Depositional architecture and formative mechanism of dendritic bars within river-dominated shallow-water delta front
XU Zhenhua1,2, DENG Hang3, WU Shenghe1,2, YUE Dali1,2, LIU Yuming1,2, LI Qing1,2
1 National Key Laboratory of Petroleum Resources and Engineering,China University of Petroleum(Beijing),Beijing 102249, China; 2 College of Geosciences,China University of Petroleum(Beijing),Beijing 102249, China; 3 Petroleum Exploration and Production Research Institute,Sinopec, Beijing 102206, China
Abstract River-dominated shallow-water delta front sands can be categorized into distributary-bar and bar-finger types based on combination relationships between distributary channel and mouth bar. Scholars paid more attention to delta front sands of lobate distributary-bar type and bird-foot bar-finger type. However,the dendritic sand bars that composed of multiple bar fingers has been largely overlooked,and its depositional architecture and formative mechanism are still unclear. This paper focuses on the Rimaozhou deposits in Poyang Lake to explore the depositional architecture and formative mechanisms of the dendritic bars in river-dominated shallow-water deltas,utilizing satellite imagery,Ground Penetrating Radar(GPR)profiles,shallow core sampling,and sedimentary numerical simulations. The findings indicate that dendritic bars consist of a complex network of bifurcating and confluent bar fingers. Distributary channels incise mouth bars,as like walking on the bar. Distributary bays nestle among these bar fingers. According to width,distributary channels within dendritic bars can be divided into chief branches and side branches,where the formers are wide,cover a small number,and distributed at central sand bars;instead,the latter are narrow,cover a large number,and distributed at sides and terminal of sand bars. The development of dendritic bars is driven by the supply of fine-grained,cohesive sediments and high discharge levels. Fine-grained and cohesive sediments contribute to the growth of stable levees and the formation of bar fingers,while high discharge encourages the bifurcation and avulsion of distributary channels,facilitating the formation of dendritic bar fingers. Dendritic bars in river-dominated shallow-water delta reservoirs exhibit low lateral connectivity. The most promising reservoir locations are typically found at the central mouth bar,characterized by distributary channel sands and proximal mouth bar sands.
Fund:Co-funded by the Young Scientists Fund of the National Natural Science Fund:Foundation of China(No.42202178)and Science Foundation of China University of Petroleum(Beijing)(No.2462023YJRC034)
About author: About the first author XU Zhenhua,born in 1992,is a lecture in China University of Petroleum(Beijing). He is mainly engaged in sedimentology,reservoir characterization and modeling research. E-mail: xuzhenhua@cup.edu.cn.
Cite this article:
XU Zhenhua,DENG Hang,WU Shenghe et al. Depositional architecture and formative mechanism of dendritic bars within river-dominated shallow-water delta front[J]. JOPC, 2024, 26(6): 1338-1351.
XU Zhenhua,DENG Hang,WU Shenghe et al. Depositional architecture and formative mechanism of dendritic bars within river-dominated shallow-water delta front[J]. JOPC, 2024, 26(6): 1338-1351.
[1] 段冬平,侯加根,刘钰铭,王成刚,高建. 2014. 河控三角洲前缘沉积体系定量研究: 以鄱阳湖三角洲为例. 沉积学报,32(2): 270-277. [Duan D P,Hou J G,Liu Y M,Wang C G,Gao J.2014. Quantitative research of fluvial-dominated delta front sedimentary system: a case study of Poyang Lake delta. Acta Sedimentologica Sinica,32(2): 270-277] [2] 冯文杰,吴胜和,张可,赵文凯,贾风娟. 2017. 曲流河浅水三角洲沉积过程与沉积模式探讨: 沉积过程数值模拟与现代沉积分析的启示. 地质学报,91(9): 2047-2064. [Feng W J,Wu S H,Zhang K,Zhao W K,Jia F J.2017. Depositional process and sedimentary model of meandering-river shallow delta: insights from numerical simulation and modern deposition. Acta Geologica Sinica,91(9): 2047-2064] [3] 高志勇,周川闽,董文彤,白斌,李雯. 2016. 浅水三角洲动态生长过程模型与有利砂体分布: 以鄱阳湖赣江三角洲为例. 现代地质,30(2): 341-352. [Gao Z Y,Zhou C M,Dong W T,Bai B,Li W.2016. Sedimentary processes,depositional model and sandbody prediction of lacustrine shallow water delta: a case study of Ganjiang River Delta in Poyang Lake. Geoscience,30(2): 341-352] [4] 胡勇,黄凯,徐振华,赵军寿,吴峻川. 2019. 渤海BZ油田鸟足状浅水三角洲指状砂坝储层剩余油分布特征. 地质科技情报,38(2): 189-198. [Hu Y,Huang K,Xu Z H,Zhao J S,Wu J C.2019. Distribution character of remaining oil with finger bar of bird-foot shoal water delta reservoir in BZ Oilfield,Bohai Bay Basin. Geological Science and Technology Information,38(2): 189-198] [5] 金振奎,李燕,高白水,宋宝全,何宇航,石良,李桂仔. 2014. 现代缓坡三角洲沉积模式: 以鄱阳湖赣江三角洲为例. 沉积学报,32(4): 710-723. [Jin Z K,Li Y,Gao B S,Song B Q,He Y H,Shi L,Li G Z.2014. Depositional model of modern gentle-slope delta: a case study from Ganjiang Delta in Poyang Lake. Acta Sedimentologica Sinica,32(4): 710-723] [6] 刘宗堡,李雪,郑荣华,刘化清,杨占龙,曹松. 2022. 浅水三角洲前缘亚相储层沉积特征及沉积模式: 以大庆长垣萨北油田北二区萨葡高油层为例. 岩性油气藏,34(1): 1-13. [Liu Z B,Li X,Zheng R H,Liu H Q,Yang Z L,Cao S.2022. Sedimentary characteristics and models of shallow water delta front subfacies reservoirs: a case study of Sapugao oil layer in north-II block of Sabei oilfield,Daqing placanticline. Lithologic Reservoirs,34(1): 1-13] [7] 闵骞,占腊生. 2012.1952—2011年鄱阳湖枯水变化分析. 湖泊科学,24(5): 675-678. [Min Q,Zhan L S.2012. Characteristics of low-water level changes in Lake Poyang during 1952-2011. Journal of Lake Sciences,24(5): 675-678] [8] 孙雨,马世忠,姜洪福,刘云燕,丛林,刘宗堡. 2010. 松辽盆地三肇凹陷葡萄花油层河控浅水三角洲沉积模式. 地质学报,84(10): 1502-1509. [Sun Y,Ma S Z,Jiang H F,Liu Y Y,Cong L,Liu Z B.2010. Sedimentary mode of shallow lacustrine fluvial-dominated delta of Putaohua Reservoirs in the Sanzhao Depression,Songliao Basin. Acta Geologica Sinica,84(10): 1502-1509] [9] 谭其骧,张修桂. 1982. 鄱阳湖演变的历史过程. 复旦学报(社会科学版),(2): 42-51. [Tan Q X,Zhang X G.1982. The historical process of the evolution of Poyang Lake. Fudan Journal of the Humanities and Social Sciences, (2): 42-51] [10] 吴胜和,徐振华,刘钊. 2019. 河控浅水三角洲沉积构型. 古地理学报,21(2): 202-215. [Wu S H,Xu Z H,Liu Z.2019. Depositional architecture of fluvial-dominated shoal water delta. Journal of Palaeogeography(Chinese Edition),21(2): 202-215] [11] 徐德龙,熊明,张晶. 2001. 鄱阳湖水文特性分析. 人民长江,32(2): 21-22, 27-48. [Xu D L,Xiong M,Zhang J.2001. Analysis on hydrologic characteristics of Poyang Lake. Yangtze River,32(2): 21-22, 27-48] [12] 于兴河,李胜利,李顺利. 2013. 三角洲沉积的结构: 成因分类与编图方法. 沉积学报,31(5): 782-797. [Yu X H,Li S L,Li S L.2013. Texture-genetic classifications and mapping methods for deltaic deposits. Acta Sedimentologica Sinica,31(5): 782-797] [13] 曾洪流,赵贤正,朱筱敏,金凤鸣,董艳蕾,王余泉,朱茂,郑荣华. 2015. 隐性前积浅水曲流河三角洲地震沉积学特征: 以渤海湾盆地冀中坳陷饶阳凹陷肃宁地区为例. 石油勘探与开发,42(5): 566-576. [Zeng H L,Zhao X Z,Zhu X M,Jin F M,Dong Y L,Wang Y Q,Zhu M,Zheng R H.2015. Seismic sedimentology characteristics of sub-clinoformal shallow-water meandering river delta: a case from the Suning area of Raoyang sag in Jizhong depression,Bohai Bay Basin,NE China. Petroleum Exploration and Development,42(5): 566-576] [14] 张天佑. 2019. 华庆油田元284区块延长组长6油组沉积构型研究. 中国石油大学(北京)硕士学位论文: 1-50. [Zhang T Y.2019. Depositional architecture research on Chang 6 oil formation in Yuan 284 Block,HuaQing Oilfield. Masteral dissertation of China University of Petroleum(Beijing): 1-50] [15] 赵汉卿,李超,郭诚,岳红林,张正龙. 2024. 河控型浅水三角洲前缘河道砂体结构特征: 以渤海湾盆地黄河口凹陷BZ34油区明下段Ⅱ油组为例. 海洋地质前沿,40(2): 20-27. [Zhao H Q,Li C,Guo C,Yue H L,Zhang Z L.2024. Geomorphology of channel sandbodies in fluvially dominated shallow water delta front: taking the Lower Member of the Minghuazhen Formation in BZ34 Oilfield of the Huanghekou Sag,Bohai Bay Basin as an example. Marine Geology Frontiers,40(2): 20-27] [16] 周淋,吕传炳,纪友亮,林铁林,冉爱华,卢轶伦,刘天意,谢琳璘,魏伟. 2019. 远源浅水辫状河三角洲前缘储层构型模式研究: 以冀中坳陷饶阳凹陷留西油田L18断块为例. 古地理学报,21(6): 959-970. [Zhou L,Lü C B,Ji Y L,Lin T L,Ran A H,Lu Y L,Liu T Y,Xie L L,Wei W.2019. Reservoir architecture pattern analysis of distal shallow water braided delta front: A case study of L18 fault block,Liuxi Oilfield,Raoyang sag,Jizhong Depression. Journal of Palaeogeography(Chinese Edition),21(6): 959-970] [17] 朱筱敏,刘媛,方庆,李洋,刘云燕,王瑞,宋静,刘诗奇,曹海涛,刘相男. 2012. 大型坳陷湖盆浅水三角洲形成条件和沉积模式: 以松辽盆地三肇凹陷扶余油层为例. 地学前缘,19(1): 89-99. [Zhu X M,Liu Y,Fang Q,Li Y,Liu Y Y,Wang R,Song J,Liu S Q,Cao H T,Liu X N.2012. Formation and sedimentary model of shallow delta in large-scale lake: example from Cretaceous Quantou Formation in Sanzhao Sag,Songliao Babin. Earth Science Frontiers,19(1): 89-99] [18] 邹才能,赵文智,张兴阳,罗平,王岚,刘柳红,薛叔浩,袁选俊,朱如凯,陶士振. 2008. 大型敞流坳陷湖盆浅水三角洲与湖盆中心砂体的形成与分布. 地质学报,82(6): 813-825. [Zou C N,Zhao W Z,Zhang X Y,Luo P,Wang L,Liu L H,Xue S H,Yuan X J,Zhu R K,Tao S Z.2008. Formation and distribution of shallow-water deltas and central-basin sandbodies in large open depression lake basins. Acta Geologica Sinica,82(6): 813-825] [19] Baar A W,Albernaz M B,Van Dijk W M.2019. Critical dependence of morphodynamic models of fluvial and tidal systems on empirical downslope sediment transport. Nature Communication,10(1): 1-12. [20] Bagnold R A.1966. An approach to the sediment transport problem from general physics. USGS professional paper,Washington DC U.S. Government Printing Office,422-I. [21] Burpee A P,Slingerland R L,Edmonds D A,Parsons D,Best J,Cederberg J,Mcguffin A,Caldwell R,Nijhuis A,Royce J.2015. Grain-size controls on the morphology and internal geometry of river-dominated deltas. Journal of Sedimentary Research,85(6): 699-714. [22] Caldwell R L,Edmonds D A.2014. The effects of sediment properties on deltaic processes and morphologies: a numerical modeling study. Journal of Geophysical Research-Earth Surface,119(5): 961-982. [23] Donaldson A C.1974. Pennsylvanian sedimentation of Central Appalachians. Geological Society of America Special Papers,148(Special Paper): 47-48. [24] Dumars A J.2002. Distributary mouth bar formation and channel bifurcation in the Wax Lake Delta, Atchafalaya Bay,Louisiana. Louisiana: Louisiana State University-Baton Rouge,10-50. [25] Edmonds D A,Slingerland R L.2010. Significant effect of sediment cohesion on delta morphology. Nature Geoscience,3(2): 105-109. [26] Fisk H N.1955. Sand facies of recent Mississippi Delta deposits: 4th World Petroleum Congr.(Rome)Proc.,Sec. lc,377-398. [27] Galloway W E.1975. Process Framework for Describing the Morphologic and Stratigraphic Evolution of Deltaic Depositional Systems. In Deltas: Models for Exploration.Houston. US,Texas: Houston Geological Society,87-98. [28] Ikeda S.1982. Lateral bed load transport on side slopes. Journal of the Hydraulics Division,108(11): 1369-1373. [29] Marciano R,Wang Z B,Hibma A,de Vriend H J,Defina A.2005. Modeling of channel patterns in short tidal basins. Journal of Geophysical Research,110: F01001. [30] Marfai M A,Tyas D W,Nugraha I.2016. The morphodynamics of Wulan delta and its impacts on the coastal community in Wedung Subdistrict,Demak Regency,Indonesia. Journal of Environment Protection,7(1): 60-71. [31] Olariu C,Bhattacharya J P,Leybourne M I,Boss S K,Stern R J.2012. Interplay between river discharge and topography of the basin floor in a hyperpycnal lacustrine delta. Sedimentology,59(2): 704-728. [32] Shankman D,Keim B D,Jie S.2010. Flood frequency in China's Poyang Lake region: trends and teleconnections. International Journal of Climatology,26: 1255-1266. [33] Van Rijn L C.1993. Principles of sediment transport in rivers,estuaries and coastal seas. Amsterdam: Aqua publications,10-60. [34] Xu Z H,Wu S H,Yue D L,Zhao J S,Deng M,Liu Z,Zhang J J,Liu M C,Feng W J.2021a. Effects of upstream conditions on digitate shallow-water delta morphology. Marine and Petroleum Geology,134: 105333. [35] Xu Z H,Wu S H,Liu M C,Zhao J S,Chen Z H,Zhang K,Zhang J J,Liu Z.2021b. Effects of water discharge on river-dominated delta growth. Petroleum Science,18(6): 1630-1649. [36] Xu Z H,Plink-Björklund P,Wu S H,Liu Z,Feng W J,Zhang K,Yang Z,Zhong Y C.2022. Sinuous bar fingers of digitate shallow-water deltas: insights into their formative processes and deposits from integrating morphological and sedimentological studies with mathematical modelling. Sedimentology,69(2): 724-749.