Quantitative reconstruction and implications of the Cretaceous Aeolian bedform architecture in Chayong Basin,the hinterland of South China
HUANG Leqing1,2,3, HU Nengyong4, WEN Chunhua1, MENG Fanxing5, CHEN Xu1, XIANG Ke1, ZENG Guangqian1, JIAO Peng1, WANG Lingjue1
1 Geological Survey Institute of Hunan Province,Changsha 410116,China; 2 Institute of Geological Survey,China University of Geosciences,Wuhan 430074,China; 3 Hubei Key Laboratory of Paleontology and Geological Environment Evolution,Wuhan 430205,China; 4 Hunan Center of Natural Resources Affairs,Changsha 410004,China; 5 Nuclear Geological Survey Institute of Hunan Province,Changsha 410007,China
Abstract The Cretaceous strata in the Chayong Basin,located in the hinterland of South China,are characterized by ancient desert sediments with diverse dune morphology. These features reflect a complex interplay of tectonic activity,hydrological conditions,and palaeoclimatic changes. Despite their significance,research on this topic remains limited,hindering our understanding of the evolution of the paleodesert environment. This study employs the innovative End-Member Modeling by Grain Size Analysis(EMMA)with traditional dune morphology analysis to investigate paleoaeolian morphologies and quantitatively reconstruct bedform configurations. The results indicate that the Cretaceous dunes in the Chayong Basin are exceptionally large,with morphological parameters surpassing global averages for typical fault basins. This suggests an initial arid or desert basin state comparable to the Cretaceous dunes of the Ordos Basin's or the modern dunes of the Taklamagan Desert. EMMA identified four end-members that are indicative of aeolian dunes,sand sheets,and moist interdune areas. The reconstructed paleowind direction was predominantly north-northeast,influenced by the westerlies of the Northern Hemisphere. The sedimentary configurations exhibit a variety of forms,including compound crescentic and complex transverse dunes. The southern part of the basin is characterized by a dry-moist interdune system,presenting internal arid-moist interdunes and small-medium crescentic dunes. In contrast,the northern part develops a dry interdune aeolian system dominated by giant compound dunes. Tectonic uplift and fluvial development surrounding the basin have provided abundant sediment sources,resulting in secondary erosion,migration,and deposition driven by wind action. The subsidence of the fault-basin basement and fluctuations in the groundwater table,has created accommodation space for the accumulation and preservation of aeolian sediments. This study,based on aeolian sedimentary geological records,offers a new perspective on the large-scale dynamics of the Chayong Basin during the Cretaceous period,enhancing our comprehension of the coupled processes of aeolian/fluvial sedimentation,basin tectonics,and paleoclimatic evolution in the hinterland of South China.
Fund:Co-funded by the Natural Science Foundation of Hunan Province of China(No.2021JJ30388),and Open Foundation of Hubei Key Laboratory of Paleontology and Geological Environment Evolution(No. PEL-202203),and scientific research program of Geological Bureau of Hunan Province(No. HNGSTP202322),and Hunan Province Innovative Province Science Popularization Special Topic(No.2022ZK4207)
Corresponding Authors:
WEN Chunhua,professor-level senior engineer,is mainly engaged in regional geological and mineral research. E-mail: herowch2004@163.com.
About author: About the first author HUANG Leqing,born in 1985,senior engineer,is mainly engaged in researches on regional geology,mineral resources,and Cretaceous aeolian sedimentary geology. E-mail: 289773254@qq.com.
Cite this article:
HUANG Leqing,HU Nengyong,WEN Chunhua et al. Quantitative reconstruction and implications of the Cretaceous Aeolian bedform architecture in Chayong Basin,the hinterland of South China[J]. JOPC, 2024, 26(6): 1372-1395.
HUANG Leqing,HU Nengyong,WEN Chunhua et al. Quantitative reconstruction and implications of the Cretaceous Aeolian bedform architecture in Chayong Basin,the hinterland of South China[J]. JOPC, 2024, 26(6): 1372-1395.
[1] 曹硕. 2020. 中国东部晚白垩世风成沉积盆山型沙漠体系. 中国地质大学(北京)博士学位论文. [Cao S.2020. Late Cretaceous aeolian deposits in Eastern China: the intermountain erg system. Doctoral dissertation of China University of Geosciences(Beijing)] [2] 陈留勤,李鹏程,郭福生,刘鑫,李馨敏. 2019. 粤北丹霞盆地晚白垩世丹霞组沉积相及古气候意义. 沉积学报, 37(1): 17-29. [Chen L Q,Li P C,Guo F S,Liu X,Li X M.2019. Facies analysis and paleoclimate implications of the Late Cretaceous Danxia Formation in the Danxia Basin,northern Guangdong Province,South China. Acta Sedimentologica Sinica, 37(1): 17-29] [3] 陈丕基. 1997. 晚白垩世中国东南沿岸山系与中南地区的沙漠和盐湖化. 地层学杂志, 21(3): 203-213. [Chen P J.1997. Coastal mountains of SE China,desertization and saliniferous lakes of central China during the Upper Cretaceous. Journal of Stratigraphy, 21(3): 203-213] [4] 黄乐清,黄建中,罗来,王先辉,刘耀荣,梁恩云,马慧英. 2019. 湖南衡阳盆地东缘白垩系风成沉积的发现及其古环境意义. 沉积学报, 37(4): 735-748. [Huang L Q,Huang J Z,Luo L,Wang X H,Liu Y R,Liang E Y,Ma H Y.2019. The discovery of Cretaceous eolian deposits at the eastern margin of the Hengyang Basin,Hunan,and its paleoenvironmental significance. Acta Sedimentologica Sinica, 37(4): 735-748] [5] 黄乐清,吴驰华,周丽芸,金妮,彭世良,胡能勇,杨长明,陈杰. 2023. 湖南郴州丹霞地貌景观特征、成因及演化探讨. 现代地质, 37(6): 1680-1694. [Huang L Q,Wu C H,Zhou L Y,Jin N,Peng S L,Hu N Y,Yang C M,Chen J.2023. New perspectives of the features,formation,and evolution of the special Danxia landscape in Chenzhou,Hunan. Geoscience, 37(6): 1680-1694] [6] 湖南省地质调查院. 2017. 中国区域地质志·湖南志. 北京: 地质出版社,1-300. [Hunan Institute of Geological Survey. 2017. Regional Geology of China: Hunan Province. Beijing: Geological Publishing House,1-300] [7] 李建华,董树文,赵国春,张岳桥,辛宇佳,王金铭,卢运可. 2024. 华南晚中生代大陆变形、深部过程及动力学. 地质学报, 98(3): 829-861. [Li J H,Dong S W,Zhao G C,Zhang Y Q,Xin Y J,Wang J M,Lu Y K.2024. Late Mesozoic continental deformation,deep processes,and geodynamic evolution of South China. Acta Geologica Sinica, 98(3): 829-861] [8] 刘林玉. 2003. 焉耆中生代原型盆地沉积特征与盆地边界的确定. 西北大学博士学位论文. [Liu L Y.2003. Sedimentary characteristics of the Yanqi prototype basin in Mesozoic Era and the determination of the basin boundaries. Doctoral dissertation of Northwest University] [9] 罗霖炎,高鑫,赵永成. 2023. 新月形沙丘表面流场特征. 中国沙漠, 43(4): 41-54. [Luo L Y,Gao X,Zhao Y C.2023. The surface flow pattern characteristics of barchan dunes. Journal of Desert Research, 43(4): 41-54] [10] 沈尚峰. 2008. 江汉盆地江陵凹陷的构造格架和演化. 中国地质大学(北京)硕士学位论文. [Sheng S F.2008. Tectonic framework and evolution of Jiangling Depression in Jianghan Basin. Masteral dissertation of China University of Geosciences(Beijing)] [11] 石宇翔,吴驰华,黄乐清,伊海生,李智武,焦海菁,杨嘉宝,秦江颖,张小凤,周亚楠,Juan Pedro Rodriguez-López.2023. 华南衡阳盆地上白垩统黄土类似物的初步研究. 地质学报, 97(9): 3101-3115. [Shi Y X,Wu C H,Huang L Q,Yi H S,Li Z W,Jiao H J,Yang J B,Qin J Y,Zhang X F,Zhou Y N,Rodriguez-López J P.2023. Preliminary study of Late Cretaceous loess-like sediments in the Hengyang Basin,South China. Acta Geologica Sinica, 97(9): 3101-3115] [12] 汤海磊,梁瑞,伊海生,李高杰. 2022. 楚雄盆地白垩纪晚期盐湖风成砂微观组构特征研究. 矿产综合利用,43(1): 57-70. [Tang H L,Liang R,Yi H S,Li G J.2022. Study on the microstructure characteristics of Late Cretaceous aeolian sand in the playa from Chuxiong Basin. Multipurpose Utilization of Mineral Resources,43(1): 57-70] [13] 吴学洪,徐亚东,许笑玮,张黎渊,何妍. 2023. 湘东南茶永盆地白垩纪—古近纪沉积古地理演化. 华南地质, 39(2): 214-234. [Wu X H,Xu Y D,Xu X W,Zhang L Y,He Y.2023. Cretaceous-Paleogene paleogeographic evolution of the Chaling-Yongxing Basin in southeastern Hunan Province. South China Geology, 39(2): 214-234] [14] 许欢,柳永清,旷红伟,彭楠,丁家翔,杜研,苑婷媛. 2023. 古风成沉积理论体系与研究进展. 沉积学报, 41(6): 1681-1713. [Xu H,Liu Y Q,Kuang H W,Peng N,Ding J X,Du Y,Yuan T Y.2023. Theoretical system and research progress of eolian deposits. Acta Sedimentologica Sinica, 41(6): 1681-1713] [15] 杨军怀. 2019. 塔克拉玛干沙漠沙丘移动研究. 陕西师范大学硕士学位论文. [Yang J H.2019. A study of dune movement in the Taklamakan Desert. Masteral dissertation of Shaanxi Normal University] [16] 朱筱敏,陈贺贺,谈明轩,李顺利,秦祎,杨棵. 2023. 从太平洋到喜马拉雅的沉积学新航程: 21届国际沉积学大会研究热点分析. 沉积学报, 41(1): 126-149. [Zhu X M,Chen H H,Tan M X,Li S L,Qin Y,Yang K.2023. A new journey in sedimentology from the Pacific to the Himalayas: analysis of research hotpots from the 2lst International Sedimentological Congress. Acta Sedimentologica Sinica, 41(1): 126-149] [17] Bállico M B,Scherer C M S,Mountney N P,Souza E G,Reis A D,Raja Gabaglia G P,Magalhães A J C.2017a. Sedimentary cycles in a Mesoproterozoic aeolian erg-margin succession: Mangabeira Formation,Espinhaço Supergroup,Brazil. Sedimentary Geology, 349: 1-14. [18] Bállico M B,Scherer C M S,Mountney N P,Souza E G,Chemale F,Pisarevsky S A,Reis A D.2017b. Wind-pattern circulation as a palaeogeographic indicator: case study of the 1.5-1.6 Ga Mangabeira Formation,São Francisco Craton,Northeast Brazil. Precambrian Research, 298: 1-15. [19] Bigarella J J.1972. Eolian environments: their characteristics,recognition,and importance. In: Rigby J K,Hamblin W K(eds). Recognition of Ancient Sedimentary Environments. SEPM Society for Sedimentary Geology. [20] Bristow C S,Skelly R L,Ethridge F G.1999. Crevasse splays from the rapidly aggrading,sand-bed,braided Niobrara River,Nebraska: effect of base-level rise. Sedimentology, 46: 1029-1047. [21] Bryant R.2010. Deserts and desert environments. The Geographical Journal, 176(1): 119. [22] Cao S,Zhang L M,Wang C S,Ma J,Tan J,Zhang Z H.2020. Sedimentological characteristics and aeolian architecture of a plausible intermountain erg system in Southeast China during the Late Cretaceous. GSA Bulletin, 132: 2475-2488. [23] Cao S,Ma J,Wang C.2023a. The sedimentological characteristics of the intermontane desert system in the Jurong Basin,South China and its relationship with the Late Cretaceous hot climate. Palaeogeography,Palaeoclimatology,Palaeoecology, 623: 111618. [24] Cao S,Ma J,Zhang L M.2023b. Quantitative reconstruction of Early Cretaceous dune morphology in the Ordos paleo-desert and its paleoclimatic implications. Frontiers in Earth Science, 11: 1142034. [25] Cao S,Zhang L M,Mountney N P,Ma J,Hao M G,Wang C S.2023c. Ultra-long-distance transport of aeolian sand: the provenance of an intermontane desert,south-east China. Sedimentology, 70(7): 2108-2126. [26] Chen Y,Meng J,Liu H,Wang C S,Tang M,Liu T,Zhao Y N.2022. Detrital zircons record the evolution of the Cathaysian Coastal Mountains along the South China margin. Basin Research, 34(2): 688-701. [27] Chu Y,Lin W,Faure M,Allen M B,Feng Z T.2020. Cretaceous exhumation of the Triassic intracontinental Xuefengshan Belt: delayed unroofing of an orogenic plateau across the South China Block?Tectonophysics, 793: 228592. [28] Cosgrove G I E,Colombera L,Mountney N P.2021. Quantitative analysis of the sedimentary architecture of eolian successions developed under icehouse and greenhouse climatic conditions. GSA Bulletin, 133: 2625-2644. [29] Cosgrove G I E,Colombera L,Mountney N P.2023a. Quantitative analysis of aeolian stratigraphic architectures preserved in different tectonic settings. Earth-Science Reviews, 237: 104293. [30] Cosgrove G I E,Colombera L,Mountney N P,Basilici G,Mesquita Á F,Soares M V.2023b. Precambrian aeolian systems: a unique record?Precambrian Research, 392: 107075. [31] Crouvi O,Amit R,Enzel Y,Porat N,Sandler A.2008. Sand dunes as a major proximal dust source for late Pleistocene loess in the Negev desert,Israel. Quaternary Research,70: 275-282. [32] Dong S W,Li J H,Gao R,Cawood P A,Thybo H,Johnston S T,Jiao L Q,Zhang Y Q,Wang J M.2023. Intraplate lithospheric extension revealed by seismic reflection profiling of South China. Earth and Planetary Science Letters, 609: 118100. [33] Folk R L,Ward W C.1957. A study in the significance of grain size parameters. Journal of Sedimentary Petrology,27: 3-26. [34] Hasegawa H,Imsamut S,Charusiri P,Tada R,Horiuchi Y,Hisada K I.2010. ‘Thailand was a desert' during the mid-Cretaceous: equatorward shift of the subtropical high-pressure belt indicated by eolian deposits(Phu Thok Formation)in the Khorat Basin,northeastern Thailand: Thailand was a desert in the mid-Cretaceous. Island Arc, 19: 605-621. [35] Hasegawa H,Tada R,Jiang X,Suganuma Y,Imsamut S,Charusiri P,Ichinnorov N,Khand Y.2012. Drastic shrinking of the Hadley circulation during the mid-Cretaceous Supergreenhouse. Climate of the Past, 8: 1323-1337. [36] Hay W W.2011. Can humans force a return to a‘Cretaceous' climate?Sedimentary Geology, 235: 5-26. [37] Hême de Lacotte V J P,Mountney N P.2022. A classification scheme for sedimentary architectures arising from aeolian-fluvial system interactions: Permian examples from southeast Utah,USA. Aeolian Research, 58: 100815. [38] Howell J,Mountney N.2001. Aeolian grain flow architecture: hard data for reservoir models and implications for red bed sequence stratigraphy. Petroleum Geoscience, 7: 51-56. [39] Jiao H J,Wu C H,Rodríguez-López J P,Sun X M,Yi H S.2020. Late Cretaceous plateau deserts in the South China Block,and Quaternary analogues: sedimentology,dune reconstruction and wind-water interactions. Marine and Petroleum Geology, 120: 104504. [40] Jones F H,dos Santos Scherer C M,Kifumbi C.2021. Aeolian dunes morphodynamics and wind regime reconstruction in mid-latitudes of the Gondwana during Early Permian,Aracaré Formation,Sergipe-Alagoas Basin,Brazil. Aeolian Research, 50: 100672. [41] Kifumbi C,dos Santos Scherer C M,Dalla Lana Michel R,dos Reis A D,Guadagnin F,de Souza E G,Ferronatto J P F,Jones F H.2023. Spatial and temporal variation in the evolution of ancient aeolian dune-field, the Pennsylvanian Piauí Formation(Parnaíba Basin),Brazil. Sedimentary Geology, 451: 106398. [42] Kocurek G.1981. Significance of interdune deposits and bounding surfaces in aeolian dune sands. Sedimentology, 28: 753-780. [43] Kocurek G,Nielson J.1986. Conditions favourable for the formation of warm-climate aeolian sand sheets. Sedimentology, 33: 795-816. [44] Kocurek G,Day M.2018. What is preserved in the aeolian rock record?a Jurassic Entrada sandstone case study at the Utah-Arizona border. Sedimentology, 65: 1301-1321. [45] Lancaster N,Mountney N P.2021. Eolian processes and sediments. In: Encyclopedia of Geology. Amsterdam: Elsevier,809-829. [46] Li J H,Zhang Y Q,Dong S W,Johnston S T.2014. Cretaceous tectonic evolution of South China: a preliminary synthesis. Earth-Science Reviews, 134: 98-136. [47] Liang P,Yang X P.2023. Grain shape evolution of sand-sized sediments during transport from mountains to dune fields. Journal of Geophysical Research: Earth Surface, 128: e2022JF006930. [48] Mesquita Á F,Basilici G,Soares M V T,Janočko J,Mountney N P,Colombera L,de Souza Filho C R.2021. Hybrid dry-wet interdune deposition in Precambrian aeolian systems: Galho do Miguel Formation,SE Brazil. Sedimentary Geology, 425: 106007. [49] Mountney N P.2004. Feature: the sedimentary signature of deserts and their response to environmental change. Geology Today, 20: 101-106. [50] Mountney N P.2006. Periodic accumulation and destruction of aeolian erg sequences in the Permian Cedar Mesa Sandstone,White Canyon,southern Utah,USA. Sedimentology, 53: 789-823. [51] Mountney N P.2012. A stratigraphic model to account for complexity in aeolian dune and interdune successions: modelling aeolian dune-interdune architecture. Sedimentology, 59: 964-989. [52] Mountney N,Howell J.2000. Aeolian architecture,bedform climbing and preservation space in the Cretaceous Etjo Formation,NW Namibia. Sedimentology, 47: 825-849. [53] Mountney N P,Thompson D B.2002. Stratigraphic evolution and preservation of aeolian dune and damp/wet interdune strata: an example from the Triassic Helsby Sandstone Formation,Cheshire Basin,UK. Sedimentology, 49: 805-833. [54] Mountney N P,Russell A J.2009. Aeolian dune-field development in a water table-controlled system: Skeidarársandur,Southern Iceland. Sedimentology, 56: 2107-2131. [55] Mountney N,Howell J,Flint S,Jerram D.1999. Climate,sediment supply and tectonics as controls on the deposition and preservation of the aeolian-fluvial Etjo Sandstone Formation,Namibia. Journal of the Geological Society, 156: 771-777. [56] Paterson G A,Heslop D.2015. New methods for unmixing sediment grain size data. Geochemistry,Geophysics,Geosystems, 16: 4494-4506. [57] Postma G.1990. Depositional architecture and facies of river and fan deltas: a synthesis. In: Coarse-Grained Deltas(1st ed). Wiley: 13-27. [58] Pulvertaft T C R.1985. Aeolian dune and wet interdune sedimentation in the Middle Proterozoic Dala sandstone,Sweden. Sedimentary Geology, 44: 93-111. [59] Rodríguez-López J P,Wu C H.2020. Recurrent deformations of aeolian desert dunes in the Cretaceous of the South China Block: trigger mechanisms variability and implications for aeolian reservoirs. Marine and Petroleum Geology, 119: 104483. [60] Rodríguez-López J P,Meléndez N,De Boer P L,Soria A R.2012. Controls on marine-erg margin cycle variability: aeolian-marine interaction in the mid-Cretaceous Iberian Desert System,Spain: aeolian-marine interaction in the mid-Cretaceous Iberian Desert System,Spain. Sedimentology, 59: 466-501. [61] Rodríguez-López J P,Clemmensen L B,Lancaster N,Mountney N P,Veiga G D.2014. Archean to recent aeolian sand systems and their sedimentary record: current understanding and future prospects. Sedimentology, 61: 1487-1534. [62] Romain H G,Mountney N P.2014. Reconstruction of three-dimensional eolian dune architecture from one-dimensional core data through adoption of analog data from outcrop. AAPG Bulletin, 98(1): 1-22. [63] Rubin M,Hunter R E.1983. Reconstructing bedform assemblages from compound crossbedding. Developments in Sedimentology, 38: 407-427. [64] Rubin D M,Carter C L.1987. Cross-Bedding,Bedforms,and Paleocurrents. SEPM Society for Sedimentary Geology. [65] Sun Z M,Yang Z Y,Yang T,Pei J L,Yu Q F.2006. New Late Cretaceous and Paleogene paleomagnetic results from South China and their geodynamic implications. Journal of Geophysical Research-Solid Earth,111(B3): B03101. [66] Suo Y H,Li S Z,Jin C,Zhang Y,Zhou J,Li X Y,Wang P C,Liu Z,Wang X Y,Somerville I.2019. Eastward tectonic migration and transition of the Jurassic-Cretaceous Andean-type continental margin along Southeast China. Earth-Science Reviews, 196: 102884. [67] Tang S L,Yan D P,Qiu L,Gao J F,Wang C L.2014. Partitioning of the Cretaceous Pan-Yangtze Basin in the central South China Block by exhumation of the Xuefeng Mountains during a transition from extensional to compressional tectonics?Gondwana Research, 25: 1644-1659. [68] Vandenberghe J,Sun Y,Wang X,Abels H A,Liu X.2018. Grain-size characterization of reworked fine-grained aeolian deposits. Earth-Science Reviews, 177: 43-52. [69] Wu C H,Rodríguez-López J P.2021. Cryospheric processes in Quaternary and Cretaceous hyper-arid plateau desert oases. Sedimentology, 68: 755-770. [70] Wu C H,Liu C L,Yi H S,Xia G Q,Zhang H,Wang L C,Li G J,Wagreich M.2017. Mid-Cretaceous desert system in the Simao Basin,southwestern China,and its implications for sea-level change during a greenhouse climate. Palaeogeography,Palaeoclimatology,Palaeoecology, 468: 529-544. [71] Wu C H,Rodríguez-López J P,Liu C L,Sun X M,Wang J Y,Xia G Q,Wagreich M.2018. Late Cretaceous climbing erg systems in the western Xinjiang Basin: palaeoatmosphere dynamics and East Asia margin tectonic forcing on desert expansion and preservation. Marine and Petroleum Geology, 93: 539-552. [72] Wu C H,Rodríguez-López J P,Santosh M.2022. Plateau archives of lithosphere dynamics,cryosphere and paleoclimate: the formation of Cretaceous desert basins in east Asia. Geoscience Frontiers, 13: 101454. [73] Wu C H,Sun X M,Li G W,Huang L Q,Jiao H J,Li Z W,Jian X,Mason C C,Rodríguez-López J P.2023. Cretaceous mountain building processes triggered the aridification and drainage evolution in East Asia. GSA Bulletin, 136(5-6): 1863-1877. [74] Xu H,Liu Y Q,Kuang H W,Peng N.2019. Late Jurassic fluvial-eolian deposits from the Tianchihe Formation,Ningwu-Jingle Basin,Shanxi Province,China. Journal of Asian Earth Sciences, 174: 245-262. [75] Yu X C,Liu C L,Wang C L,Li F,Wang J Y.2020. Eolian deposits of the northern margin of the South China(Jianghan Basin): reconstruction of the Late Cretaceous East Asian landscape in central China. Marine and Petroleum Geology, 117: 104390. [76] Yu X C,Liu C L,Wang C L,Wang J Y.2021a. Late Cretaceous aeolian desert system within the Mesozoic fold belt of South China: palaeoclimatic changes and tectonic forcing of East Asian erg development and preservation. Palaeogeography,Palaeoclimatology,Palaeoecology, 567: 110299. [77] Yu X C,Wang C L,Bertolini G,Liu C L,Wang J Y.2021b. Damp- to dry aeolian systems: sedimentology,climate forcing,and aeolian accumulation in the Late Cretaceous Liyou Basin,South China. Sedimentary Geology, 426: 106030. [78] Zhang J,Liu Y G,Flögel S,Zhang T,Wang C S,Fang X M.2021. Altitude of the East Asian coastal mountains and their influence on Asian climate during early Late Cretaceous. Journal of Geophysical Research(Atmospheres), 126: e2020JD034413. [79] Zhang L M,Wang C S,Cao K,Wang Q,Tan J,Gao Y.2016. High elevation of Jiaolai Basin during the Late Cretaceous: implication for the coastal mountains along the East Asian margin. Earth and Planetary Science Letters, 456: 112-123. [80] Zhang X D,Wang H M,Xu S M,Yang Z S.2020. A basic end-member model algorithm for grain-size data of marine sediments. Estuarine,Coastal and Shelf Science, 236: 106656. [81] Zheng C Y,Wang J Y,Li X H,Zhang C K.2024. Intermontane erg environment and arid climate indicated from associated eolian and alluvial fan facies during the Late Cretaceous,South China. Journal of Asian Earth Sciences, 264: 106044. [82] Zhou N,Li Q,Zhang C L,Huang C H,Wu Y B,Zhu B Q,Cen S B,Huang X Q.2021. Grain size characteristics of aeolian sands and their implications for the aeolian dynamics of dunefields within a river valley on the southern Tibet Plateau: a case study from the Yarlung Zangbo river valley. Catena, 196: 104794.