LI Pan1, XIAO Dongsheng2, SHI Xiaofei2, MA Qiang2, LIN Tong1, YANG Runze1
1 Research Institute of Petroleum Exploration and Development,PetroChina,Beijing 100083,China; 2 Research Institute of Petroleum Exploration and Development,Tuha Oilfield,PetroChina,Xinjiang Hami 839009,China
Abstract Megabed is a widely used term in the English literature,but has not been reported in official Chinese publications. Megabeds refer to giant event beds formed by sediment gravity flows. They can reach tens of meters to hundreds of meters in thickness and hundreds of cubic kilometers in volume,that is,approximately 1-2orders of magnitude larger than their surrounding normal deepwater intervals. Megabeds tend to be distinct from enclosing strata in terms of their thickness,grain size,composition,and commonly show multi-layer vertical structures that may record gravity flow transformation,differentiation and other deepwater transport and depositional processes. They are of great significance to geological events and basin analysis,provenance/paleogeography restoration,geohazard mitigation,and oil and gas exploration. In this paper,the conceptual connotation of megabed and related terms is firstly reviewed,and then the sedimentary characteristics of megabeds are analyzed and summarized,including their scale,composition,vertical structure and sequence. On this basis,the transport and depositional processes,as well as the initiation mechanisms of megabeds are discussed. Finally,existing problems and future research directions are discussed. The aim is to arouse extensive attention and in-depth research on megabeds across China.
Fund:National Natural Science Foundation of China(No.41802132),the PetroChina Innovation Fund(No.2020D-5008-03)and the Major National Science and Technology Project of China(No.2023ZZ0201)
About author: LI Pan,born in 1985,received his Ph.D. in 2017 from the University of Aberdeen,UK and is now working at the Research Institute of Petroleum Exploration and Development,PetroChina in Beijing. His main research interest lies in sequence stratigraphy and deep-water sedimentology. E-mail: lipanccc@126.com.
Cite this article:
LI Pan,XIAO Dongsheng,SHI Xiaofei et al. A review of megabeds[J]. JOPC, 2024, 26(5): 1271-1286.
LI Pan,XIAO Dongsheng,SHI Xiaofei et al. A review of megabeds[J]. JOPC, 2024, 26(5): 1271-1286.
[1] 杜远生,韩欣. 2000. 论震积作用和震积岩. 地球科学进展,15(4): 389-394. [Du Y S,Han X.2000. Seismo-deposition and seismites. Advance in Earth Sciences,15(4): 389-394] [2] 冯增昭. 2013. 中国沉积学(2版). 北京: 石油工业出版社. [Feng Z Z.2013. Sedimentology of China(2nd ed). Beijing: Petroleum Industry Press] [3] 高振中,段太忠. 1985. 湘西黔东寒武纪深水碳酸盐重力沉积. 沉积学报,3(3): 7-22, 135-136. [Gao Z Z,Duan T Z.1985. Gravity-displaced deposits of Cambrian deep-water carbonates in West Hunan and East Guizhou. Acta Sedimentologica Sinica,3(3): 7-22, 135-136] [4] 梁定益,聂泽同,万晓樵,陈国民. 1991. 试论震积岩及震积不整合: 以川西、滇西地区为例. 现代地质,5(2): 138-146. [Liang D Y,Nie Z T,Wan X Q,Chen G M.1991. On the seismite and seismodisconformity: take the w. Hunan and w. Yunnan regions as an example. Geoscience,5(2): 138-146] [5] 梁定益,聂泽同,宋志敏. 1994. 再论震积岩及震积不整合: 以川西、滇西地区为例. 地球科学,19(6): 845-850,893. [Liang D Y,Nie Z T,Song Z M.1994. A re-study on seismite and seismo-unconformity: taking western Sichuan and western Yunnan as an example. Earth Science,19(6): 845-850,893] [6] 刘宝珺,叶红专,蒲心纯. 1990. 黔东、湘西寒武纪碳酸盐重力流沉积. 石油与天然气地质,11(3): 235-246. [Liu B J,Ye H Z,Pu X C.1990. Cambrian carbonate gravity flow deposits in Guizhou and Hunan. Oil & Gas Geology,11(3): 235-246] [7] 牛新生,王成善. 2010. 异地碳酸盐岩块体与碳酸盐岩重力流沉积研究及展望. 古地理学报,12(1): 17-30. [Niu X S,Wang C S.2010. Problems and prospect in studies of allochthonous carbonate blocks and carbonate gravity flow deposits. Journal of Palaeogeography(Chinese Edition),12(1): 17-30] [8] 杨剑萍,查明,牟雪梅,王辉. 2006. 山东惠民凹陷古近系基山砂体地震作用成因新论. 沉积学报,24(4): 488-495. [Yang J P,Zha M,Mu X M,Wang H.2006. New demonstration of the seismic origin for Jishan sandbody of Paleogene in Huimin depression,Shandong Province. Acta Sedimentologica Sinica,24(4): 488-495] [9] Accordi G,Carbone F,Di Carlo M,Pignatti J.2014. Microfacies analysis of deep-water breccia clasts: a tool for interpreting shallow-vs. deep-ramp Paleogene sedimentation in Cephalonia and Zakynthos(Ionian Islands,Greece). Facies,60: 445-466. [10] Amy L A,Talling P J.2006. Anatomy of turbidites and linked debrites based on long distance(120×30 km)bed correlation,Marnoso Arenacea Formation,Northern Apennines,Italy. Sedimentology,53: 161-212. [11] Beck C.2009. Late Quaternary lacustrine paleo-seismic archives in north-western Alps: examples of earthquake-origin assessment of sedimentary disturbances. Earth Science Reviews,96: 327-344. [12] Beck C,Lépinay B M D,Schneider J L,Cremer M,Çaéatay N,Wendenbaum E,Boutareaud S,Ménot C,Schmidt S,Weber O,Eris K,Armijo R,Meyer B,Pondard N,Gutscher M A,Turon J L,Labeyrie L,Cortijo E,Gallet Y,Bouquerel H,Gorur N,Gervais A,Castera M H,Londeix L,Rességuier A,Jaouen A.2007. Late Quaternary co-seismic sedimentation in the Sea of Marmara’s deep basins. Sedimentary Geology,199(1-2): 65-89. [13] Bernoulli D,Bichsel M,Bolli H M,Haring M O,Hochuli P A,Kleboth P.1981. The Missaglia Megabed,a catastrophic deposit in the Upper Cretaceous Bergamo Flysch,northern Italy. Eclogae Geologicae Helvetiae,74: 421-442. [14] Bouma A H.1987. Megaturbidite: an acceptable term? Geo-Marine Letters,7: 63-67. [15] Bourget J,Zaragosi S,Rodriguez M,Fournier M,Garlan T,Chamot-Rooke N.2013. Late Quaternary megaturbidites of the Indus Fan: origin and stratigraphic significance. Marine Geology,336: 10-23. [16] Bourrouilh R.1987. Evolutionary mass flow-megaturbidites in an interplate basin: example of the North Pyrenean Basin. Geo-Marine Letters,7: 69-81. [17] Bozetti G,Cronin B T,Kneller B C,Jones M A.2018. Deep-water conglomeratic megabeds: analogues for event beds of the Brae Formation of the South Viking Graben,North Sea. AAPG Memoirs,115: 119-154. [18] Bugge T,Befring S,Belderson R H,Eidvin T,Jansen E,Kenyon N H,Holtedahl H,Sejrup H P.1987. A giant three-stage submarine slide off Norway. Geo-Marine Letters,7: 191-198. [19] Callot P,Sempere T,Odonne F,Robert E.2008. Giant submarine collapse of a carbonate platform at the Turonian-Coniacian transition: the Ayabacas Formation,southern Peru. Basin Research,20: 333-357. [20] Campos C,Beck C,Crouzet C,Demory F,Van Welden A,Eris K.2013. Deciphering hemipelagites from homogenites through anisotropy of magnetic susceptibility: paleoseismic implications(Sea of Marmara and Gulf of Corinth). Sedimentary Geology,292: 1-14. [21] Cattaneo A,Badhani S,Caradonna C,Bellucci M,Leroux E,Babonneau N,Garziglia S,Poort J,Akhmanov G G,Bayon G,Dennielou B,Jouet G,Migeon S,Rabineau M,Droz L,Clare M.2020. The Last Glacial Maximum Balearic Abyssal Plain Megabed revisited. In: Georgiopoulou A,Amy L A,Benetti S,Chaytor J D,Clare M A,Gamboa D,Haughton P D W,Moernaut J,Mountjoy J J(eds). Subaqueous Mass Movements and their Consequences: Advances in Process Understanding,Monitoring and Hazard Assessments. Geological Society of London,Special Publications,Vol. 500. DOI: 10.31223/osf.io/5ayn6. [22] Chiarella D,Longhitano S G,Tropeano M.2017. Types of mixing and heterogeneities in siliciclastic-carbonate sediments. Marine and Petroleum Geology,88: 617-627. [23] Chough S K,Sohn Y K.2010. Tectonic and sedimentary evolution of a Cretaceous continental arc-backarc system in the Korean peninsula: new view. Earth-Science Reviews,101: 225-249. [24] Cita M B,Aloisi G.2000. Deep-sea tsunami deposits triggered by the explosion of Santorini(3500 y BP),eastern Mediterranean. Sedimentary Geology,135(1): 181-203. [25] Cita M B,Beghi C,Camerlenghi A,Kastens K A,McCoy F W,Nosetto A,Parisi E,Scolari F,Tomadin L.1984. Turbidites and megaturbidites from The Herodotus Abyssal Plain(eastern Mediterranean)unrelated to seismic events. Marine Geology,55: 79-101. [26] Cita M B,Camerlenghi A,Rimoldi B.1996. Deep-sea tsunami deposits in the eastern Mediterranean: new evidence and depositional models. Sedimentary Geology, 104: 155-173. [27] Cook H E,Mcdanielp N,Mountjoye W,Pray L C.1972. Allochthonous carbonate debris flows at Devonian bank('reef')margins,Alberta,Canada. Bulletin of Canadian Petroleum Geology, 20: 439-497. [28] Crevello P D,Schlager W.1980. Carbonate debris sheets and turbidites,Exuma Sound,Bahamas. Journal of Sedimentary Research,50: 1121-1147. [29] Cronin B T.2018. Lithofabric classification and distribution of coarse-grained deep-water clastic depositional systems. In: Turner C C,Cronin B T(eds). Rift-Related Coarse-Grained Submarine Fan Reservoirs;the Brae Play,South Viking Graben,North Sea. AAPG Memoir 115: 39-96. [30] Cukur D,Um I K,Chun J H,Lee G S,Kong G S,Johnson S Y,Horozal S.2021. Deepwater debrites and linked megaturbidites in confined basins: an example from the Onnuri basin,East Sea of Korea. Journal of Sedimentary Research,91(1): 1-20. [31] Drzewiecki P A,Simó J A.2002. Depositional processes,triggering mechanisms and sediment composition of carbonate gravity flow deposits: examples from the Late Cretaceous of the south-central Pyrenees,Spain. Sedimentary Geology,146(1-2): 155-189. [32] Elmore R D,Pilkey O H,Cleary W J,Curran H A.1979. Black Shell turbidite,Hatteras Abyssal Plain,western Atlantic Ocean. Geological Society of America Bulletin,90(12): 1165-1176. [33] Fallgatter C,Kneller B,Paim P S G,Milana J P.2017. Transformation,partitioning and flow-deposit interactions during the run-out of megaflows. Sedimentology,64: 359-387. [34] Fanetti D,Anselmetti F S,Chapron E,Sturm M,Vezzoli L.2008. Megaturbidite deposits in the Holocene Basin fill of Lake Como(Southern Alps,Italy). Palaeogeography,Palaeoclimatology,Palaeoecology,259(2-3): 323-340. [35] Felix M,Peakall J.2006. Transformation of debris flows into turbidity currents: mechanisms inferred from laboratory experiments. Sedimentology,53: 107-123. [36] Fildes C T.2013. Megabeds: emplacement mechanics of large-volume event beds. Doctoral dissertation of University of Auckland: 1-256. [37] Fisher R V.1983. Flow transformations in sediment gravity flows. Geology,11: 273-274. [38] Gobo K,Mrinjek E,C'osović V.2020. Mass-transport deposits and the onset of wedge-top basin development: an example from the Dinaric Foreland Basin,Croatia. Journal of Sedimentary Research,90: 1527-1548. [39] Hampton M A.1972. The role of subaqueous debris flows in generating turbidity currents. Journal of Sedimentary Petrology,42: 775-793. [40] Haughton P D W.2000. Evolving turbidite systems on a deforming basin floor,Tabernas,SE Spain. Sedimentology,47: 497-518. [41] Haughton P,Davis C,McCaffrey W,Barker S.2009. Hybrid sediment gravity flow deposits: classification,origin and significance. Marine and Petroleum Geology,26(10): 1900-1918. [42] Heezen B C,Ewing W M.1952. Turbidity currents,submarine slumps,and the 1929 Grand Banks[Newfoundland]earthquake. American Journal of Science,250: 849-873. [43] Hieke W,Werner F.2000. The Augias megaturbidite in the central Ionian Sea(central Mediterranean)and its relation to the Holocene Santorini event. Sedimentary Geology,35(1-4): 205-218. [44] Hiscott R N,James N P.1985 Carbonate debris flows,Cow Head Group,western Newfoundland. Journal of Sedimentary Research,55(5): 735-745. [45] Johns D R,Mutti E,Rosell J,Séguret M.1981. Origin of thick,redeposited carbonate bed in Eocene turbidites of the Hecho Group,south-central Pyrenees,Spain. Geology,9: 161-164. [46] Kastens K A,Cita M B.1981. Tsunami-induced sediment transport in the abyssal Mediterranean Sea. Geological Society of America Bulletin,92: 845-857. [47] Kleverlann K.1987. Gordo megabed: a possible seismite in a Tortonian submarine fan,Tabernas Basin,Province Almeria,southeast Spain. Sedimentary Geology,51: 165-180. [48] Kneller B,Milana J P,Buckee C,al Ja’aidi O.2004. A depositional record of deglaciation in a paleofjord(Late Carboniferous[Pennsylvanian]of San Juan Province,Argentina): the role of catastrophic sedimentation. Geological Society of America Bulletin,116: 348-367. [49] Kvale E P,Bowie C M,Flenthrope C,Mace C,Parrish J M,Price B,Anderson S,DiMichele W A.2020. Facies variability within a mixed carbonate-siliciclastic sea-floor fan(upper Wolfcamp Formation,Permian,Delaware Basin,New Mexico). AAPG Bulletin,104(3): 525-563. [50] Labaume P,Mutti E,Seguret M.1987. Megaturbidites: a depositional model from the Eocene of the SW-Pyrenean Foreland basin,Spain. Geo-Marine Letters,7: 91-101. [51] Lebreiro S M,McCave I N,Weaver P P E.1997. Late Quaternary turbidite emplacement on the Horseshoe abyssal plain(Iberian margin). Journal of Sedimentary Research,67: 856-870. [52] Leigh S,Hartley A J.1992. Mega-debris flow deposits from the Oligo-Miocene Pindos foreland basin,western mainland Greece: implications for transport mechanisms in ancient deep marine basins. Sedimentology,39: 1003-1012. [53] Leithold E L,Wegmann K W,Bohnenstiehl D R,Joyner C N,Pollen A F.2019. Repeated megaturbidite deposition in Lake crescent,Washington,USA,triggered by Holocene ruptures of the Lake Creek-Boundary Creek fault system. Geological Society of America Bulletin,131: 2039-2055. [54] Li P,Kneller B,Buso V V.2024. Carbonate-rich megabeds within a Triassic siliciclastic deep-water system,West Qinling orogenic belt,Central China: character,processes and implications. The Depositional Record, 00: 1-28. [55] Marjanac T.1996. Deposition of megabeds(megaturbidites)and sea-level change in a proximal part of the Eocene-Miocene flysch of central Dalmatia(Croatia). Geology,24: 543-546. [56] Mohrig D,Marr J G.2003. Constraining the efficiency of turbidity current generation from submarine debris flows and slides using laboratory experiments. Marine and Petroleum Geology,20: 883-899. [57] Mulder T,Zaragosi S,Razin P,Grelaud C,Lanfumey V,Bavoil F.2009. A new conceptual model for the deposition process of homogenite: application to a cretaceous megaturbidite of the western Pyrenees(Basque region,SW France). Sedimentary Geology,222(3-4): 263-273. [58] Mutti E,Ricci Lucchi F,Seguret M,Zanzucchi G.1984. Seismoturbidites: a new group of resedimented deposits. Marine Geology,55: 103-116. [59] Ogata K,Pogačnik Ž,Pini G A,Tunis G,Festa A,Camerlenghi A,Rebesco M.2014. The carbonate mass transport deposits of the Paleogene Friuli Basin(Italy/Slovenia): internal anatomy and inferred genetic processes. Marine Geology,356: 88-110. [60] Pauley J C.1995. Sandstone megabeds from the Tertiary of the North Sea. Geological Society,London,Special Publications,94: 103-114. [61] Payros A,Pujalte V.2008. Calciclastic submarine fans: an integrated overview. Earth-Science Reviews,86: 203-246. [62] Payros A,Pujalte V,Orue-Etxebarria X.1999. The South Pyrenean Eocene carbonate megabreccias revisited: new interpretation based on evidence from the Pamplona Basin. Sedimentary Geology,125(3-4): 165-194. [63] Petrinjak K,Budić C,Bergant S,Korbar T.2021. Megabeds in Istrian Flysch as markers of synsedimentary tectonics within the Dinaric foredeep(Croatia). Geologia Croatica,74(2): 99-120. [64] Piper D J W,Aksu A E.1987. The source and origin of the 1929 grand banks turbidity current inferred from sediment budgets. Geo-Marine Letters,7: 177-182. [65] Polonia A,Vaiani S C,de Lange G T.2016. Did the A.D. 365 Crete earthquake/tsunami trigger synchronous giant turbidity currents in the Mediterranean Sea? Geology,44(3): 191-194. [66] Praet N,Van Daele M,Moernaut J,Mestdagh T,Vandorpe T,Jensen B J L,Witter R C,Haeussler P J,De Batist M.2022. Unravelling a 2300 year long sedimentary record of megathrust and intraslab earthquakes in proglacial Skilak Lake,south-Central Alaska. Sedimentology,69: 2151-2180. [67] Reeder M S,Rothwell R G,Stow D A V.2000. Influence of sea level and basin physiography on emplacement of the late Pleistocene Herodotus Basin Megaturbidite,SE Mediterranean Sea. Marine and Petroleum Geology,17: 199-218. [68] Reijmer J J G,Palmieri P,Groen R,Floquet M.2015. Calciturbidites and calcidebrites: sea-level variations or tectonic processes? Sedimentary Geology,317: 53-70. [69] Ricci Lucchi F,Valmori E.1980. Basin-wide turbidites in a Miocene,over-supplied deep-sea plain: a geometrical analysis. Sedimentology,27: 241-270. [70] Rothwell R G,Thomson J,Kähler G.1998. Low sea-level emplacement of a very large late Pleistocene megaturbidite in the western Mediterranean Sea. Nature,392: 377-380. [71] Rothwell R G,Reeder M S,Anastasakis G,Stow D A V,Thomson J,Kahler G.2000. Low sea-level stand emplacement of megaturbidite in the western and eastern Mediterranean Sea. Sedimentary Geology,135: 75-88. [72] Rupke N A.1976. Sedimentology of very thick calcarenite-marlstone beds in a flysch succession,southwestern Pyrenees. Sedimentology,23: 43-65. [73] Rubert Y,Jati M,Loisy C,Cerepi A,Foto G,Muska K.2012. Sedimentology of resedimented carbonates: facies and geometrical characterisation of an upper Cretaceous calciturbidite system in Albania. Sedimentary Geology,257-260: 63-77. [74] Saller A H,Barton J W,Barton R E.1989. Slope sedimentation associated with a vertically building shelf,Bone Spring Formation,Mescalero Escarpe field,southeastern New Mexico. In: Crevello P D,Wilson J J,Sarg J F,Read J F(eds). Controls on Carbonate Platform and Basin Development,275-288. Tulsa,OK: Society of Economic Paleontologists and Mineralogists. [75] Sánchez Gómez S T,Ormö J,Alwmark C,Holm-Alwmark S,Zachén G,Lilljequist R,Sánchez Garrido J A.2023. A possible 5 km wide impact structure with associated 22 km wide exterior collapse terrain in the Alhabia-Tabernas Basin,southeastern Spain. Meteoritics & Planetary Science,58: 1512-1539. [76] San Pedro L,Babonneau N,Gutscher M A,Cattaneo A.2017. Origin and chronology of the Augias deposit in the Ionian Sea(Central Mediterranean Sea),based on new regional sedimentological data. Marine Geology,384: 199-213. [77] Sanders D,Gruber A.2023. Vestige of a subaerial rock avalanche deposit in an upper Cretaceous synorogenic wedge-top succession(Gosau Group,Eastern Alps). Sedimentary Geology,451: 106378. [78] Sawyer D E,Urgeles R,Iacono C L.2023.50000 yr of recurrent volcaniclastic megabed deposition in the Marsili Basin,Tyrrhenian Sea. Geology,51: 1001-1006. [79] Schnellmann M,Anselmetti F S,Giardini D,McKenzie J A.2006.15000 years of mass-movement history in Lake Lucerne: implications for seismic and tsunami hazards. Eclogae Geologicae Helvetiae,99(3): 409-428. [80] Seguret M,Labaume P,Madariaga R.1984. Eocene seismicity in the Pyrenees from megaturbidites of the South Pyrenean Basin(Spain). Marine Geology,55(1-2): 117-131. [81] Shanmugam G.2000.50 years of the turbidite paradigm(1950s—1990s): deep-water processes and facies models: a critical perspective. Marine and Petroleum Geology,17(2): 285-342. [82] Sohn Y K,Choe M Y,Jo H R.2002. Transition from debris flow to hyperconcentrated flow in a submarine channel(the Cretaceous Cerro Toro formation,southern Chile). Terra Nova,14(5): 405-415. [83] Souquet P,Eschard R,Lods H.1987. Facies sequences in large-volume debris and turbidity flow deposits from the Pyrenees(Cretaceous;France,Spain). Geo-Marine Letters,7: 83-90. [84] Spence G H,Tucker M E.1997. Genesis of limestone megabreccias and their significance in carbonate sequence stratigraphic models: a review. Sedimentary Geology,112(3-4): 163-193. [85] Stanley D J.1981. Unifites: structureless muds of gravity-flow origin in Mediterranean basins. Geo-Marine Letters,1: 77-83. [86] Stow D A V,Smillie Z.2020. Distinguishing between deep-water sediment facies: turbidites,contourites and hemipelagites. Geosciences,10(2): 68. [87] Strachan L J.2008. Flow transformations in slumps: a case study from the Waitemata Basin,New Zealand. Sedimentology,55: 1311-1332. [88] Talling P J.2013. Hybrid submarine flows comprising turbidity current and cohesive debris flow: deposits,theoretical and experimental analyses,and generalized models. Geosphere,9: 460-488. [89] Tinterri R,Mazza T,Magalhaes P M.2022. Contained-reflected megaturbidites of the marnoso-arenacea formation(contessa key bed)and helminthoid flysches(northern Apennines,Italy)and hecho group(south-western Pyrenees). Frontiers in Earth Science,10: 817012. [90] Tripsanas E K,Bryant W R,Phaneuf B A.2004. Depositional processes of uniform mud deposits(unifites),Hedberg Basin,northwest Gulf of Mexico: new perspectives. AAPG Bulletin,88(6): 825-840. [91] Tunis G,Venturini S.1992. Evolution of the Southern Margin of the Julian Basin with emphasis on the megabeds and turbidites sequence of the Southern Julian Alps(NE Italy). Geologia,Croatica, 45: 127-150. [92] Van Daele M,Meyer I,Moernaut J,De Decker S,Verschuren D,De Batist M.2017. A revised classification and terminology for stacked and amalgamated turbidites in environments dominated by(hemi)pelagic sedimentation. Sedimentary Geology,357: 72-82. [93] Vermassen F,Van Daele M,Praet N,Cnudde V,Kissel C,Anselmetti F S.2023. Unravelling megaturbidite deposition: evidence for turbidite stacking/amalgamation and seiche influence during the 1601 ce earthquake at Lake Lucerne,Switzerland. Sedimentology,70: 1496-1520. [94] Wetzel A,Unverricht D.2013. A muddy megaturbidite in the deep central South China Sea deposited~350 yrs BP. Marine Geology,346(1): 91-100. [95] Zuffa G G,Normark W R,Serra F,Brunner C A.2000. Turbidite megabeds in an oceanic rift valley recording jökulhlaups of Late Pleistocene glacial lakes of the western United States. The Journal of Geology,108(3): 253-274.