Fine-grained gravity flow deposits and their petroleum significance in saline lacustrine basins: a case study from the Upper Member of Lower Ganchaigou Formation in Yingxi area of Qaidam Basin, China
WANG Xiaoni1, YANG Zhi1, FENG Youliang1, JIANG Wenqi3, LONG Guohui2, WU Kunyu2, ZHANG Hong1, HOU Mingqiu1, XING Haoting2, ZHANG Tianshu1, LIU Chang1, WEI Qizhao1
1 Research Institute of Petroleum Exploration and Development,PetroChina,Beijing 100083,China; 2 Research Institute of Petroleum Exploration and Development,PetroChina Qinghai Oilfield Company,Gansu Dunhuang 736200, China; 3 School of Earth and Space Sciences,Peking University,Beijing 100871, China
Abstract Fine-grained gravity flows can transport clastic sediments and particulate organic matter from shallow water to deep lakes,forming distinctive sediments finer than 0.0625 mm. During the depositional period of the upper section of the Lower Ganchaigou Formation(E23),a sub-lacustrine fan system and chemically precipitated carbonates developed in a saline semi-deep to deep lake in the Yingxiongling area of the Qaidam Basin. Seven types of lithofacies associations(LA)are identified in the fan fringe sub-environment on the basis of core observations: LA1: association of mud flow,mud turbulent flow,and suspension fallout deposits in quiet water;LA2: association of chemical deposits interbedded with event deposits in semi-deep lake;LA3: association of slump,fine-grained debris flow,and mud flow deposits;LA4: fine-grained hyperpycnal flow deposits;LA5: fine-grained concentrated density flow deposits;LA6: association of fine-grained debris flow,fine-grained transitional flow,and fine-grained turbidity current deposits;LA7: association of fine-grained concentrated density flow,fine-grained turbulent flow,fine-grained transitional flow,and mud flow deposits. These lithofacies associations are attributed to various fine-grained gravity flows and their transformations which are suggestive of complex flow processes. Our study also shows that the fine-grained deposits are influenced by paleoclimate,tectonic activity,and lake-level fluctuations. In an arid environment and during humid periods,lake-level rise promotes the formation of favorable source rocks and fine-grained gravity flow deposits. Conversely,in times of drought,lake-level decrease is more conducive to the development of chemically precipitated carbonates and slump-derived fine-grained gravity flow deposits. Mud flow,mud turbulent flow,and fallout deposits in quiet water(LA1)and chemical deposits interbedded with event deposits(LA2)are the most favorable “sweet sections”in the saline semi-deep to deep lake.
Fund:Co?funded by the PetroChina??s Shale Oil Major Science and Technology Project(No.2021DJ18),and PetroChina??s Reservoir Characteristics and Favorable Zone Assessments of the Continental Shale Fine?grained Sediments”(No.2021DJ1802)
Corresponding Authors:
YANG Zhi,born in 1980,doctor,professor of the Engineering of Research Institute of Exploration and Development,PetroChina,is engaged in unconventional petroleum geology and risk exploration of unconventional oil and gas. E-mail: yangzhi2009@petroChina.com.cn.
About author: WANG Xiaoni,born in 1998,master,is engaged in unconventional oil and gas geology research. E-mail: wxnriped@163.com.
Cite this article:
WANG Xiaoni,YANG Zhi,FENG Youliang et al. Fine-grained gravity flow deposits and their petroleum significance in saline lacustrine basins: a case study from the Upper Member of Lower Ganchaigou Formation in Yingxi area of Qaidam Basin, China[J]. JOPC, 2024, 26(4): 985-1004.
WANG Xiaoni,YANG Zhi,FENG Youliang et al. Fine-grained gravity flow deposits and their petroleum significance in saline lacustrine basins: a case study from the Upper Member of Lower Ganchaigou Formation in Yingxi area of Qaidam Basin, China[J]. JOPC, 2024, 26(4): 985-1004.
[1] 陈世悦,张顺,刘惠民,鄢继华. 2017. 湖相深水细粒物质的混合沉积作用探讨. 古地理学报, 19(2): 271-284. [Chen S Y,Zhang S,Liu H M,Yan J H.2017. Discussion on mixing of fine-grained sediments in lacustrine deep water. Journal of Palaeogeography(Chinese Edition), 19(2): 271-284] [2] 崔俊,毛建英,陈登钱,施奇,李雅楠,夏晓敏. 2022. 柴达木盆地西部地区古近系湖相碳酸盐岩储层特征. 岩性油气藏, 34(2): 45-53. [Cui J,Mao J Y,Chen D Q,Shi Q,Li Y N,Xia X M.2022. Reservoir characteristics of Paleogene lacustrine carbonate rocks in western Qaidam Basin. Lithologic Reservoirs, 34(2): 45-53] [3] 杜江民,龙鹏宇,杨鹏,丁强,胡秀银,李伟,柏杨,盛军. 2020. 中国陆相湖盆碳酸盐岩储集层特征及其成藏条件. 地球科学进展, 35(1): 52-69. [Du J M,Long P Y,Yang P,Ding Q,Hu X Y,Li W,Bai Y,Sheng J.2020. Characteristics of carbonate reservoir and its forming conditions in continental lake basin of China. Advances in Earth Science, 35(1): 52-69] [4] 冯有良,杨智,张洪,张天舒,李攀,侯鸣秋,蒋文琦,王小妮,朱吉昌,李嘉蕊. 2023. 咸化湖盆细粒重力流沉积特征及其页岩油勘探意义: 以准噶尔盆地玛湖凹陷风城组为例. 地质学报, 97(3): 839-863. [Feng Y L,Yang Z,Zhang H,Zhang T S,Li P,Hou M Q,Jiang W Q,Wang X N,Zhu J C,Li J R.2023. Fine-grained gravity flow sedimentary features and their petroleum significance within saline lacustrine basins: a case study of the Fengcheng Formation in Mahu depression,Junggar Basin,China. Acta Geologica Sinica, 97(3): 839-863] [5] 付锁堂,马达德,郭召杰,程丰. 2015. 柴达木走滑叠合盆地及其控油气作用. 石油勘探与开发, 42(6): 712-722. [Fu S T,Ma D D,Guo Z J,Cheng F.2015. Strike-slip superimposed Qaidam Basin and its control on oil and gas accumulation,NW China. Petroleum Exploration and Development, 42(6): 712-722] [6] 郭荣涛,张永庶,陈晓冬,张庆辉,王鹏,崔俊,姜营海,李亚峰,蒋启财,刘波. 2019. 柴达木盆地英西地区下干柴沟组上段高频旋回与古地貌特征. 沉积学报, 37(4): 812-824. [Guo R T,Zhang Y S,Chen X D,Zhang Q H,Wang P,Cui J,Jiang Y H,Li Y F,Jiang Q C,Liu B.2019. High-frequency cycles and paleogeomorphic features of the upper member of the lower Ganchaigou Formation in the Yingxi area,Qaidam Basin. Acta Sedimentologica Sinica, 37(4): 812-824] [7] 纪友亮,马达德,薛建勤,王鹏,吴颜雄,曾力,金力. 2017. 柴达木盆地西部新生界陆相湖盆碳酸盐岩沉积环境与沉积模式. 古地理学报, 19(5): 757-772. [Ji Y L,Ma D D,Xue J Q,Wang P,Wu Y X,Zeng L,Jin L.2017. Sedimentary environments and sedimentary model of carbonate rocks in the Cenozoic lacustrine basin,western Qaidam Basin. Journal of Palaeogeography(Chinese Edition), 19(5): 757-772] [8] 姜在兴,王运增,王力,孔祥鑫,杨叶芃,张建国,薛欣宇. 2022. 陆相细粒沉积岩物质来源、搬运—沉积机制及多源油气甜点. 石油与天然气地质, 43(5): 1039-1048. [Jiang Z X,Wang Y Z,Wang L,Kong X X,Yang Y P,Zhang J G,Xue X Y.2022. Review on provenance,transport-sedimentation dynamics and multi-source hydrocarbon sweet spots of continental fine-grained sedimentary rocks. Oil & Gas Geology, 43(5): 1039-1048] [9] 黎茂稳,金之钧,董明哲,马晓潇,李志明,蒋启贵,鲍云杰,陶国亮,钱门辉,刘鹏,曹婷婷. 2020. 陆相页岩形成演化与页岩油富集机理研究进展. 石油实验地质, 42(4): 489-505. [Li M W,Jin Z J,Dong M Z,Ma X X,Li Z M,Jiang Q G,Bao Y J,Tao G L,Qian M H,Liu P,Cao T T.2020. Advances in the basic study of lacustrine shale evolution and shale oil accumulation. Petroleum Geology & Experiment, 42(4): 489-505] [10] 李国欣,石亚军,张永庶,陈琰,张国卿,雷涛. 2022a. 柴达木盆地油气勘探、地质认识新进展及重要启示. 岩性油气藏, 34(6): 1-18. [Li G X,Shi Y J,Zhang Y S,Chen Y,Zhang G Q,Lei T.2022a. New progress and enlightenment of oil and gas exploration and geological understanding in Qaidam Basin. Lithologic Reservoirs, 34(6): 1-18] [11] 李国欣,张永庶,陈琰,张国卿,王波,周飞,吴志雄,张长好,雷涛. 2022b. 柴达木盆地油气勘探进展、方向与对策. 中国石油勘探, 27(3): 1-19. [Li G X,Zhang Y S,Chen Y,Zhang G Q,Wang B,Zhou F,Wu Z X,Zhang C H,Lei T.2022b. Progress,orientation and countermeasures of petroleum exploration in Qaidam Basin. China Petroleum Exploration, 27(3): 1-19] [12] 李国欣,朱如凯,张永庶,陈琰,崔景伟,姜营海,伍坤宇,盛军,鲜成钢,刘合. 2022c. 柴达木盆地英雄岭页岩油地质特征、评价标准及发现意义. 石油勘探与开发, 49(1): 18-31. [Li G X,Zhu R K,Zhang Y S,Chen Y,Cui J W,Jiang Y H,Wu K Y,Sheng J,Xian C G,Liu H.2022c. Geological characteristics,evaluation criteria and discovery significance of Paleogene Yingxiongling shale oil in Qaidam Basin,NW China. Petroleum Exploration and Development, 49(1): 18-31] [13] 李国欣,伍坤宇,朱如凯,张永庶,吴松涛,陈琰,申颖浩,张静,邢浩婷,李亚锋,陈晓冬,张闯,张斌,刘畅,鲜成钢,刘合. 2023. 巨厚高原山地式页岩油藏的富集模式与高效动用方式: 以柴达木盆地英雄岭页岩油藏为例. 石油学报, 44(1): 144-157. [Li G X,Wu K Y,Zhu R K,Zhang Y S,Wu S T,Chen Y,Shen Y H,Zhang J,Xing H T,Li Y F,Chen X D,Zhang C,Zhang B,Liu C,Xian C G,Liu H.2023. Enrichment model and high-efficiency production of thick plateau mountainous shale oil reservoir: a case study of the Yingxiongling shale oil reservoir in Qaidam Basin. Acta Petrolei Sinica, 44(1): 144-157] [14] 李璇. 2020. 柴达木盆地西北部新生代介形类化石Sr/Ca比值特征及其古环境指示意义. 兰州大学硕士学位论文: 37-38. [Li X.2020. Sr/Ca ratio of ostracoda and its paleoenvironmental significance in Cenozoic,northwest Qaidam basin. Masteral dissertation of Lanzhou University: 37-38] [15] 刘占国,张永庶,宋光永,李森明,龙国徽,赵健,朱超,王艳清,宫清顺,夏志远. 2021. 柴达木盆地英西地区咸化湖盆混积碳酸盐岩岩相特征与控储机制. 石油勘探与开发, 48(1): 68-80. [Liu Z G,Zhang Y S,Song G Y,Li S M,Long G H,Zhao J,Zhu C,Wang Y Q,Gong Q S,Xia Z Y.2021. Mixed carbonate rocks lithofacies features and reservoirs controlling mechanisms in the saline lacustrine basin in Yingxi Area,Qaidam Basin,NW China. Petroleum Exploration and Development, 48(1): 68-80] [16] 龙国徽,王艳清,朱超,夏志远,赵健,唐鹏程,房永生,李海鹏,张娜,刘健. 2021. 柴达木盆地英雄岭构造带油气成藏条件与有利勘探区带. 岩性油气藏, 33(1): 145-160. [Long G H,Wang Y Q,Zhu C,Xia Z Y,Zhao J,Tang P C,Fang Y S,Li H P,Zhang N,Liu J.2021. Hydrocarbon accumulation conditions and favorable exploration plays in Yingxiongling structural belt,Qaidam Basin. Lithologic Reservoirs, 33(1): 145-160] [17] 吕宝凤,张越青,杨书逸. 2011. 柴达木盆地构造体系特征及其成盆动力学意义. 地质论评, 57(2): 167-174. [Lü B F,Zhang Y Q,Yang S Y.2011. Characteristics of structural system and its implication for formation dynamics in Qaidam Basin. Geological Review, 57(2): 167-174] [18] 潘家伟,李海兵,孙知明,刘栋梁,吴婵,于常青. 2015. 阿尔金断裂带新生代活动在柴达木盆地中的响应. 岩石学报, 31(12): 3701-3712. [Pan J W,Li H B,Sun Z M,Liu D L,Wu C,Yu C Q.2015. Response of Cenozoic activity of Altun fault zone in Qaidam Basin. Acta Petrologica Sinica, 31(12): 3701-3712] [19] 潘裕生. 1999. 青藏高原的形成与隆升. 地学前缘, 6(3): 153-160,162-163. [Pan Y S.1999. Formaion and uplifing of the Qinghai-Tibet Plateau. Earth Science Frontiers, 6(3): 153-160,162-163] [20] 舒豫川,胡广,庞谦,胡朝伟,夏青松,谭秀成. 2021. 柴达木盆地咸湖相烃源岩特征: 以英西地区下干柴沟组上段为例. 断块油气田, 28(2): 179-186. [Shu Y C,Hu G,Pang Q,Hu C W,Xia Q S,Tan X C.2021. Characteristics of source rocks of salt lake facies in Qaidam Basin: taking upper member of Xiaganchaigou Formation in Yingxi Region as an example. Fault-Block Oil & Gas Field, 28(2): 179-186] [21] 宋世骏. 2022. 柴达木盆地新生代咸化湖盆细粒岩差异性发育机理及其地质意义. 西北大学博士学位论文: 80-106. [Song S J.2022. Different developing mechanism of fine-grained sediments in Cenozoic saline lakes in the Qaidam Basin and its geological implications. Doctoral dissertation of Northwest University: 80-106] [22] 孙焕泉. 2017. 济阳坳陷页岩油勘探实践与认识. 中国石油勘探, 22(4): 1-14. [Sun H Q.2017. Exploration practice and cognitions of shale oil in Jiyang depression. China Petroleum Exploration, 22(4): 1-14] [23] 王倩倩,袁四化,王亚东,李伟民,刘永江,郑世刚,赵英利. 2024. 柴达木盆地西部地区新生代盆地性质. 吉林大学学报(地球科学版), 54(1): 160-181. [Wang Q Q,Yuan S H,Wang Y D,Li W M,Liu Y J,Zheng S G,Zhao Y L.2024. The nature of the Cenozoic Western Qaidam Basin. Journal of Jilin University(Earth Science Edition), 54(1): 160-181] [24] 王伟涛,张培震,段磊,张博譞,刘康,黄荣,刘彩彩,张竹琪,郑德文,郑文俊,张会平. 2022. 柴达木盆地新生代地层年代框架与沉积-构造演化. 科学通报,67(S2): 3452-3475. [Wang W T,Zhang P Z,Duan L,Zhang B X,Liu K,Huang R,Liu C C,Zhang Z Q,Zheng D W,Zheng W J,Zhang H P.2022. Chronological framework and sedimentary-tectonic evolution of Cenozoic strata in Qaidam Basin. Chinese Science Bulletin,67(S2): 3452-3475] [25] 王艳清,刘云田,黄革萍,李森明,夏志远,宫清顺. 2014. 柴达木盆地西部地区古近—新近系沉积体系与油气分布. 北京: 石油工业出版社,120-167. [Wang Y Q,Liu Y T,Huang G P,Li S M,Xia Z Y,Gong Q S.2014. Paleogene Sedimentary System and Oil and Gas Distribution in Western Qaidam Basin. Beijing: Petroleum Industry Press,120-167] [26] 王益友,郭文莹,张国栋. 1979. 几种地球化学标志在金湖凹陷阜宁群沉积环境中的应用. 同济大学学报, 7(2): 51-60. [Wang Y Y,Guo W Y,Zhang G D.1979. Application of some geochemical indicators in determining of sedimentary environment of the Funing Group(paleogene),Jin-hu depression,Kiangsu Province. Journal of Tongji University, 7(2): 51-60] [27] 吴磊,杨惠童,张永庶,张军勇,魏岩岩,黄凯,曹冯威,葛梦佳,叶雨晖,陈琰,唐建超,林秀斌,肖安成,陈汉林,杨树锋. 2023. 新生代柴达木盆地与周缘造山带的构造耦合. 地质学报, 97(9): 2939-2955. [Wu L,Yang H T,Zhang Y S,Zhang J Y,Wei Y Y,Huang K,Cao F W,Ge M J,Ye Y H,Chen Y,Tang J C,Lin X B,Xiao A C,Chen H L,Yang S F.2023. Structural coupling between the Qaidam Basin and bordering orogenic belts in the Cenozoic. Acta Geologica Sinica, 97(9): 2939-2955] [28] 吴因业,吕佳蕾,方向,杨智,王岚,马达德,陶士振. 2019. 湖相碳酸盐岩—混积岩储层有利相带分析: 以柴达木盆地古近系为例. 天然气地球科学, 30(8): 1150-1157. [Wu Y Y,Lü J L,Fang X,Yang Z,Wang L,Ma D D,Tao S Z.2019. Analysis of favorable facies belts in reservoir of lacustrine carbonate rocks-hybrid sediments: case study of Paleogene in Qaidam Basin. Natural Gas Geoscience, 30(8): 1150-1157] [29] 吴智平,周瑶琪. 2000. 一种计算沉积速率的新方法: 宇宙尘埃特征元素法. 沉积学报, 18(3): 395-399. [Wu Z P,Zhou Y Q.2000. Using the characteristic elements from meteoritic must in strata to calculate sedimentation rate. Acta Sedimentologica Sinica, 18(3): 395-399] [30] 夏青松,陆江,杨鹏,张昆,杨朝屹,聂俊杰,朱云舫,李立芳. 2023. 柴达木盆地英西地区渐新统下干柴沟组上段储层微观孔隙结构特征. 岩性油气藏, 35(1): 132-144. [Xia Q S,Lu J,Yang P,Zhang K,Yang C Y,Nie J J,Zhu Y F,Li L F.2023. Microscopic pore structure characteristics of the upper member of Oligocene Xiaganchaigou Formation in Yingxi Area,Qaidam Basin. Lithologic Reservoirs, 35(1): 132-144] [31] 夏志远,刘占国,李森明,王艳清,王鹏,管斌. 2017. 岩盐成因与发育模式: 以柴达木盆地英西地区古近系下干柴沟组为例. 石油学报, 38(1): 55-66. [Xia Z Y,Liu Z G,Li S M,Wang Y Q,Wang P,Guan B.2017. Origin and developing model of rock salt: a case study of Lower Ganchaigou Formation of Paleogene in the west of Yingxiong ridge,Qaidam Basin. Acta Petrolei Sinica, 38(1): 55-66] [32] 杨田,操应长,田景春. 2021. 浅谈陆相湖盆深水重力流沉积研究中的几点认识. 沉积学报, 39(1): 88-111. [Yang T,Cao Y C,Tian J C.2021. Discussion on research of deep-water gravity flow deposition in lacustrine basin. Acta Sedimentologica Sinica, 39(1): 88-111] [33] 杨田,操应长,王健,田景春,蔡来星,余文强. 2023. 陆相湖盆深水浊流与泥质碎屑流间过渡流沉积与沉积学意义. 沉积学报, 41(5): 1295-1310. [Yang T,Cao Y C,Wang J,Tian J C,Cai L X,Yu W Q.2023. Deep-water deposition for transitional flow from turbidity current to muddy debris flow in lacustrine basins and its sedimentological significance. Acta Sedimentologica Sinica, 41(5): 1295-1310] [34] 易定红,王建功,石兰亭,王鹏,陈娟,孙松领,石亚军,司丹. 2019. 柴达木盆地英西地区E23碳酸盐岩沉积演化特征. 岩性油气藏, 31(2): 46-55. [Yi D H,Wang J G,Shi L T,Wang P,Chen J,Sun S L,Shi Y J,Si D.2019. Sedimentary evolution characteristics of E23 carbonate rocks in Yingxi Area,Qaidam Basin. Lithologic Reservoirs, 31(2): 46-55] [35] 袁剑英,黄成刚,曹正林,李智勇,万传治,徐丽,潘星,吴丽荣. 2015. 咸化湖盆白云岩碳氧同位素特征及古环境意义: 以柴西地区始新统下干柴沟组为例. 地球化学, 44(3): 254-266. [Yuan J Y,Huang C G,Cao Z L,Li Z Y,Wan C Z,Xu L,Pan X,Wu L R.2015. Carbon and oxygen isotopic composition of saline lacustrine dolomite and its palaeoenvironmental significance: a case study of Lower Eocene Ganchaigou Formation in western Qaidam Basin. Geochimica, 44(3): 254-266] [36] 袁剑英,黄成刚,夏青松,曹正林,赵凡,万传治,潘星. 2016. 咸化湖盆碳酸盐岩储层特征及孔隙形成机理: 以柴西地区始新统下干柴沟组为例. 地质论评, 62(1): 111-126. [Yuan J Y,Huang C G,Xia Q S,Cao Z L,Zhao F,Wan C Z,Pan X.2016. The characteristics of carbonate reservoir,and formation mechanism of pores in the saline lacustrine basin: a case study of the lower Eocene Ganchaigou Formation in western Qaidam Basin. Geological Review, 62(1): 111-126] [37] 张斌,何媛媛,陈琰,孟庆洋,黄家旋,袁莉. 2018. 柴达木盆地西部咸化湖相优质烃源岩形成机理. 石油学报, 39(6): 674-685. [Zhang B,He Y Y,Chen Y,Meng Q Y,Huang J X,Yuan L.2018. Formation mechanism of excellent saline lacustrine source rocks in western Qaidam Basin. Acta Petrolei Sinica, 39(6): 674-685] [38] 张道伟,薛建勤,伍坤宇,陈晓冬,王牧,张庆辉,郭宁. 2020. 柴达木盆地英西地区页岩油储层特征及有利区优选. 岩性油气藏, 32(4): 1-11. [Zhang D W,Xue J Q,Wu K Y,Chen X D,Wang M,Zhang Q H,Guo N.2020. Shale oil reservoir characteristics and favorable area optimization in Yingxi Area,Qaidam Basin. Lithologic Reservoirs, 32(4): 1-11] [39] 张世铭,张小军,王建功,张婷静,崔俊,王超,伏珏蓉. 2022. 咸化湖盆混合沉积特征及控制因素分析: 以柴达木盆地西部地区古近系下干柴沟组为例. 中国矿业大学学报, 51(1): 160-173. [Zhang S M,Zhang X J,Wang J G,Zhang T J,Cui J,Wang C,Fu J R.2022. Characteristics and their controlling factors of mixed sediments in saline lakes: a case study of lower Ganchaigou Formation in the western Qaidam Basin. Journal of China University of Mining & Technology, 51(1): 160-173] [40] 周传明,张俊明,李国祥,虞子冶. 1997. 云南永善肖滩早寒武世早期碳氧同位素记录. 地质科学, 32(2): 201-211. [Zhou C M,Zhang J M,Li G X,Yu Z Y.1997. Carbon and oxygen isotopic records of early early Cambrian in xiaotan,Yongshan,Yunnan. Chinese Journal of Geology(Scientia Geologica Sinica), 32(2): 201-211] [41] 朱超,刘占国,宋光永,龙国徽,宫清顺,赵健,李森明,夏志远,吴颜雄,田明智. 2022. 柴达木盆地英雄岭构造带古近系湖相碳酸盐岩沉积模式、演化与分布. 石油学报, 43(11): 1558-1567,1622. [Zhu C,Liu Z G,Song G Y,Long G H,Gong Q S,Zhao J,Li S M,Xia Z Y,Wu Y X,Tian M Z.2022. Sedimentary model,evolution and distribution of Paleogene lacustrine carbonate rocks in Yingxiongling structural belt,Qaidam Basin. Acta Petrolei Sinica, 43(11): 1558-1567,1622] [42] 朱如凯,张婧雅,李梦莹,蔡毅,吴松涛,刘畅,张素荣,康缘. 2023. 陆相页岩油富集基础研究进展与关键问题. 地质学报, 97(9): 2874-2895. [Zhu R K,Zhang J Y,Li M Y,Cai Y,Wu S T,Liu C,Zhang S R,Kang Y.2023. Advances and key issues in the basic research of non-marine shale oil enrichment. Acta Geologica Sinica, 97(9): 2874-2895] [43] 邹才能,冯有良,杨智,蒋文琦,潘松圻,张天舒,王小妮,朱吉昌,李嘉蕊. 2022a. 湖盆细粒重力流沉积作用过程及甜点层发育机制是什么?地球科学,(10): 3864-3866. [Zou C N,Feng Y L,Yang Z,Jiang W Q,Pan S Q,Zhang T S,Wang X N,Zhu J C,Li J R.2022a. What are the lacustrine fine-grained gravity flow sedimentation process and the genetic mechanism of sweet sections for shale oil?Earth Science,(10): 3864-3866] [44] 邹才能,杨智,董大忠,赵群,陈振宏,冯有良,李嘉蕊,王小妮. 2022b. 非常规源岩层系油气形成分布与前景展望. 地球科学, 47(5): 1517-1533. [Zou C N,Yang Z,Dong D Z,Zhao Q,Chen Z H,Feng Y L,Li J R,Wang X N.2022b. Formation,distribution and prospect of unconventional hydrocarbons in source rock strata in China. Earth Science, 47(5): 1517-1533] [45] 邹才能,冯有良,杨智,蒋文琦,张天舒,张洪,王小妮,朱吉昌,魏琪钊. 2023a. 中国湖盆细粒重力流沉积作用及其对页岩油“甜点段”发育的影响. 石油勘探与开发, 50(5): 883-897. [Zou C N,Feng Y L,Yang Z,Jiang W Q,Zhang T S,Zhang H,Wang X N,Zhu J C,Wei Q Z.2023a. Fine-grained gravity flow sedimentation and its influence on development of shale oil sweet spot intervals in lacustrine basins in China. Petroleum Exploration and Development, 50(5): 883-897] [46] 邹才能,杨智,张国生,朱如凯,陶士振,袁选俊,侯连华,董大忠,郭秋麟,宋岩,冉启全,邱振,吴松涛,马锋,白斌,王岚,熊波,潘松圻,刘翰林,王小妮. 2023b. 非常规油气地质学理论技术及实践. 地球科学, 48(6): 2376-2397. [Zou C N,Yang Z,Zhang G S,Zhu R K,Tao S Z,Yuan X J,Hou L H,Dong D Z,Guo Q L,Song Y,Ran Q Q,Qiu Z,Wu S T,Ma F,Bai B,Wang L,Xiong B,Pan S Q,Liu H L,Wang X N.2023b. Theory,technology and practice of unconventional petroleum geology. Earth Science, 48(6): 2376-2397] [47] 邹才能,马锋,潘松圻,张新顺,吴松涛,傅国友,王红军,杨智. 2023c. 全球页岩油形成分布潜力及中国陆相页岩油理论技术进展. 地学前缘, 30(1): 128-142. [Zou C N,Ma F,Pan S Q,Zhang X S,Wu S T,Fu G Y,Wang H J,Yang Z.2023c. Formation and distribution potential of global shale oil and the developments of continental shale oil theory and technology in China. Earth Science Frontiers, 30(1): 128-142] [48] An Z S,Kutzbach J E,Prell W L,Porter S C.2001. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan Plateau since Late Miocene times. Nature, 411: 62-66. [49] Baas J H,Best J L,Peakall J,Wang M.2009. A phase diagram for turbulent,transitional,and laminar clay suspension flows. Journal of Sedimentary Research, 79: 162-183. [50] Baas J H,Best J L,Peakall J.2011. Depositional processes,bedform development and hybrid bed formation in rapidly decelerated cohesive(mud-sand)sediment flows. Sedimentology, 58: 1953-1987. [51] Baas J H,Tracey N D,Peakall J.2021. Sole marks reveal deep-marine depositional process and environment: implications for flow transformation and hybrid-event-bed models. Journal of Sedimentary Research, 91: 986-1009. [52] Carroll A R,Bohacs K M.1999. Stratigraphic classification of ancient lakes: balancing tectonic and climatic controls. Geology, 27: 99. [53] Epstein S,Buchsbaum R,Lowenstam H A,Urey H C.1953. Revised carbonate-water isotopic temperature scale. GSA Bulletin, 64(11): 1315-1326. [54] Feng Y L,Zou C N,Li J Z,Lin C S,Wang H J,Jiang S,Yang Z,Zhang S,Fu X L.2021. Sediment gravity-flow deposits in Late Cretaceous Songliao postrift downwarped lacustrine basin,northeastern China. Marine and Petroleum Geology, 34: 105378. [55] Hahn D G,Manabe S.1975. The role of mountains in the South Asian monsoon circulation. Journal of the Atmospheric Sciences, 32: 1515-1541. [56] Hatch J R,Leventhal J S.1992. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian(Missourian)Stark Shale Member of the Dennis Limestone,Wabaunsee County,Kansas,U.S.A. Chemical Geology, 99: 65-82. [57] Haughton P,Davis C,McCaffrey W,Barker S.2009. Hybrid sediment gravity flow deposits-Classification,origin and significance. Marine and Petroleum Geology, 26: 1900-1918. [58] Hou M Q,Zhuang G S,Wu M H.2021a. Isotopic fingerprints of mountain uplift and global cooling in paleoclimatic and paleoecological records from the northern Tibetan Plateau. Palaeogeography,Palaeoclimatology,Palaeoecology, 578: 110578. [59] Hou M Q,Zhuang G S,Ji J L,Xiang S Y,Kong W W,Cui X Q,Wu M H,Hren M.2021b. Profiling interactions between the Westerlies and Asian summer monsoons since 45 ka: insights from biomarker,isotope,and numerical modeling studies in the Qaidam Basin. Geological Society of America Bulletin, 133: 1531-1541. [60] Kelts K.1988. Environments of deposition of lacustrine petroleum source rocks: An introduction. Geological Society of London Special Publications, 40: 3-26. [61] Lamb M P,Mohrig D.2009. Do hyperpycnal-flow deposits record river-flood dynamics?Geology, 37: 1067-1070. [62] Li Q Q,Xu S,Hao F,Shu Z G,Chen F L,Lu Y C,Wu S Q,Zhang L.2021. Geochemical characteristics and organic matter accumulation of argillaceous dolomite in a saline lacustrine basin: a case study from the Paleogene Xingouzui Formation,Jianghan Basin,China. Marine and Petroleum Geology, 128: 105041. [63] Mulder T,Alexander J.2001. The physical character of subaqueous sedimentary density flows and their deposits. Sedimentology, 48: 269-299. [64] Mulder T,Syvitski J P M,Migeon S,Faugères J C,Savoye B.2003. Marine hyperpycnal flows: Initiation,behavior and related deposits: a review. Marine and Petroleum Geology, 20: 861-882. [65] Popov S V,Shcherba I G,Ilyina L B,Nevesskaya L A,Paramonova N P,Khondkarian S O,Magyar I.2006. Late Miocene to Pliocene palaeogeography of the Paratethys and its relation to the Mediterranean. Palaeogeography, Palaeoclimatology, Palaeoecology, 238: 91-106. [66] Ruddiman W F,Kutzbach J E.1989. Forcing of late Cenozoic Northern Hemisphere climate by plateau uplift in southern Asia and the American west. Journal of Geophysical Research: Atmospheres, 94: 18409-18427. [67] Shanmugam G.2000.50 years of the turbidite paradigm(1950s—1990s): deep-water processes and facies models: a critical perspective. Marine and Petroleum Geology, 17: 285-342. [68] Shi Y J,Xu L,Huang C G,Wang L Q,Ma X M.2020. The existence and significance of two kinds of effective reservoirs in deep water area of the western Qaidam Basin. Acta Geologica Sinica-English Edition, 94: 1726-1727. [69] Song S J,Huang L,Zhang Q,Li X,Liu C Y.2022. New insights for origin of fine-grained sediments from the early Neogene Qaidam Basin: wind and fluvial-lacustrine source-to-sink processes. Marine and Petroleum Geology, 145: 105853. [70] Sumner E J,Talling P J,Amy L A.2009. Deposits of flows transitional between turbidity current and debris flow. Geology, 37: 991-994. [71] Talling P J,Masson D G,Sumner E J,Malgesini G.2012. Subaqueous sediment density flows: depositional processes and deposit types. Sedimentology, 59: 1937-2003. [72] Wang X,Carrapa B,Sun Y C,Dettman D L,Chapman J B,Caves Rugenstein J K,Clementz M T,DeCelles P G,Wang M,Chen J,Quade J,Wang F,Li Z J,Oimuhammadzoda I,Gadoev M,Lohmann G,Zhang X,Chen F H.2020. The role of the westerlies and orography in Asian hydroclimate since the late Oligocene. Geology, 48: 728-732. [73] Wu M H,Zhuang G S,Hou M Q,Liu Z H.2021. Expanded lacustrine sedimentation in the Qaidam Basin on the northern Tibetan Plateau: manifestation of climatic wetting during the Oligocene icehouse. Earth and Planetary Science Letters, 565: 116935. [74] Wu S B,Zhao Z X.2022. Controlling effect of saline sedimentary environment on enrichment and exploitation of shale gas and oil in lacustrine basin. SN Applied Sciences, 4: 223. [75] Yang L L,Li X W,Zhuo Q G,Yu Z C,Yang Y L,Liu K Y.2022a. Effects of gypsum-salt rock on mineral transformations in a saline lacustrine basin: significance to reservoir development. Journal of Petroleum Science and Engineering, 211: 110240. [76] Yang Z,Zou C N,Hou L H,Wu S T,Lin S H,Luo X,Zhang L J,Zhao Z Y,Cui J W,Pan S Q.2019a. Division of fine-grained rocks and selection of “sweet sections”in the oldest continental shale in China: taking the coexisting combination of tight and shale oil in the Permian Junggar Basin. Marine and Petroleum Geology, 109: 339-348. [77] Yang Z,Zou C N,Wu S T,Lin S H,Pan S Q,Niu X B,Men G T,Tang Z X,Li G S,Zhao J H,Jia X Y.2019b. Formation,distribution and resource potential of the “sweet areas(sections)”of continental shale oil in China. Marine and Petroleum Geology, 102: 48-60. [78] Yang Z,Zou C N,Gu Z D,Yang F,Li J R,Wang X N.2022b. Geological characteristics and main challenges of onshore deep oil and gas development in China. Advances in Geo-Energy Research, 6: 264-266. [79] Yang Z,Zou C N,Wu S T,Pan S Q,Wang X N,Liu H T,Jiang W Q,Li J R,Li Q Y,Niu X B,Li G H,Tang Z X,Guo X G,Huang D,Wei Q Z.2022c. Characteristics,types,and prospects of geological sweet sections in giant continental shale oil provinces in China. Journal of Earth Science, 33: 1260-1277. [80] Zachos J,Pagani M,Sloan L,Thomas E,Billups K.2001. Trends,rhythms,and aberrations in global climate 65 Ma to present. Science, 292: 686-693. [81] Zhang X,Liu C L,Guo Z Q,Gui H R,Tian J X,Wu X P,Peng B,Sun Y K,Ping Y Q.2020. Characteristics and influencing factors of unconventional hydrocarbon accumulation in saline lacustrine fine-grained sedimentary rocks in the northwestern Qaidam Basin. Energy & Fuels, 34: 2726-2738. [82] Zhuang G S,Zhang Y G,Hourigan J,Ritts B,Hren M,Hou M Q,Wu M H,Kim B.2019. Microbial and geochronologic constraints on the Neogene paleotopography of northern Tibetan Plateau. Geophysical Research Letters, 46: 1312-1319.