earth Sciences, 27: 847-856. [37] Yue Y J,Ritts B D,Graham S A,Wooden J L,Gehrels G E,Zhang Z C.2004. Slowing extrusion tectonics: lowered estimate of post-Early Miocene slip rate for the Altyn Tagh fault. Earth and Planetary Science Letters, 217: 111-122. [38] Zhang W L,Fang X M,Song C H,Appel E,Yan M D,Wang Y D.2013. Late Neogene magnetostratigraphy in the western Qaidam Basin(NE Tibetan Plateau)and its constraints on active tectonic uplift and progressive evolution of growth strata. Tectonophysics, 599: 107-116.