Genesis and palaeoenvironmental significance of siderite nodules in the Taiyuan Formation,Zibo area of Shandong Province,China
WANG Dongdong1,2, HU Hongchang1, MAO Qiang1, Lü Dawei1
1 College of Earth Science and Engineering,Shandong University of Science and Technology,Shandong Qingdao 266590,China; 2 School of Geography,Earth and Environment Sciences,University of Birmingham,Birmingham B15 2TT,UK
Abstract Siderite nodules are widely developed in the Late Paleozoic marine-continental transitional facies strata in North China. The siderite nodules formed in the syndepositional stage contain rich sedimentary paleoenvironmental information. This study focuses on the siderite nodule layer within the Taiyuan Formation in the Zibo area of eastern North China. By conducting petrological,sedimentological,and geochemical analyses,we explored the formation conditions,diagenetic stage,and paleoenvironmental context of the siderite nodules. The main conclusions are as follows: 1)The siderite nodules in Zibo area were formed in the syndepositional stage. The chemical composition and characteristics of siderite nodules can effectively reflect the palaeoenvironmental characteristics of the sedimentary period;2)Siderite nodules were formed in brackish water,weak reduction-reduction,weak alkaline-alkaline environment of marine-continental transitional facies;3)The siderite nodules were formed in the Early Permian Asselian-Sakmarian transition period(295.6±1.1~296.7±1.1 Ma),correlating with the terminal phase of the Early Permian’s discontinuous glacial P1;4)During their formation,the region experienced significant terrestrial weathering,with a generally warm and humid climate. The bottom seawater temperature of the epicontinental sea was between 9.3 ℃ and 19.6 ℃,with an average of 13 ℃.
Fund:Natural Science Foundation of Shandong Province(No. ZR2019MD021),China Postdoctoral Foundation Project(No.2019M652507)and the Open Project of Hebei Key Laboratory of Resource Survey
Corresponding Authors:
LÜ Dawei,born in 1980,professor,doctoral supervisor,is mainly engaged in the teaching and scientific research on coal geology and deeptime paleoclimate. E-mail: lvdawei95@163.com.
About author: WANG Dongdong,born in 1983,associate professor,doctoral supervisor,is mainly engaged in the teaching and scientific research on sedimentology and energy geology. E-mail: wdd02_1@163.com.
Cite this article:
WANG Dongdong,HU Hongchang,MAO Qiang et al. Genesis and palaeoenvironmental significance of siderite nodules in the Taiyuan Formation,Zibo area of Shandong Province,China[J]. JOPC, 2024, 26(5): 1185-1200.
WANG Dongdong,HU Hongchang,MAO Qiang et al. Genesis and palaeoenvironmental significance of siderite nodules in the Taiyuan Formation,Zibo area of Shandong Province,China[J]. JOPC, 2024, 26(5): 1185-1200.
[1] 尘福艳,杨创,谭富荣,孙娇鹏,丁文龙. 2019. 微量元素分析在判别沉积介质环境中的应用: 以冀中坳陷东北部石炭—二叠系为例. 中国煤炭地质, 31(6): 15-22. [Chen F Y,Yang C,Tan F R,Sun J P,Ding W L.2019. Application of trace element analysis in sedimentary media environment differentiation: a case study of permo-carboniferous in northeastern part of central Hebei depression. Coal Geology of China, 31(6): 15-22] [2] 陈波,朱茂炎. 2023. 氧同位素在古温度重建及水循环研究中的应用. 科学通报, 68(12): 1528-1543. [Chen B,Zhu M Y.2023. Oxygen isotope application in paleotemperature reconstruction and water cycle in the deep time. Chinese Science Bulletin, 68(12): 1528-1543] [3] 陈波,Joachimski Michael M,沈树忠,Lambert Lance L,赖旭龙,王向东,陈军,袁东勋. 2013. 二叠纪冰期和古气候历史: 来自牙形刺氧同位素的证据. 见:中国古生物学会第十一次全国会员代表大会暨第27届学术年会论文摘要集. 浙江: 107-108. [Chen B,Joachimski M M,Shen S Z,Lambert L L,Lai X L,Wang X D,Chen J,Yuan D X.2013. Permain glacial and paleoclimatic history: evidence from oxygen isotope of conodonts. In: Abstract Volume,The 11th National Congress of the Palaeontological Society of China(PSC)and The 27th Annual Conference of PSC. Zhejiang: 107-108] [4] 程成. 2018. 陕西镇安西口二叠系沉积序列演化及古气候、古环境和古地理响应. 合肥工业大学博士学位论文: 67-68. [Cheng C.2018. The evolution of Permian sedimentary sequences in Zhen’an,Shaanxi,China,and its response to the changes of Permian paleoclimate,paleoenvironment and paleogeography. Doctoral dissertation of Hefei University of Technology: 67-68] [5] 樊秋爽,夏国清,李高杰,伊海生. 2022. 古海洋氧化还原条件分析方法与研究进展. 沉积学报, 40(5): 1151-1171. [Fan Q S,Xia G Q,Li G J,Yi H S.2022. Analytical methods and research progress of redox conditions in the paleo-ocean. Acta Sedimentologica Sinica, 40(5): 1151-1171] [6] 国家经济贸易委员会. 2003. 碎屑岩成岩阶段划分标准: SY/T5477-2033. 北京:石油工业出版社, 1-4. [State Economic Trade Commission.2003. Diagenetic Stage Dvision of Clastic Rocks: SY/T5477-2033. Beijing: Petroleum Industry Press, 1-4] [7] 李金虎,张智慧,秦明,仇建军,司荣军. 2011. 新疆且日克其菱铁矿床稀土元素地球化学特征. 矿产与地质, 25(1): 69-73. [Li J H,Zhang Z H,Qin M,Qiu J J,Si R J.2011. Geochemical characteristics of rare earth elements in Qierikeqi siderite deposit of Xinjiang. Mineral Resources and Geology, 25(1): 69-73] [8] 雒昆利,王五一,姚改焕,端木合顺,米娟层,张红民. 2000. 韩城矿区石炭—二叠系煤的含硫量和硫的成因. 西安科技学院学报, 20(4): 289-292,298. [Luo K L,Wang W Y,Yao G H,Duanmu H S,Mi J C,Zhang H M.2000. Sulfur content of permo-carboniferous coal and its geneses in Hancheng Mine. Xi’an University of Science & Technology Journal, 20(4): 289-292,298 [9] 吕大炜. 2006. 济阳坳陷上古生界煤成气储层沉积及储盖组合特征. 山东科技大学硕士学位论文: 11-24. [Lü D W.2006. Reservoir deposit and association of reservoic rock and cup rock of Upper Paleozoic in Jiyang depression. Masteral dissertation of Shandong University of Science and Technology: 11-24] [10] 吕大炜,刘海燕,孟彦如,李建委,宗瑞芳,张燕,王绪冰. 2014. 华北板块晚古生代海侵事件沉积类型及分布. 中国煤炭, 40(8): 35-38. [Lü D W,Liu H Y,Meng Y R,Li J W,Zong R F,Zhang Y,Wang X B.2014. Sediment types and distribution of transgression events in Late Paleozoic Era in North China plate. China Coal, 40(8): 35-38] [11] 马醒华,邢历生,杨振宇,徐树金,张景鑫. 1993. 鄂尔多斯盆地晚古生代以来古地磁研究. 地球物理学报, 36(1): 68-79. [Ma X H,Xing L S,Yang Z Y,Xu S J,Zhang J X.1993. Paleomagnetic study since late Paleozoic in the Ordos Basin. Chinese Journal of Geophysics, 36(1): 68-79] [12] 毛玲玲,伊海生,季长军,夏国清. 2014. 柴达木盆地新生代湖相碳酸盐岩岩石学及碳氧同位素特征. 地质科技情报, 33(1): 41-48. [Mao L L,Yi H S,Ji C J,Xia G Q.2014. Petrography and carbon-oxygen isotope characteristics of the Cenozoic lacustrine carbonate rocks in Qaidam Basin. Geological Science and Technology Information, 33(1): 41-48] [13] 孟昊,任影,钟大康,高崇龙,高宙,王点,姜杨锦丰,李谨杰. 2016. 四川盆地东部寒武系龙王庙组地球化学特征及其古环境意义. 天然气地球科学, 27(7): 1299-1311. [Meng H,Ren Y,Zhong D K,Gao C L,Gao Z,Wang D,Jiang Y J F,Li J J.2016. Geochemical characteristic and its paleoenvironmental implication of Cambrian Longwangmiao Formaiton in eastern Sichuan Basin,China. Natural Gas Geoscience, 27(7): 1299-1311] [14] 邱明. 1984. 试论菱铁质结核的成因及其在地层对比中的应用. 矿物岩石, 4(1): 50-56. [Qiu M.1984. The origin of siderite concretions and their application in stratigraphic correlation. Journal of Mineralogy and Petrology, 4(1): 50-56] [15] 饶耕玮,刘晓东,刘平辉,戴朝成,黄光辉. 2020. 苏宏图白垩系黏土岩元素地球化学和黏土矿物特征及其古气候意义. 科学技术与工程, 20(25): 10160-10169. [Rao G W,Liu X D,Liu P H,Dai C C,Huang G H.2020. Elemental geochemistry and clay minerals of Cretaceous clay rocks in suhongtu and the paleoclimatic significance. Science Technology and Engineering, 20(25): 10160-10169] [16] 邵龙义. 1994. 碳酸盐岩氧、碳同位素与古温度等的关系. 中国矿业大学学报, 23(1): 39-45. [Shao L Y.1994. The radition of the oxygen and carbon isotope in the carbonate rocks to the paleotemperature etc. Journal of China University of Mining & Technology, 23(1): 39-45] [17] 邵龙义,窦建伟,张鹏飞. 1996. 西南地区晚二叠世氧、碳稳定同位素的古地理意义. 地球化学, 25(6): 575-581. [Shao L Y,Dou J W,Zhang P F.1996. Paleogeographic significances of carbon and oxygen isotopes in Late Permian rocks of southwest China. Geochimica, 25(6): 575-581] [18] 腾格尔,刘文汇,徐永昌,陈践发. 2004. 缺氧环境及地球化学判识标志的探讨: 以鄂尔多斯盆地为例. 沉积学报, 22(2): 365-372. [Tonger,Liu W H,Xu Y C,Chen J F.2004. The discussion on anoxic environments and its geochemical identifying indices. Acta Sedimentologica Sinica, 22(2): 365-372] [19] 汪宗欣. 2018. 元素地球化学对沉积环境的反映及其油气地质意义. 中国石油大学(北京)硕士学位论文: 43-45. [Wang Z X.2018. The response of elemental geochemistry to depositional environment and its petroleum geological significance. Masteral dissertation of China University of Petroleum(Beijing): 43-45] [20] 王宪峰,彭军,于乐丹,许天宇. 2020. 陆相地层古盐度地球化学研究方法综述. 四川地质学报, 40(2): 301-308. [Wang X F,Peng J,Yu L D,Xu T Y.2020. A review of the research methods of paleosalinity geochemistry in continental strata. Acta Geologica Sichuan, 40(2): 301-308] [21] 吴怀春,房强. 2020. 旋回地层学和天文时间带. 地层学杂志, 44(3): 227-238. [Wu H C,Fang Q.2020. Cyclostratigraphy and astrochronozones. Journal of Stratigraphy, 44(3): 227-238] [22] 吴怀春,张世红,冯庆来,方念乔,杨天水,李海燕. 2011. 旋回地层学理论基础、研究进展和展望. 地球科学, 36(3): 409-428. [Wu H C,Zhang S H,Feng Q L,Fang N Q,Yang T S,Li H Y.2011. Theoretical basis,research advancement and prospects of cyclostratigraphy. Earth Science, 36(3): 409-428] [23] 许琪. 1991. 用煤层中铁、钴、镍的含量计算成煤沼泽的古pH值和古Eh值. 沉积学报, 9(4): 78-86. [Xu Q.1991. Using iron,cobalt,and nickel contents in coal seam to calculate the palaeo-pH value and palaeo-eh value of coal-forming swamp. Acta Sedimentologica Sinica, 9(4): 78-86] [24] 徐小涛,邵龙义. 2018. 利用泥质岩化学蚀变指数分析物源区风化程度时的限制因素. 古地理学报, 20(3): 515-522. [Xu X T,Shao L Y.2018. Limiting factors in utilization of chemical index of alteration of mudstones to quantify the degree of weathering in provenance. Journal of Palaeogeography(Chinese Edition), 20(3): 515-522] [25] 严雅娟. 2015. 贵州早二叠世碳酸盐岩地层古岩溶特征及对晚古生代冰期的响应. 中国地质大学博士学位论文: 67-71. [Yan Y J.2015. Palaeokarst characteristics of early Permian carbonate rocks in Guizhou,South China: implications for the Late Paleozoic glaciation. Doctoral dissertation of China University of Geosciences: 67-71] [26] 杨江海,王圆,刘佳,马睿,杜远生,刘超,余文超. 2021. 南华北早二叠世泥岩沉积与深时陆地古温度重建. 沉积学报, 39(3): 540-549. [Yang J H,Wang Y,Liu J,Ma R,Du Y S,Liu C,Yu W C.2021. Early Permian mudrock deposits and deep-time land surface temperature reconstruction,southern North China. Acta Sedimentologica Sinica, 39(3): 540-549] [27] 杨雪琪,钟大康,任影,谢瑞,姜杨锦丰,蒲强,钟泞聪,唐自成. 2017. 重庆东部地区寒武系龙王庙组碳、氧同位素特征及其意义. 古地理学报, 19(5): 865-878. [Yang X Q,Zhong D K,Ren Y,Xie R,Jiang Y J F,Pu Q,Zhong N C,Tang Z C.2017. Characteristics and significance of carbon and oxygen isotopes of the Cambrian Longwangmiao Formation,eastern Chongqing. Journal of Palaeogeography(Chinese Edition), 19(5): 865-878] [28] 伊海生,林金辉,周恳恳,李军鹏. 2007. 青藏高原北部新生代湖相碳酸盐岩碳氧同位素特征及古环境意义. 古地理学报, 9(3): 303-312. [Yi H S,Lin J H,Zhou K K,Li J P.2007. Carbon and oxygen isotope characteristics and palaeoenvironmental implication of the Cenozoic lacustrine carbonate rocks in northern Qinghai-Tibetan Plateau. Journal of Palaeogeography(Chinese Edition), 9(3): 303-312] [29] 苑广尧,李凤杰. 2023. 柴达木盆地北缘古近系稀土元素地球化学特征及其地质意义. 天然气地球科学, 34(8): 1374-1384. [Yuan G Y,Li F J.2023. Geochemical characteristics and geological significance of Paleogene rare earth elements in the northern margin of Qaidam Basin. Natural Gas Geoscience, 34(8): 1374-1384] [30] 张彬,姚益民. 2013. 利用微量元素统计分析东营凹陷新生代沙四晚期湖泊古环境. 地层学杂志, 37(2): 186-192. [Zhang B,Yao Y M.2013. Trace element and palaeoenvironmental analyses of the Cenozoic lacustrine deposits in the upper Es4 submember of the Dongying Basin. Journal of Stratigraphy, 37(2): 186-192] [31] 张一杰. 2020. 黔西地区晚二叠世煤系高频层序格架内含菱铁矿岩层成岩演化. 中国矿业大学硕士学位论文: 61-64. [Zhang Y J.2020. Diagenetic evolution of siderite bearing strata in high frequency sequence of Late Permian coal measures in western Guizhou. Masteral dissertation of China University of Mining and Technology: 61-64] [32] 祝圣贤. 2019. 华北中部晚石炭—早二叠世古气候记录. 成都理工大学硕士学位论文: 41-43. [Zhu S X.2019. Paleoclimate records in permo-carboniferous of central North China. Masteral dissertation of Chengdu University of Technology: 41-43] [33] 庄军. 1988. 菱铁矿的鲕粒结构特征及形成环境. 煤田地质与勘探, 16(2): 7-10,72. [Zhuang J.1988. Characteristics of oolitic structure and formation environment of siderite. Coal Geology & Exploration, 16(2): 7-10,72] [34] Baumann L M F,Birgel D,Wagreich M,Peckmann J.2016. Microbially-driven formation of Cenozoic siderite and calcite concretions from eastern Austria. Austrian Journal of Earth Sciences, 109(2): 211-232. [35] Bojanowski M J,Clarkson E N K.2012. Origin of siderite concretions in microenvironments of methanogenesis developed in a sulfate reduction zone: an exception or a rule? Journal of Sedimentary Research, 82: 585-598. [36] Chen B,Joachimski M L,Shen S Z Lambert L L,Lai X L,Wang X D,Chen J,Yuan D X.2013. Permian ice volume and palaeoclimate history: Oxygen isotope proxies revisited. Gondwana Research, 24(1): 77-89. [37] Chen J T,Lee J H.2014. Current progress on the geological record of microbialites and microbial carbonates. Acta Geologica Sinica-English Edition, 88: 260-275. [38] Falahatkhah O,Kadkhodaie A,Ciabeghodsi A A,Wood D A.2021. Astronomical forcing variations of the Upper Dalan Member(Late Permian)in the South Pars gas field,Persian Gulf,Iran. Journal of Asian Earth Sciences, 209: 104689. [39] Fang Q,Wu H C,Wang X L,Yang T S,Li H Y,Zhang S H.2018. Astronomical cycles in the Serpukhovian-Moscovian(Carboniferous)marine sequence,South China and their implications for geochronology and icehouse dynamics. Journal of Asian Earth Sciences, 156: 302-315. [40] Given R K,Wilkinson B H.1985. Kinetic control of morphology,composition,and mineralogy of abiotic sedimentary carbonates. SEPM Journal of Sedimentary Research, 55: 109-119. [41] Hatch J R,Leventhal J S.1992. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian(Missourian)Stark Shale Member of the Dennis Limestone,Wabaunsee County,Kansas,U.S.A. Chemical Geology, 99: 65-82. [42] Husinec A,Read J F.2018. Cyclostratigraphic and δ13C record of the lower Cretaceous adriatic platform,Croatia: assessment of milankovitch-forcing. Sedimentary Geology, 373: 11-31. [43] Kaufman A,Knoll A.1995. Neoproterozoic variations in the C-isotopic composition of seawater: stratigraphic and biogeochemical implications. Precambrian Research, 73: 27-49. [44] Keith M L,Weber J N.1964. Carbon and oxygen isotopic composition of selected limestones and fossils. Geochimica et Cosmochimica Acta, 28(10-11): 1787-1816. [45] Kodama K P,Hinnov L A.2014. Rock Magnetic Cyclostratigraphy. New Jersey: Wiley, 52-89. [46] Laskar J,Fienga A,Gastineau M,Manche H.2011. La2010: A new orbital solution for the long-term motion of the Earth. Astronomy & Astrophysics, 532: A89. [47] Li D,Ling H F,Jiang S Y,Pan J Y,Chen Y Q,Cai Y F,Feng H Z.2009. New carbon isotope stratigraphy of the Ediacaran-Cambrian boundary interval from SW China: implications for global correlation. Geological Magazine, 146(4): 465-484. [48] Li H C,Ku T L.1997. δ13C-δ18C covariance as a paleohydrological indicator for closed-basin lakes. Palaeogeography,Palaeoclimatology,Palaeoecology, 133(1-2): 69-80. [49] Li M S,Kump L R,Hinnov L A,Mann M E.2018. Tracking variable sedimentation rates and astronomical forcing in Phanerozoic paleoclimate proxy series with evolutionary correlation coefficients and hypothesis testing. Earth and Planetary Science Letters, 501: 165-179. [50] Lü D W,Chen J T.2014. Depositional environments and sequence stratigraphy of the Late Carboniferous-Early Permian coal-bearing successions(Shandong Province,China): sequence development in an epicontinental basin. Journal of Asian Earth Sciences, 79: 16-30. [51] Lü D W,Wang L J,Isbell J L,Lu C Y,Li P P,Wang Y J,Zhang Z H.2022. Records of chemical weathering and volcanism linked to paleoclimate transition during the Late Paleozoic Icehouse. Global and Planetary Change, 217: 103934. [52] Nesbitt H W,Young G M.1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299: 715-717. [53] Panahi A,Young G M,Rainbird R H.2000. Behavior of major and trace elements(including REE)during Paleoproterozoic pedogenesis and diagenetic alteration of an Archean granite near Ville Marie,Québec,Canada. Geochimica et Cosmochimica Acta, 64: 2199-2220. [54] Passey R S.2014. The habit and origin of siderite spherules in the Eocene coal-bearing Prestfjall Formation,Faroe Islands. International Journal of Coal Geology, 122: 76-90. [55] Quan C,Liu Z H,Utescher T,Jin J H,Shu J W,Li Y X,Liu Y S.2014. Revisiting the Paleogene climate pattern of East Asia: a synthetic review. Earth-Science Reviews, 139: 213-230. [56] Shields G,Stille P.2001. Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies: an isotopic and REE study of Cambrian phosphorites. Chemical Geology, 175: 29-48. [57] Strasser A,Hilgen F J,Heckel P H.2006. Cyclostratigraphy-concepts,definitions,and applications. Newsletters on Stratigraphy, 42: 75-114. [58] Thomson D J.1982. Spectrum estimation and harmonic analysis. Proceedings of the IEEE, 70: 1055-1096. [59] Trzesiok D,Krzykawski T,NiédZwiedzki R,Brom K,Gorzelak P,Salamon M A.2014. Palaeoenvironment of the Upper Cretaceous(coniacian)concretion-bearing lagerstätten from Poland. Palaeogeography,Palaeoclimatology,Palaeoecology, 401: 154-165. [60] Wang D D,Mao Q,Liu K Y,Lyu D W,Liu H Y,Yin Y T,Hu H C.2023. Genetic mechanism of Carboniferous-Permian coal measures siderite nodules in an epicontinental sea basin: an example from the Zibo area in North China. Ore Geology Reviews, 154: 105254. [61] Wei H Y,Wei X M,Qiu Z,Song H Y,Shi G.2016. Redox conditions across the G-L boundary in South China: evidence from pyrite morphology and sulfur isotopic compositions. Chemical Geology, 440: 1-14. [62] Weibel R,Lindström S,Pedersen G K,Johansson L,Dybkjær K,Whitehouse M J,Boyce A J,Leng M J.2016. Groundwater table fluctuations recorded in zonation of microbial siderites from end-Triassic strata. Sedimentary Geology, 342: 47-65. [63] Yang J H,Cawood P A,Du Y S.2015. Voluminous silicic eruptions during Late Permian Emeishan igneous Province and link to climate cooling. Earth and Planetary Science Letters, 432: 166-175. [64] Yang J H,Cawood P A,Du Y S,Li W Q,Yan J X.2016. Reconstructing Early Permian tropical climates from chemical weathering indices. Geological Society of America Bulletin, 128(5-6): 739-751. [65] Zang W S,Wu G G,Zhang D,Li J W,Zhang X X,Liu A H,Zhang Z Y.2010. Genesis of the Xinqiao gold-sulfide orefield,Anhui Province,China. Acta Geologica Sinica-English Edition, 78(2): 548-556.