1 School of Earth Sciences,China University of Geosciences(Wuhan),Wuhan 430074,China; 2 Innovation Center of Ore Resources Exploration Technology in the Region of Bedrock,Ministry of Natural Resources of People’s Republic of China,Guiyang 550081,China; 3 School of Earth Sciences and Engineering,Nanjing University,Nanjing 210023,China; 4 Geological Brigade 106,Bureau of Geology and Mineral Exploration and Development of Guizhou Province,Guizhou Zunyi 563003,China; 5 Mineral Resources Reserve Evaluation Centre of Guangxi Zhuang Autonomous Region, Nanning 530028,China
Abstract In most bauxite deposits around the world,concentric colloidal pellet structures are commonly observed. The growth process of these structures records valuable information about the mineralization of bauxite,offering the potential to reconstruct the bauxite-forming environment. Unlike the more extensively studied oolitic structures in carbonate deposits,the research on similar multilayered pellet structures in bauxite deposits is still limited. The basic definition,formation mechanism,and time constraints of these structures remain unclear,and thus require further investigation. In view of this issue and the character of pelleted structure in the deposition-cementation layers of modern tropical laterite profiles,this research was carried out on the Lower Permian bauxite deposits in the Danping mining area of Wuchuan-Zheng’an-Daozhen region in northern Guizhou,China. The concentric layered structure of bauxite deposits is proposed here to be named as “colloidal pelleted structure”. On the basis of the geological characteristics of ore-bearing lithostratigraphic profiles in the Danping bauxite deposit,this study focuses on investigating the colloidal pellet structures. The colloidal pellets in the Danping bauxite deposit consist of alternating layers of different types of core and surrounding alternating Al-hematite and boehmite minerals. The sphericity of the colloidal pellets was statistically analyzed using the dichotomy,which showed that they are predominantly circular or nearly circular. The normalized pellet layers range from 11.2 to 319.5 μm in thickness. According to the statistics of the number of pellet layers,the majority are around 1-3 layers. Based on the above statistical data,Fick’s first law and its extended form were used to estimate the growth time of the colloidal pellets,and construction of a diffusion growth model was attempted. The results show that the formation time of the Al-hematite layers within the pellets ranges from 0.1 to 96.9 years,while the formation time of the boehmite layers ranges from 0.2 to 143.6 years. The formation time of the microscopic-scale colloidal pellets(0.1~0.4 mm)and hand-sized colloidal pallets(2.0~5.0 mm)is estimated to be around 0.6 to 481.2 years and 1178 to 7364 years,respectively. Furthermore,the estimated formation time of colloidal pellets of various sizes(0.1~5.0 mm)in bauxite deposits is 0.6 to 7364 years. These findings indicate that there is a complex relationship between colloidal pellet structures and leaching processes during bauxite formation. The formation of interlayered concentric structures indicates the periodic agglomeration of colloidal pellets within the aluminum-bearing strata in the Danping area,providing a microscopic depiction of the periodic ore-forming rhythm. The geochemical behavior of aluminum during the formation of colloidal pellets may be the dominant factor,and it is influenced by key control conditions such as the concentration of organic acids in weathering profiles,Redox Conditions and the surface charge properties of layered minerals affecting the adsorption and enrichment processes of hydroxyaluminum and exchangeable aluminum.
Fund:National Key Research and Development Program of China(No. 2022YFF0800200)and the National Natural Science Foundation of China(No. U1812402)
Corresponding Authors:
YU Wenchao,born in 1988,a professor and Ph.D. supervisor of China University of Geosciences(Wuhan), is mainly engaged in research on sedimentary ore deposits. E-mail: yuwenchaocug@163.com.
About author: CHENG Long,born in 2000,a master degree candidate at the School of Earth Sciences,China University of Geosciences(Wuhan),is mainly engaged in bauxite sedimentary geology research. E-mail: longcheng@cug.edu.cn.
Cite this article:
CHENG Long,YU Wenchao,DU Yuansheng et al. Genesis of colloidal pellets of Danping bauxite deposit in northern Guizhou Province and estimation of their mineralization duration[J]. JOPC, 2024, 26(5): 1167-1184.
CHENG Long,YU Wenchao,DU Yuansheng et al. Genesis of colloidal pellets of Danping bauxite deposit in northern Guizhou Province and estimation of their mineralization duration[J]. JOPC, 2024, 26(5): 1167-1184.
[1] 陈强,杨时强,和秀林. 2014. 贵州正安旦坪铝土矿床概略技术经济评价. 内蒙古煤炭经济,(8): 99-100,106. [Chen Q,Yang S Q,He X L.2014. Brief technical and economic evaluation of Danping bauxite deposit in Zheng’an,Guizhou Province. Inner Mongolia Coal Economy,(8): 99-100,106] [2] 陈世益,周芳,罗德宣,吴肇清,卢彪,林景光. 1992. 广西贵港三水型铝土矿矿石特征及应用研究. 广西地质,(3): 9-16. [Chen S Y,Zhou F,Luo D X,Wu Z Q,Lu B,Lin J G.1992. The features and studies on utilizations of the ores of the gibbsite-type bauxite deposits in Guigang,Guangxi. Geology of Guangxi,(3): 9-16] [3] 崔滔,闫俊,张敏. 2022. 黔北沉积型铝土矿鲕粒成因. 中国有色金属学报, 32(2): 586-602. [Cui T,Yan J,Zhang M.2022. Origin of oolites of sedimentary bauxite in northern Guizhou,China. The Chinese Journal of Nonferrous Metals, 32(2): 586-602] [4] 戴塔根,李洁兰. 2016. 广西扶绥喀斯特型铝土矿氢氧同位素特征及地质意义. 中国有色金属学报, 26(7): 1505-1514. [Dai T G,Li J L.2016. Features and significance of H-O isotopes from Fusui Karst bauxite in Guangxi Province,China. The Chinese Journal of Nonferrous Metals, 26(7): 1505-1514] [5] 杜远生,余文超. 2020. 沉积型铝土矿的陆表淋滤成矿作用: 兼论铝土矿床的成因分类. 古地理学报, 22(5): 812-826. [Du Y S,Yu W C.2020. Subaerial leaching process of sedimentary bauxite and the discussion on classifications of bauxite deposits. Journal of Palaeogeography(Chinese Edition), 22(5): 812-826] [6] 杜远生,周琦,金中国,凌文黎,张雄华,喻建新,汪小妹,余文超,黄兴,崔滔,雷志远,翁申富,吴波,覃永军,曹建州,彭先红,张震,邓虎. 2013. 黔北务正道地区铝土矿基础地质与成矿作用研究进展. 地质科技情报, 32(1): 1-6. [Du Y S,Zhou Q,Jin Z G,Ling W L,Zhang X H,Yu J X,Wang X M,Yu W C,Huang X,Cui T,Lei Z Y,Weng S F,Wu B,Qin Y J,Cao J Z,Peng X H,Zhang Z,Deng H.2013. Advances in basic geology and metallogenic regularity study of bauxite in Wuchuan-Zheng’an-Daozhen area,northern Guizhou Province. Geological Science and Technology Information, 32(1): 1-6] [7] 杜远生,周琦,金中国,凌文黎,汪小妹,余文超,崔滔,雷志远,翁申富,吴波,覃永军,曹建州,彭先红,张震,邓虎. 2014. 黔北务正道地区早二叠世铝土矿成矿模式. 古地理学报, 16(1): 1-8. [Du Y S,Zhou Q,Jin Z G,Ling W L,Wang X M,Yu W C,Cui T,Lei Z Y,Weng S F,Wu B,Qin Y J,Cao J Z,Peng X H,Zhang Z,Deng H.2014. Mineralization model for the Early Permian bauxite deposits in Wuchuan-Zheng’an-Daozhen area,northern Guizhou Province. Journal of Palaeogeography(Chinese Edition), 16(1): 1-8] [8] 范二川. 2011. 贵州大岩铝土矿床地质特征. 矿产勘查, 2(2): 135-141. [Fan E C.2011. Geological characteristics of Dayan bauxite deposit in Guizhou. Mineral Exploration, 2(2): 135-141] [9] 龚子同,张甘霖,赵文君,陈志诚,欧阳洮,赵玉国. 2003. 海南岛土壤中铝钙的地球化学特征及其对生态环境的影响. 地理科学, 23(2): 200-207. [Gong Z T,Zhang G L,Zhao W J,Chen Z C,Ouyang T,Zhao Y G.2003. Geochemical characteristics of aluminum and calcium of soils and their impact on ecological environment in Hainan Island. Scientia Geographica Sinica, 23(2): 200-207] [10] 巩恩普,杨臻元,黄文韬,关长庆,张永利,苗卓伟,王立芙,李骁,王俊杰. 2021. 广西隆安都结剖面下石炭统都安组上部鲕粒类型及其地质意义. 古地理学报,23(1): 125-141. [Gong E P,Yang Z Y,Huang W T,Guan C Q,Zhang Y L,Miao Z W,Wang L F,Li X,Wang J J.2021. The coupled relationship between Carboniferous reefs and the Late Paleozoic ice age. Journal of Palaeogeography(Chinese Edition),23(1): 125-141] [11] 古强,邢凤存,钱红杉,孙汉骁. 2021. 川东北飞仙关组鲕粒特征与水动力相关性研究. 沉积学报, 39(6): 1371-1386. [Gu Q,Xing F C,Qian H S,Sun H X.2021. Correlation between ooid characteristics and hydrodynamic forces in the Feixianguan formation,northeastern Sichuan. Acta Sedimentologica Sinica, 39(6): 1371-1386] [12] 郭芪恒,史书婷,金振奎,李阳,王金艺,任奕霖,王凌. 2022. 河口湾潮坪潮汐水道发育特征及地质意义: 以钱塘江为例. 沉积学报,40(1): 182-191. [Guo S H,Shi S T,Jin Z K,Li Y,Wang J Y,Ren Y L,Wang L.2022. Characteristics and geological significance of tidal channels in an estuarine tidal flat: a case study from the Qiantang river estuary. Acta Sedimentologica Sinica,40(1): 182-191] [13] 胡旭,伊海生,王刚,欧莉华. 2013. 沉积型铝土矿鲕豆粒结构特征及其成因分析. 重庆科技学院学报(自然科学版), 15(2): 5-9. [Hu X,Yi H S,Wang G,Ou L H.2013. Texture characteristics and genesis of bean-pebble of sedimentary bauxite deposits. Journal of Chongqing University of Science and Technology(Natural Sciences Edition), 15(2): 5-9] [14] 黄兴,张雄华,杜远生,郄文昆,杨兵,段先锋. 2013. 黔北务正道地区及邻区石炭纪—二叠纪之交海平面变化对铝土矿的控制. 地质科技情报, 32(1): 80-86. [Huang X,Zhang X H,Du Y S,Qie W K,Yang B,Duan X F.2013. Control of sea-level changes over the forming of bauxite between carboniferous and Permian in northern Guizhou and adjacent regions. Geological Science and Technology Information, 32(1): 80-86] [15] 金瞰昆. 1998. 江苏徐州大北望寒武系鲕粒及鲕粒灰岩特征. 岩相古地理, 18(5): 21-27. [Jin K K.1998. The Cambrian ooides and oolitic limestones in the dabeiwang section in Xuzhou,Jiangsu. Sedimentary Facies and Palaeogeography, 18(5): 21-27] [16] 李飞,武思琴,刘柯. 2015. 鲕粒原生矿物识别及对海水化学成分变化的指示意义. 沉积学报, 33(3): 500-511. [Li F,Wu S Q,Liu K.2015. Identification of ooid primary mineralogy: a clue for understanding the variation in paleo-oceanic chemistry. Acta Sedimentologica Sinica, 33(3): 500-511] [17] 李沛刚. 2021. 黔北大竹园二叠系超大型铝土矿微地貌与淋滤成矿作用. 中国地质大学(北京)博士学位论文. [Li P G.2021. Microgeomorphology and leaching mineralization of the Permian super-large bauxite deposit in dazhuyuan,northern Guizhou. Doctoral dissertation of China University of Geosciences(Beijing)] [18] 廖士范,梁同荣. 1991. 中国铝土矿地质学. 贵州贵阳: 贵州科技出版社. [Liao S F,Liang T R.1991. Geology of Bauxite in China. Guizhou Guiyang: Guizhou Science and Technology Press] [19] 刘平. 1987. 初论贵州之铝土矿. 贵州地质, 4(1): 1-12. [Liu P.1987. An initial discussion on gnizhou bauxites. Guizhou Geology, 4(1): 1-12] [20] 刘巽锋. 1988. 黔北铝土矿豆鲕粒结构的成因机理. 贵州地质, 5(4): 337-341,382. [Liu X F.1988. Genesis mechanism of bean-pebble texture of bauxitein northern Guizhou. Guizhou Geology, 5(4): 337-341,382] [21] 刘长龄,覃志安. 1999. 论中国岩溶铝土矿的成因与生物和有机质的成矿作用. 地质找矿论丛, 14(4): 24-28. [Liu C L,Qin Z A.1999. On origin of karst bauxite in China and bio-organic metallogenesis. Conributions to Geology and Mineral Resources Research, 14(4): 24-28] [22] 梅冥相. 2012. 鲕粒成因研究的新进展. 沉积学报, 30(1): 20-32. [Mei M X.2012. Brief introduction on new advances on the origin of ooids. Acta Sedimentologica Sinica, 30(1): 20-32] [23] 钱利军,王刚,欧莉华,胡旭. 2016. 广西平果、贵州清镇沉积型铝土矿结构特征与沉积环境对比. 科学技术与工程, 16(4): 135-140. [Qian L J,Wang G,Ou L H,Hu X.2016. Contrast of structure characteristics and sedimentary environment of sedimentary bauxite deposit in Pingguo Guangxi and Qingzhen Guizhou. Science Technology and Engineering, 16(4): 135-140] [24] 王洁,宋玉萍. 2010. 从巨鲕的概念窥视碳酸盐岩包覆颗粒的研究. 大庆石油地质与开发, 29(2): 40-43. [Wang J,Song Y P.2010. The research progress of coating grains in carbonate rock based on the definition change of large ooid. Petroleum Geology & Oilfield Development in Daqing, 29(2): 40-43] [25] 王庆飞,刘学飞,杨淑娟,张起钻,邓军. 2022. 喀斯特型铝土矿是如何形成的? 地球科学, 47(10): 3880-3881. [Wang Q F,Liu X F,Yang S J,Zhang Q Z,Deng J.2022. How did the karst bauxite form? Earth Science, 47(10): 3880-3881] [26] 汪小妹,焦养泉,杜远生,周琦,崔滔,计波,雷志远,翁申富,金中国,熊星. 2013. 黔北务正道地区铝土矿稀土元素地球化学特征. 地质科技情报, 32(1): 27-33. [Wang X M,Jiao Y Q,Du Y S,Zhou Q,Cui T,Ji B,Lei Z Y,Weng S F,Jin Z G,Xiong X.2013. Rare earth element geochemistry of bauxite in Wuchuan-Zheng’an-Daozhen area,northern Guizhou Province. Geological Science and Technology Information, 32(1): 27-33] [27] 邢延路,冯李强. 2015. 北京西山下苇甸剖面寒武系徐庄组鲕粒研究. 古地理学报, 17(4): 517-528. [Xing Y L,Feng L Q.2015. A study on ooids in limestones of the Cambrian xuzhuang formation at Xiaweidian outcrop in western hill of Beijing. Journal of Palaeogeography(Chinese Edition), 17(4): 517-528] [28] 许第发,钟天祥,徐冬梅,刘广深. 2002. 酸沉降对土壤地球化学过程的影响. 地质地球化学, 30(4): 68-74. [Xu D F,Zhong T X,Xu D M,Liu G S.2002. Effects of acid deposition on soil geochemical cycles. Geology-Geochemistry, 30(4): 68-74] [29] 杨延伟,卢欣祥,侯广顺,朱康钰,杨崇科,郭晓伟. 2018. 河南关庙—大坪地区铝土矿岩相学特征及成矿物源分析. 矿产与地质, 32(6): 978-986. [Yang Y W,Lu X X,Hou G S,Zhu K Y,Yang C K,Guo X W.2018. Petrographic characteristics and ore-forming material source analysis of bauxite in Guanmiao-Daping area,Henan Province. Mineral Resources and Geology, 32(6): 978-986] [30] 殷科华. 2009. 黔北务正道铝土矿的成矿作用及成矿模式. 沉积学报, 27(3): 452-457. [Yin K H.2009. Mineralization and metallogenic model for bauxite in the Wuchuan-Zheng’an-Daozhen area,northern Guizhou. Acta Sedimentologica Sinica, 27(3): 452-457] [31] 余文超,杜远生,周琦,金中国,汪小妹,覃永军. 2012. 黔北务川—正安—道真地区铝土矿系中生物标志物及其地质意义. 古地理学报,14(5): 651-662. [Yu W C,Du Y S,Zhou Q,Jin Z G,Wang X M,Qin Y J.2012. Biomarkers of bauxite-bearing strata and its geological significance in Wuchuan-Zheng’an-Daozhen area,northern Guizhou Province. Journal of Palaeogeography(Chinese Edition),14(5): 651-662] [32] 余文超,杜远生,周琦,金中国,汪小妹,覃永军,崔滔. 2014. 黔北务正道地区下二叠统铝土矿层物源研究: 来自碎屑锆石年代学的证据. 古地理学报, 16(1): 19-29. [Yu W C,Du Y S,Zhou Q,Jin Z G,Wang X M,Qin Y J,Cui T.2014. Provenance of bauxite beds of the Lower Permian in Wuchuan-Zheng’an-Daozhen area,northern Guizhou Province: evidence from detrital zircon chronology. Journal of Palaeogeography(Chinese Edition), 16(1): 19-29] [33] 余文超,杜远生,周锦涛,成龙,邓旭升,戴贤铎,庞大卫,翁申富,雷志远,李沛刚,陈群. 2023. 中国铝土矿成矿作用的物质来源与深时环境因素: 进展与讨论. 地质学报,97(9): 3056-3074. [Yu W C,Du Y S,Zhou J T,Cheng L,Deng X S,Dai X D,Pang D W,Weng S F,Lei Z Y,Li P G,Chen Q.2023. Provenance and deep-time environmental factors for bauxitization in China: Progress and discussion. Acta Geologica Sinica,97(9): 3056-3074] [34] 张亚男,张莹华,吴慧,丁晓英,凌文黎,雷志远,翁申富,马倩,杜远生. 2013. 黔北务正道地区铝土矿鲕状矿石中鲕粒的微区元素地球化学特征及其成矿意义. 地质科技情报, 32(1): 62-70. [Zhang Y N,Zhang Y H,Wu H,Ding X Y,Ling W L,Lei Z Y,Weng S F,Ma Q,Du Y S.2013. Microscopic geochemical characteristics of oolite in oolitic bauxite ores from Wuchuan-Zheng’an-Daozhen area in the northern Guizhou Province and their metallogenic significance. Geological Science and Technology Information, 32(1): 62-70] [35] 周瑶琪,张晗,张振凯. 2017. 海相碳酸盐鲕粒形成过程的模拟实验研究. 中国石油大学学报(自然科学版), 41(3): 23-30. [Zhou Y Q,Zhang H,Zhang Z K.2017. Experiment study of synthesis for marine carbonate ooids genesis. Journal of China University of Petroleum(Edition of Natural Science), 41(3): 23-30] [36] Astin T R,Scotchman I C.1988. The diagenetic history of some septarian concretions from the kimmeridge clay,England. Sedimentology, 35: 349-368. [37] Bárdossy G.1982. Karst Bauxites. Amsterdam: 4-6. [38] Barnett M J,Palumbo-Roe B,Deady E A,Gregory S P.2020. Comparison of three approaches for bioleaching of rare earth elements from bauxite. Minerals, 10(8): 649. [39] Beitler B,Parry W T,Chan M A.2005. Fingerprints of fluid flow: chemical diagenetic history of the Jurassic Navajo sandstone,southern Utah,U.S.A. Journal of Sedimentary Research, 75: 547-561. [40] Berner R A.1968. Rate of concretion growth. Geochimica et Cosmochimica Acta, 32: 477-483. [41] Bhattacharyya D P,Kakimoto P K.1982. Origin of ferriferous ooids: an SEM study of ironstone ooids and bauxite pisoids. Journal of Sedimentary Research, 52(3): 849-857. [42] Bojórquez-Quintal E,Escalante-Magaña C,Echevarría-Machado I,Martínez-Estévez M.2017. Aluminum,a friend or foe of higher plants in acid soils. Frontiers in Plant Science, 8: 1767. [43] Boodt M F,Hayes M H B,Herbillon A. 1990. Soil Colloids and Their Associations in Aggregates. New York: Plenum Press,245-305. [44] Brady N C,Weil R R.2008. The Nature and Properties of Soils. Upper Saddle River NJ: Pearson Press,117-119. [45] Brehm U,Krumbein W E,Palinska K A.2006. Biomicrospheres generate ooids in the laboratory. Geomicrobiology Journal, 23: 545-550. [46] D'Argenio B,Mindszenty A.1995. Bauxites and related paleokarst: tectonic and climatic event markers at regional unconformities. Eclogae Geologicae Helvetiae, 88(3): 453-499. [47] Davies P J,Bubela B,Ferguson J.1978. The formation of ooids. Sedimentology, 25: 703-730. [48] Diamond S.1970. Pore size distributions in clays. Clays and Clay Minerals, 18: 7-23. [49] Diaz M R,Eberli G P.2019. Decoding the mechanism of formation in marine ooids: A review. Earth-Science Reviews, 190: 536-556. [50] Diaz M R,Swart P K,Eberli G P,Oehlert A M,Devlin Q,Saeid A,Altabet M A.2015. Geochemical evidence of microbial activity within ooids. Sedimentology, 62: 2090-2112. [51] Duguid S M A,Kyser T K,James N P,Rankey E C.2010. Microbes and ooids. Journal of Sedimentary Research, 80: 236-251. [52] Fountaine E R.1954. Investigations into the mechanism of soil adhesion. Journal of Soil Science, 5(2): 251-263. [53] Hsu P H.1989. Aluminum hydroxides and oxyhydroxides. In: Dixon J B, Weed S B (eds). Minerals in Soil Environments. Soil Science Society of America, Madison, WI, 99-143. [54] Iversen N,Jørgensen B B.1993. Diffusion coefficients of sulfate and methane in marine sediments: influence of porosity. Geochimica et Cosmochimica Acta, 57(3): 571-578. [55] Khosravi M,Vérard C,Abedini A.2021. Palaeogeographic and geodynamic control on the Iranian Karst-type bauxite deposits. Ore Geology Reviews, 139: 104589. [56] Lei Z Y,Ling W L,Wu H,Zhang Y H,Zhang Y N.2023. Geochemistry and mineralization of the Permian bauxites with contrast bedrocks in northern Guizhou,South China. Journal of Earth Science, 34: 487-503. [57] Li F,Yan J X,Algeo T,Wu X.2013. Paleoceanographic conditions following the end-Permian mass extinction recorded by giant ooids(Moyang,South China). Global and Planetary Change, 105: 102-120. [58] Li F,Yan J X,Burne R V,Chen Z Q,Algeo T J,Zhang W,Tian L,Gan Y L,Liu K,Xie S C.2017. Paleo-seawater REE compositions and microbial signatures preserved in laminae of Lower Triassic ooids. Palaeogeography,Palaeoclimatology,Palaeoecology, 486: 96-107. [59] Li F,Webb G E,Algeo T J,Kershaw S,Lu C J,Oehlert A M,Gong Q L,Pourmand A,Tan X C.2019. Modern carbonate ooids preserve ambient aqueous REE signatures. Chemical Geology, 509: 163-177. [60] Li P G,Yu W C,Du Y S,Lai X L,Weng S F,Pang D W,Xiong G L,Lei Z Y,Zhao S,Yang S Q.2020. Influence of geomorphology and leaching on the formation of Permian bauxite in northern Guizhou Province,South China. Journal of Geochemical Exploration, 210: 106446. [61] Li Y H,Gregory S.1974. Diffusion of ions in sea water and in deep-sea sediments. Geochimica et Cosmochimica Acta, 38(5): 703-714. [62] Liu X F,Wang Q F,Zhang Q Z,Zhang Y,Li Y.2016. Genesis of REE minerals in the karstic bauxite in western Guangxi,China,and its constraints on the deposit formation conditions. Ore Geology Reviews, 75: 100-115. [63] Ling K Y,Zhu X Q,Tang H S,Li S X.2017. Importance of hydrogeological conditions during formation of the karstic bauxite deposits,Central Guizhou Province,Southwest China: a case study at Lindai deposit. Ore Geology Reviews, 82: 198-216. [64] Ma P J,Dong C M,Lin C Y.2022. Petrographic and geochemical characteristics of nodular carbonate-bearing fluorapatite in the lacustrine shale of the Shahejie Formation,Dongying Depression,Bohai Bay Basin. Sedimentary Geology, 439: 106218. [65] Mongelli G.2002. Growth of hematite and boehmite in concretions from ancient Karst bauxite: clue for past climate. Catena, 50(1): 43-51. [66] Mongelli G,Acquafredda P.1999. Ferruginous concretions in a Late Cretaceous Karst bauxite: composition and conditions of formation. Chemical Geology, 158: 315-320. [67] Mongelli G,Buccione R,Sinisi R.2015. Genesis of autochthonous and allochthonous Apulian Karst bauxites(southern Italy): climate constraints. Sedimentary Geology, 325: 168-176. [68] Mongelli G,Buccione R,Gueguen E,Langone A,Sinisi R.2016. Geochemistry of the Apulian allochthonous Karst bauxite,Southern Italy: distribution of critical elements and constraints on Late Cretaceous Peri-Tethyan palaeogeography. Ore Geology Reviews, 77: 246-259. [69] Montoroi J P.1994. Geochemical,behavior of aluminum in saline acid sulfate soils of lower Casamance(Senegal): agricultural consequences for the rehabilitation of rice cultur. Proceeding of 15th World Congress of Soil Science: 10-16. [70] Mozley P S,Davis J M.2005. Internal structure and mode of growth of Elongate calcite concretions: evidence for small-scale,microbially induced,chemical heterogeneity in groundwater. Geological Society of America Bulletin,117(11-12): 1400-1412. [71] Newell N D,Purdy E G,Imbrie J.1960. Bahamian Oölitic sand. The Journal of Geology, 68(5): 481-497. [72] Ng Kee Kwong K F,Huang P M.1978. Sorption of phosphate by hydrolytic reaction products of aluminium. Nature, 271: 336-338. [73] Parry W T.2011. Composition,nucleation,and growth of iron oxide concretions. Sedimentary Geology, 233: 53-68. [74] Price G D,Valdes P J,Sellwood B W.1997. Prediction of modern bauxite occurrence: Implications for climate reconstruction. Palaeogeography,Palaeoclimatology,Palaeoecology, 131: 1-13. [75] Richards P L,Kump L R.2003. Soil pore-water distributions and the temperature feedback of weathering in soils. Geochimica et Cosmochimica Acta, 67(20): 3803-3815. [76] Sefton-Nash E,Catling D.2008. Hematitic concretions at Meridiani Planum,Mars: their growth timescale and possible relationship with iron sulfates. Earth and Planetary Science Letters, 269: 366-376. [77] Shamshuddin J,Ismail H.1995. Reactions of ground magnesium limestone and gypsum in soils with variable-charge minerals. Soil Science Society of America Journal, 59(1): 106-112. [78] Simone L.1980. Ooids: a review. Earth-Science Reviews, 16: 319-355. [79] Smyth J R,McCormick T C. 1995. Crystallographic data for minerals. In: Ahrens T J(ed). Mineral Physics and Crystallography: A Handbook of Physical Constants. American Geophysical Union: 1-17. [80] Sorby H C.1879. The structure and origin of limestones. The Popular Science Review, 3(9): 134-137. [81] Streicher P E,Alexander M G.1995. A chloride conduction test for concrete. Cement and Concrete Research, 25: 1284-1294. [82] Swirydczuk K,Wilkinson B H,Smith G R.1979. The Pliocene Glenns Ferry oolite: lake-margin carbonate deposition in the southwestern Snake River plain. Journal of Sedimentary Research, 49(3): 995-1004. [83] Tang B,Fu Y,Yan S,Chen P W,Cao C,Guo C,Wu P,Long Z,Long K S,Wang T S,Liu Y,Yang Y.2022. The source,host minerals,and enrichment mechanism of lithium in the Xinmin bauxite deposit,northern Guizhou,China: constraints from lithium isotopes. Ore Geology Reviews, 141: 104653. [84] Tardy Y,Nahon D.1985. Geochemistry of laterites,stability of Al-goethite,Al-hematite,and Fe(super 3+)-kaolinite in bauxites and ferricretes;an approach to the mechanism of concretion formation. American Journal of Science, 285(10): 865-903. [85] Trower E J.2020. The Enigma of neoproterozoic giant ooids: fingerprints of extreme climate? Geophysical Research Letters,47. [86] Trower E J,Lamb M P,Fischer W W.2017. Experimental evidence that ooid size reflects a dynamic equilibrium between rapid precipitation and abrasion rates. Earth and Planetary Science Letters, 468: 112-118. [87] Valeton I.2009. Saprolite-Bauxite Facies of Ferralitic Duricrusts on Palaeosurfaces of Former Pangaea. Blackwell Publishing Ltd,153-188. [88] Wedepohl K H.1969. Handbook of Geochemistry(Vol.1). Berlin: Springer, 1-442. [89] Wilkinson M,Dampier M D.1990. The rate of growth of sandstone-hosted calcite concretions. Geochimica et Cosmochimica Acta, 54(12): 3391-3399. [90] Wilkinson B H,Owen R M,Carroll A R.1985. Submarine hydrothermal weathering,global eustasy,and carbonate polymorphism in Phanerozoic marine oolites. SEPM Journal of Sedimentary Research, 55(2): 171-183. [91] Xiao E Z,Riaz M,Zafar T,Latif K.2021. Cambrian marine radial cerebroid ooids: participatory products of microbial processes. Geological Journal, 56(9): 4627-4644. [92] Xiong G L,Yu W C,Du Y S,Weng S F,Pang D W,Deng X S,Zhou J T.2021. Provenance of Lower Carboniferous bauxite deposits in northern Guizhou,China: constraints from geochemistry and detrital zircon U-Pb ages. Journal of Earth Science, 32(1): 235-252. [93] Yu W C,Wang R H,Zhang Q L,Du Y S,Chen Y,Liang Y P.2014. Mineralogical and geochemical evolution of the Fusui bauxite deposit in Guangxi,South China: from the original Permian orebody to a Quarternary Salento-type deposit. Journal of Geochemical Exploration, 146: 75-88. [94] Yu W C,Algeo T J,Yan J X,Yang J H,Du Y S,Huang X,Weng S F.2019. Climatic and hydrologic controls on upper Paleozoic bauxite deposits in South China. Earth-science Reviews, 189: 159-176. [95] Zhao L H,Liu X F,Wang Q F,Ma X L,Liu L,Sun X F,Deng J.2023. Genetic mechanism of super-large karst bauxite in the northern North China Craton: constrained by diaspore in-situ compositional analysis and pyrite sulfur isotopic compositions. Chemical Geology, 622: 121388. [96] Zhou J T,Yu W C,Du Y S,Liu X,Wang Y H,Xiong G L,Zhao Z Y,Pang D W,Shen D X,Weng S F,Liu Z C,Chen D.2022. Provenance change and continental weathering of Late Permian bauxitic claystone in Guizhou Province,Southwest China. Journal of Geochemical Exploration, 236: 106962.