Late Cretaceous aeolian sedimentary association in Gonjo Basin, eastern Tibet: implications for palaeoclimate and palaeogeography
DU Yan1,2, XU Huan1,2, DING Jiaxiang1,2, HE Keheng1,2, ZHAO Xiaoran1,2, XIA Lei3, YUAN Tingyuan2, 4, ZHANG Bihui1,2, LIU Gaozheng1,2
1 College of Earth Sciences,Yunnan University,Kunming 650500,China; 2 Yunnan Key Laboratory of Earth System Science,Yunnan University,Kunming 650500,China; 3 College of Architecture and Civil Engineering,Kunming University,Kunming 650214,China; 4 College of Ecology and Environment,Yunnan University,Kunming 650500,China
Abstract During the Late Cretaceous period,aeolian deposits were widely distributed in East Asia,exhibiting significant zonal variation. However,there are few reports on aeolian deposits in the central region of the Tibet Plateau,which shares the same paleo-latitude as South China. In recent years,previous magnetic stratigraphy studies have redefined the Paleogene aeolian sedimentary age in the Gonjo Basin of eastern Tibet as Late Cretaceous. This finding presents a new opportunity to investigate the palaeogeographic and palaeoclimatic conditions prior to the uplift of the Tibet Plateau during this period. The aeolian sedimentary sequence,aeolian interface and sedimentary system of the Gonjo Formation were investigated in detail through field profile investigation,rock and mineral identification using a polarizing microscope,scanning electron microscopy and energy spectrum analysis. The findings indicate that the aeolian sedimentary association of the Gonjo Basin is primarily situated at the base of the Gonjo Formation,predominantly concentrated along the western margin of the basin,and is mainly composed of desert,alluvial fan and fluvial deposits. Aeolian sediments are characterized by large trough,wedge-shaped cross-bedding,and steep-angled plate cross-bedding. Additionally,typical features such as grainflow strata,grainfall laminea,wind-ripple strata and wind-ripple marks are observable within the layers. The clastic particles of the eolian sandstone are primarily medium to fine sand,exhibiting high structural maturity and compositional maturity. The edges of the quartz particles display a “desert varnish” structure. Under a scanning electron microscope,typical crescent and dish-shaped impact craters were observed on the surface of quartz grains,indicating the origin of aeolian deposition. Vertically,the aeolian sedimentary association demonstrates a clear interaction between lower eolian and hydrogenic deposits,with central aeolian deposits prevailing and an increase in upper hydrogenic deposits. This pattern suggests fluctuations in the groundwater level caused by sudden precipitation or flooding in an arid climate context. The formation and evolution of aeolian sediments at the end of the Cretaceous in the Gonjo Basin is closely linked to the “rain shadow” effect resulting from the Late Cretaceous uplift of the Gangdise Mountains,as well as to the global mid-Maastrichtian warming event. These findings are significant for understanding the palaeogeographic patterns and palaeoclimatic conditions preceding the uplift of the Tibetan Plateau at the end of the Cretaceous.
Fund:Co-funded by the National Natural Science Foundation of China(No.41991323),the Reserve Talent Project for Young and Middle-aged Academic and Technical Leaders of Yunnan Province(No.202205AC160020),and the Second Qinghai-Tibet Plateau Scientific Expedition Project(No.2019QZKK0704)]
Corresponding Authors:
XU Huan,born in 1987, associate professor,is mainly engaged in research on sedimentary geology. E-mail: xh0816@ynu.edu.cn.
About author: About the first author DU Yan,born in 1999, master candidate, is mainly engaged in research on sedimentary geology. E-mail: 953182696@qq.com.
Cite this article:
DU Yan,XU Huan,DING Jiaxiang et al. Late Cretaceous aeolian sedimentary association in Gonjo Basin, eastern Tibet: implications for palaeoclimate and palaeogeography[J]. JOPC, 2024, 26(6): 1396-1419.
DU Yan,XU Huan,DING Jiaxiang et al. Late Cretaceous aeolian sedimentary association in Gonjo Basin, eastern Tibet: implications for palaeoclimate and palaeogeography[J]. JOPC, 2024, 26(6): 1396-1419.
[1] 陈留勤,李鹏程,郭福生,刘鑫,李馨敏. 2019. 粤北丹霞盆地晚白垩世丹霞组沉积相及古气候意义. 沉积学报, 37(1): 17-29. [Chen L Q,Li P C,Guo F S,Liu X,Li X M.2019. Facies analysis and paleoclimate implications of the Late Cretaceous Danxia Formation in the Danxia Basin,northern Guangdong Province,South China. Acta Sedimentologica Sinica, 37(1): 17-29] [2] 杜后发,姜勇彪,严兆彬,侯增谦,杨天南,郭福生,杨庆坤. 2011. 青海囊谦古近纪盆地沉积特征及沉积环境分析. 地质学报, 85(3): 383-395. [Du H F,Jiang Y B,Yan Z B,Hou Z Q,Yang T N,Guo F S,Yang Q K.2011. Sedimentary characteristics and environment of the Paleogene Nangqian Basin in Qinghai Province. Acta Geologica Sinica, 85(3): 383-395] [3] 杜后发,江媛媛,姜勇彪,严兆彬. 2017. 囊谦古近纪盆地贡觉组膏盐岩及其硫同位素特征. 东华理工大学学报(自然科学版), 40(2): 165-172. [Du H F,Jiang Y Y,Jiang Y B,Yan Z B.2017. Characteristics of gypsum-salt and sulfur isotopes in the Gonjo Formation of Nangqen Paleogene Basin. Journal of East China University of Technology(Natural Science), 40(2): 165-172] [4] 何书元,田有华,陈开国,陈庆云,文化川. 1983. 西藏东部早第三纪贡觉红层. 青藏高原地质文集, 6(1): 233-242. [He S Y,Tian Y H,Chen G G,Chen Q Y,Wen H C.1983. Early Tertiary Gongjue red beds in eastern Tibet. Tibetan Plateau Geology, 6(1): 233-242] [5] 黄乐清,黄建中,罗来,王先辉,刘耀荣,梁恩云,马慧英. 2019. 湖南衡阳盆地东缘白垩系风成沉积的发现及其古环境意义. 沉积学报, 37(4): 735-748. [Huang L Q,Huang J Z,Luo L,Wang X H,Liu Y R,Liang E Y,Ma H Y.2019. The discovery of Cretaceous eolian deposits at the eastern margin of the Hengyang Basin,Hunan,and its paleoenvironmental significance. Acta Sedimentologica Sinica, 37(4): 735-748] [6] 江新胜,李玉文. 1996. 中国中东部白垩纪沙漠的时空分布及其气候意义. 岩相古地理, 16(2): 42-51. [Jiang X S,Li Y W.1996. Spato-temporal distribution of the Cretaceous Deserts in central and eastern China and its climatic significance. Sedimentary Facies and Palaeogeography, 16(2): 42-51] [7] 江新胜,潘忠习. 2005. 中国白垩纪沙漠及气候. 北京: 地质出版社. [Jiang X S,Pan Z X.2005. Cretaceous Deserts and Climate in China. Beijing: Geological Publishing House] [8] 江新胜,潘忠习,徐金沙,李晓勇,谢国刚,肖志坚. 2006. 江西信江盆地晚白垩世风成沙丘的发现及其古风向. 地质通报, 25(7): 833-838. [Jiang X S,Pan Z X,Xu J S,Li X Y,Xie G G,Xiao Z J.2006. Late Cretaceous eolian dunes and wind directions in Xinjiang Basin,Jiangxi Province,China. Geological Bulletin of China, 25(7): 833-838] [9] 李廷栋. 1995. 青藏高原隆升的过程和机制. 地球学报, 1(1): 1-9. [Li T D.1995. Process and mechanism of the uplift of the Qinghai-Tibet Plateau. Acta Geoscientia Sinica, 1(1): 1-9] [10] 李忠雄,陈智梁,李修忠,Gizbert C,Burchfiel B C.2004. 青藏高原东部贡觉盆地新生代火山岩的K-Ar稀释法年龄. 地球科学, 29(3): 278-282. [Li Z X,Chen Z L,Li X Z,Gizbert C,Burchfiel B C.2004. K-Ar ages of Cenozoic volcanic rocks from Gongjue Basin in eastern Tibet. Earth Science, 29(3): 278-282] [11] 刘宝珺. 1980. 沉积岩石学. 北京: 地质出版社. [Liu B J.1980. Sedimentary Petrology. Beijing: Geological Publishing House] [12] 潘桂棠,王培生,徐耀荣. 1990. 青藏高原新生代构造演化. 北京: 地质出版社. [Pan G T,Wang P S,Xu Y R.1990. Cenozoic Tectonic Evolution of the Tibetan Plateau. Beijing: Geological Publishing House] [13] 孙永传,李蕙生. 1986. 碎屑岩沉积相和沉积环境. 北京: 地质出版社. [Sun Y C,Li H S.1986. Clastic Sedimentary Facies and Sedimentary Environment. Beijing: Geological Publishing House] [14] 汤海磊,梁瑞,伊海生,李高杰. 2022. 楚雄盆地白垩纪晚期盐湖风成砂微观组构特征研究. 矿产综合利用,43(1): 57-70. [Tang H L,Liang R,Yi H S,Li G J.2022. Study on the microstructure characteristics of Late Cretaceous aeolian sand in the playa from Chuxiong Basin. Multipurpose Utilization of Mineral Resources,43(1): 57-70] [15] 许欢,柳永清,旷红伟,彭楠,丁家翔,杜研,苑婷媛. 2023. 古风成沉积理论体系与研究进展. 沉积学报, 41(6): 1681-1713. [Xu H,Liu Y Q,Kuang H W,Peng N,Ding J X,Du Y,Yuan T Y.2023. Theoretical system and research progress of eolian deposits. Acta Sedimentologica Sinica, 41(6): 1681-1713] [16] 张克信,王国灿,陈奋宁,徐亚东,骆满生,向树元,寇晓虎,赵来时. 2007. 青藏高原古近纪—新近纪隆升与沉积盆地分布耦合. 地球科学, 32(5): 583-597. [Zhang K X,Wang G C,Chen F N,Xu Y D,Luo M S,Xiang S Y,Kou X H,Zhao L S.2007. Coupling between the uplift of Qinghai-Tibet Plateau and distribution of basins of Paleogene-Neogene. Earth Science, 32(5): 583-597] [17] 张克信,王国灿,季军良,骆满生,寇晓虎,王岳明,徐亚东,陈奋宁,陈锐明,宋博文,张楗钰,梁银平. 2010. 青藏高原古近纪—新近纪地层分区与序列及其对隆升的响应. 中国科学: 地球科学, 40(12): 1632-1654. [Zhang K X,Wang G C,Ji J L,Luo M S,Kou X H,Wang Y M,Xu Y D,Chen F N,Chen R M,Song B W,Zhang J Y,Liang Y P.2010. Paleogene-Neogene stratigraphic division and sequence of Qinghai-Tibet Plateau and their response to uplift. Science in China: Earth Sciences, 40(12): 1632-1654] [18] 赵澄林,朱筱敏. 2001. 沉积岩石学(第三版). 北京: 石油工业出版社. [Zhao C L,Zhu X M.2001. Sedimentary Petrology(3rd). Beijing: Petroleum Industry Press] [19] 周江羽,王江海,尹安,Spurlin M S,Horton B K.2002. 青藏东北缘早第三纪盆地充填的沉积型式及构造背景: 以囊谦和下拉秀盆地为例. 沉积学报, 20(1): 85-91. [Zhou J Y,Wang J H,Yin A,Spurlin M S,Horton B K.2002. Depositional patterns and tectonic setting of Early Tertiary basins in the NE margin of the Tibetan Plateau: a case study of the Nangqian and Xialaxiu basins. Acta Sedimentologica Sinica, 20(1): 85-91] [20] 周江羽,王江海,Yin A,Horton B,Spurlin M S.2003. 青藏高原东缘古近纪粗碎屑岩沉积学及其构造意义. 地质学报, 77(2): 262-271. [Zhou J Y,Wang J H,Yin A,Horton B,Spurlin M S.2003. Sedimentology and tectonic significance of Paleogene coarse clastic rocks in eastern Tibet. Acta Geologica Sinica, 77(2): 262-271] [21] 周江羽,王江海. 2019. 青藏高原中东部早期构造隆升对古近纪盆地充填和演化的影响. 地质学报, 93(8): 1793-1813. [Zhou J Y,Wang J H.2019. Early tectonic uplift affecting sedimentary filling and evolution of Paleogene basins in the central-eastern Tibetan Plateau. Acta Geologica Sinica, 93(8): 1793-1813] [22] 朱丽,张会化,王江海,周江羽,解广轰. 2006. 金沙江—红河构造带北段囊谦盆地新生代高钾岩石 40Ar/39Ar 年代学研究. 大地构造与成矿学, 30(2): 241-247. [Zhu L,Zhang H H,Wang J H,Zhou J Y,Xie G H.2006. 40Ar/39Ar chronology of high-K magmatic rocks in Nangqian Basin at the northern segment of the Jinsha-Red River Shear Zone(JRRSZ). Geotectonica et Metallogenia, 30(2): 241-247] [23] 朱日祥,赵盼,赵亮. 2022. 新特提斯洋演化与动力过程. 中国科学: 地球科学, 52(1): 1-25. [Zhu R X,Zhao P,Zhao L.2022. Evolution and dynamic processes of the New Tethys Ocean. Scientia Sinica Terrae, 52(1): 1-25] [24] Al-Masrahy M A,Mountney N P.2015. A classification scheme for fluvial-aeolian system interaction in desert-margin settings. Aeolian Research, 17: 67-88. [25] Bagnold R A.1941. The Physics of Blown Sand and Desert Dune. London: Methuen & Company. [26] Barclay R S,Mcelwain J C,Sageman B B.2010. Carbon sequestration activated by a volcanic CO2 pulse during Ocean Anoxic Event 2. Nature Geoscience, 3(3): 205-208. [27] Barnet J S K,Littler K,Kroon D,Leng M J,Westerhold T,Röhl U,Zachos J C.2018. A new high-resolution chronology for the late Maastrichtian warming event: establishing robust temporal links with the onset of Deccan volcanism. Geology, 46(2): 147-150. [28] Barrera E,Savin S M.1999. Evolution of late Campanian-Maastrichtian marine climates and oceans. In: Barrera E,Johnson C C(eds). Evolution of the Cretaceous Ocean-Climate System. The Geological Society of America, 332(1): 245-282. [29] Boucot A J,Xu C,Scotese C R,Morley R J.2013. Phanerozoic Paleoclimate: An Atlas of Lithologic Indicators of Climate. Tulsa,Oklahoma,U.S.A. SEPM(Society for Sedimentary Geology). [30] Brookfield M E.1977. The origin of bounding surfaces in ancient aeolian sandstones. Sedimentology, 24(3): 303-332. [31] Bull W B.1977. The alluvial-fan environment. Progress in Physical Geography: Earth and Environment, 1(2): 222-270. [32] Burchfiel B C,Chen Z L.2012. Tectonics of the Southeastern Tibetan Plateau and Its Adjacent Foreland. Boulder: The Geological Society of America. [33] Cao Y,Sun Z M,Li H B,Pei J L,Liu D L,Zhang L,Ye X Z,Zheng Y,He X L,Ge C L,Jiang W.2019. New paleomagnetic results from Middle Jurassic limestones of the Qiangtang terrane,Tibet: constraints on the evolution of the Bangong-Nujiang Ocean. Tectonics, 38(1): 215-232. [34] Costa P J M,Andrade C,Mahaney W C,Marques da Silva F,Freire P,Freitas M C,Janardo C,Oliveira M A,Silva T,Lopes V.2013. Aeolian microtextures in silica spheres induced in a wind tunnel experiment: comparison with aeolian quartz. Geomorphology, 180-181: 120-129. [35] DeCelles P G,Kapp P,Ding L,Gehrels G E.2007. Late Cretaceous to middle Tertiary basin evolution in the central Tibetan Plateau: changing environments in response to tectonic partitioning,aridification,and regional elevation gain. GSA Bulletin, 119(5-6): 654-680. [36] DeCelles P G,Kapp P,Gehrels G E,Ding L.2014. Paleocene-Eocene foreland basin evolution in the Himalaya of southern Tibet and Nepal: implications for the age of initial India-Asia collision. Tectonics, 33(5): 824-849. [37] Deng B,Chew D,Jiang L,Mark C,Cogné N,Wang Z J,Liu S G.2018. Heavy mineral analysis and detrital U-Pb ages of the intracontinental Paleo-Yangzte Basin: implications for a transcontinental source-to-sink system during Late Cretaceous time. GSA Bulletin, 130(11-12): 2087-2109. [38] Ding L,Kapp P,Cai F L,Garzione C N,Xiong Z Y,Wang H Q,Wang C.2022. Timing and mechanisms of Tibetan Plateau uplift. Nature Reviews Earth & Environment, 3(10): 652-667. [39] Friedrich O,Norris R D,Erbacher J.2012. Evolution of Middle to Late Cretaceous oceans: a 55 m.y. record of Earth's temperature and carbon cycle. Geology, 40(2): 107-110. [40] Fryberger S G,Schenk C.1981. Wind sedimentation tunnel experiments on the origins of aeolian strata. Sedimentology, 28(6): 805-821. [41] Fryberger S G,Schenk C J.1988. Pin stripe lamination: a distinctive feature of modern and ancient eolian sediments. Sedimentary Geology, 55(1-2): 1-15. [42] Fryberger S G,Hesp P,Hastings K.1992. Aeolian granule ripple deposits,Namibia. Sedimentology, 39(2): 319-331. [43] Fryberger S G.1993. A review of aeolian bounding surfaces,with examples from the Permian Minnelusa Formation,USA. Geological Society, London, Special Publications, 73(1): 167-197. [44] Gao Y,Ibarra D E,Wang C S,Caves J K,Chamberlain C P,Graham S A,Wu H C.2015. Mid-latitude terrestrial climate of East Asia linked to global climate in the Late Cretaceous. Geology, 43(4): 287-290. [45] Gao Y S,Wang C S,Wang P J,Gao Y F,Huang Y J,Zou C C.2019. Progress on continental scientific drilling project of Cretaceous Songliao Basin(SK-1 and SK-2). Science Bulletin, 64(2): 73-75. [46] Gao Y,Ibarra D E,Caves Rugenstein J K,Chen J Q,Kukla T,Methner K,Gao Y F,Huang H,Lin Z P,Zhang L M,Xi D P,Wu H C,Carroll A R,Graham S A,Chamberlain C P,Wang C S.2021. Terrestrial climate in mid-latitude East Asia from the latest Cretaceous to the earliest Paleogene: a multiproxy record from the Songliao Basin in northeastern China. Earth-Science Reviews, 216: 103572. [47] Ghazi S,Mountney N P.2009. Facies and architectural element analysis of a meandering fluvial succession: the Permian Warchha Sandstone,Salt Range,Pakistan. Sedimentary Geology, 221(1-4): 99-126. [48] Goudie A S,Watson A.1981. The shape of desert sand dune grains. Journal of Arid Environments, 4(3): 185-190. [49] Haq B U.2014. Cretaceous eustasy revisited. Global and Planetary Change, 113(1): 44-58. [50] Havholm K G,Kocurek G.1994. Factors controlling aeolian sequence stratigraphy: clues from super bounding surface features in the Middle Jurassic Page Sandstone. Sedimentology, 41(5): 913-934. [51] Higgs R.1979. Quartz-grain surface features of Mesozoic-Cenozoic sands from the Labrador and western Greenland continental margins. Journal of Sedimentary Research, 49(2): 599-610. [52] Hu F,Wu F,Chapman J B,Ducea M N,Ji W,Liu S.2020. Quantitatively tracking the elevation of the Tibetan Plateau since the Cretaceous: insights from whole-rock Sr/Y and La/Yb ratios. Geophysical Research Letters, 47(15): e2020GL-089202. [53] Huber B T,MacLeod K G,Watkins D K,Coffin M F.2018. The rise and fall of the Cretaceous Hot Greenhouse climate. Global and Planetary Change, 167(1): 1-23. [54] Hunter R E.1977. Basic types of stratification in small eolian dunes. Sedimentology, 24(3): 361-387. [55] Hunter R E.1981. Stratification styles in eolian sandstones: some Pennsylvanian to Jurassic examples from the western interior USA. In: Ethridge F G,Flores R M(eds). Recent and Ancient Nonmarine Depositional Environments,Models for Exploration. Tulsa: Society of Economic Paleontologists and Mineralogists, 31: 315-329. [56] Ibarra D E,Dai J G,Gao Y,Lang X H,Duan P Z,Gao Z J,Chen J Q,Methner K,Sha L J,Tong H,Han X,Zhu D C,Li Y L,Tang J X,Cheng H,Chamberlain C P,Wang C S.2023. High-elevation Tibetan Plateau before India-Eurasia collision recorded by triple oxygen isotopes. Nature Geoscience, 16: 810-815. [57] Ji W Q,Wu F Y,Chung S L,Li J X,Liu C Z.2009. Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith,southern Tibet. Chemical Geology, 262(3-4): 229-245. [58] Jones F H,dos Santos Scherer C M,Kuchle J.2016. Facies architecture and stratigraphic evolution of aeolian dune and interdune deposits,Permian Caldeirão Member(Santa Brígida Formation),Brazil. Sedimentary Geology, 337: 133-150. [59] Jung C,Voigt S,Friedrich O,Koch M C,Frank M.2013. Campanian-Maastrichtian ocean circulation in the tropical Pacific. Paleoceanography, 28(3): 562-573. [60] Kapp P,Yin A,Harrison T M,Ding L.2005. Cretaceous-Tertiary shortening,basin development,and volcanism in central Tibet. GSA Bulletin, 117(7-8): 865-878. [61] Kapp P,DeCelles P G,Gehrels G E,Heizler M,Ding L.2007. Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet. GSA Bulletin, 119(7-8): 917-933. [62] Kocurek G.1981. Significance of interdune deposits and bounding surfaces in aeolian dune sands. Sedimentology, 28(6): 753-780. [63] Kocurek G.1991. Interpretation of ancient eolian sand dunes. Annual Review of Earth and Planetary Sciences, 19: 43-75. [64] Kocurek G.1999. The aeolian rock record. In: Goudie A S,Livingstone I,Stokes S(eds). Aeolian Environments Sediments and Landforms. Chichester: Wiley,239-259. [65] Kocurek G,Dott R H.1981. Distinctions and uses of stratification types in the interpretation of eolian sand. Journal of Sedimentary Research, 51(2): 579-595. [66] Kocurek G,Dott R H.1983. Jurassic paleogeography and paleoclimate of the central and southern Rocky Mountains region. In: Reynolds M W,Dolly E D(eds). Mesozoic paleogeography of the west-central United States. Denver: Society of Economic Paleontologists and Mineralogists, 1: 101-116. [67] Kocurek G,Havholm,K G.1993. Eolian sequence stratigraphy: a conceptual framework. In: Weimer P,Posamentier H W(eds). Siliclastic Sequence Stratigraphy: Recent Developments and Applications. Tulsa: American Association of Petroleum Geologists, 1: 393-409. [68] Kocurek G,Lancaster N.1999. Aeolian system sediment state: theory and Mojave Desert Kelso dune field example. Sedimentology, 46(3): 505-515. [69] Krinsley D H,Donahue J.1968. Environmental interpretation of sand grain surface textures by electron microscopy. GSA Bulletin, 79(6): 743-748. [70] Krinsley D H,Doornkamp J C.2011. Atlas of Quartz Sand Surface Textures. Cambridge University Press. [71] Lancaster N.2014. Aeolian Processes. In: Elias S A(ed). Reference Module in Earth Systems and Environmental Sciences. Amsterdam: Elsevier. [72] Leier A L,Decelles P G,Kapp P,Ding L.2007. The Takena Formation of the Lhasa terrane,southern Tibet: the record of a Late Cretaceous retroarc foreland basin. GSA Bulletin, 119(1-2): 31-48. [73] Li G J,Wu C H,Rodríguez-López J P,Yi H S,Xia G Q,Wagreich M.2018. Mid-Cretaceous aeolian desert systems in the Yunlong area of the Lanping Basin,China: implications for palaeoatmosphere dynamics and paleoclimatic change in East Asia. Sedimentary Geology, 364: 121-140. [74] Li L Q,Keller G.1998. Maastrichtian climate,productivity and faunal turnovers in planktic foraminifera in South Atlantic DSDP sites 525A and 21. Marine Micropaleontology, 33(1-2): 55-86. [75] Li S H,van Hinsbergen D J J,Najman Y,Jing L Z,Deng C L,Zhu R X.2020. Does pulsed Tibetan deformation correlate with Indian plate motion changes. Earth and Planetary Science Letters, 536: 116144. [76] Littler K,Robinson S A,Bown P R,Nederbragt A J,Pancost R D.2011. High sea-surface temperatures during the Early Cretaceous Epoch. Nature Geoscience, 4(3): 169-172. [77] Mack G H,Rasmussen K A.1984. Alluvial-fan sedimentation of the Cutler Formation(Permo-pennsylvanian)near Gateway,Colorado. GSA Bulletin, 95(1): 109-116. [78] Mahaney W C.2002. Atlas of Sand Grain Surface Textures and Applications. Oxford University Press. [79] Mateo P,Keller G,Punekar J,Spangenberg J E.2017. Early to Late Maastrichtian environmental changes in the Indian Ocean compared with Tethys and South Atlantic. Palaeogeography,Palaeoclimatology,Palaeoecology, 478(1): 121-138. [80] Mather A E,Hartley A.2005. Flow events on a hyper-arid alluvial fan: Quebrada Tambores,Salar de Atacama,northern Chile. Geological Society,London,Special Publications, 251(1): 9-24. [81] Miall A D.2014. Fluvial Depositional Systems. Cham: Springer International Publishing. [82] Mountney N P.2006. Eolian facies models. In: Posamentier H W,Walker R G(eds). Facies Models Revisited. Tulsa: SEPM Society for Sedimentary Geology, 1: 19-83. [83] Mountney N P.2012. A stratigraphic model to account for complexity in aeolian dune and interdune successions. Sedimentology, 59(3): 964-989. [84] Mountney N P,Howell J,Flint S,Jerram D.1999. Relating eolian bounding-surface geometries to the bed forms that generated them: Etjo Formation,Cretaceous,Namibia. Geology, 27(2): 159-162. [85] Murphy M A,Yin A,Harrison T M,Durr S B,Ryerson F J,Kidd W S F.1997. Did the Indo-Asian collision alone create the Tibetan plateau?Geology, 25(8): 719-722. [86] Mountney N P,Jagger A.2004. Stratigraphic evolution of an aeolian erg margin system: the Permian Cedar Mesa Sandstone,SE Utah,USA. Sedimentology, 51(4): 713-743. [87] Nickling W G,Neuman C M,Lancaster N.2002. Grainfall processes in the lee of transverse dunes,Silver Peak,Nevada. Sedimentology, 49(1): 191-209. [88] Nordt L,Atchley S,Dworkin S.2003. Terrestrial evidence for two greenhouse events in the latest Cretaceous. GSA Today, 13(12): 4-9. [89] Parrish J T,Peterson F.1988. Wind directions predicted from global circulation models and wind directions determined from eolian sandstones of the western United States: a comparison. Sedimentary Geology, 56(1-4): 261-282. [90] Rodríguez-López J P,De Boer P L,Meléndez N,Soria A R,Pardo G.2006. Windblown desert sands in coeval shallow marine deposits: a key for the recognition of coastal ergs in the mid-Cretaceous Iberian Basin,Spain. Terra Nova, 18(5): 314-320. [91] Rodríguez-López J P,Clemmensen L B,Lancaster N,Mountney N P,Veiga G D.2014. Archean to Recent aeolian sand systems and their sedimentary record: current understanding and future prospects. Sedimentology, 61(6): 1487-1534. [92] Roger F,Jolivet M,Cattin R,Malavieille J.2011. Mesozoic-Cenozoic tectonothermal evolution of the eastern part of the Tibetan Plateau(Songpan-Garzê,Longmen Shan area): insights from thermochronological data and simple thermal modelling. Geological Society,London,Special Publications, 353(1): 9-25. [93] Romain H G,Mountney N P.2014. Reconstruction of three-dimensional eolian dune architecture from one-dimensional core data through adoption of analog data from outcrop. AAPG Bulletin, 98(1): 1-22. [94] Rubin D M,Hunter R E.1983. Reconstructing bedform assemblages from compound crossbedding. In: Brookfield M E,Ahlbrandt T S(eds). Eolian Sediments and Processees. Amsterdam: Elsevier,407-427. [95] Rubin D M,Carter C L.1987. Cross-bedding,Bedforms,and Paleocurrents. Tulsa: SEPM Society for Sedimentary Geology. [96] Scherer C M S.2000. Eolian dunes of the Botucatu Formation(Cretaceous)in southernmost Brazil: morphology and origin. Sedimentary Geology, 137(1-2): 63-84. [97] Scherer C M S,Goldberg K.2007. Palaeowind patterns during the latest Jurassic-earliest Cretaceous in Gondwana: evidence from aeolian cross-strata of the Botucatu Formation,Brazil. Palaeogeography,Palaeoclimatology,Palaeoecology, 250(1-4): 89-100. [98] Scherer C M S,Mello R G,Ferronatto J P F,Amarante F B,Reis A D,Souza E G,Goldberg K.2020. Changes in prevailing surface-palaeowinds of western Gondwana during Early Cretaceous. Cretaceous Research, 116: 104598. [99] Sharp R P.1963. Wind ripples. The Journal of Geology, 71(5): 617-636. [100] Studnicki-Gizbert C,Burchfiel B C,Li Z,Chen Z.2008. Early Tertiary Gonjo Basin,eastern Tibet: sedimentary and structural record of the early history of India-Asia collision. Geosphere, 4(4): 713-735. [101] Sun G Y,Hu X M,Sinclair H D,BouDagher-Fadel M K,Wang J G.2015. Late Cretaceous evolution of the Coqen Basin(Lhasa Terrane)and implications for early topographic growth on the Tibetan Plateau. GSA Bulletin, 127(7-8): 1001-1020. [102] Tada R,Siever R.1986. Experimental knife-edge pressure solution of halite. Geochimica et Cosmochimica Acta, 50(1): 29-36. [103] Tang M Y,Jing L Z,Hoke G D,Xu Q,Wang W T,Li Z F,Zhang J Y,Wang W.2017. Paleoelevation reconstruction of the Paleocene-Eocene Gonjo Basin,SE-central Tibet. Tectonophysics, 712-713: 170-181. [104] Tierney J E,Zhu J,King J,Malevich S B,Hakim G J,Poulsen C J.2020. Glacial cooling and climate sensitivity revisited. Nature, 584(7822): 569-573. [105] Todd S P.1989. Stream-driven,high-density gravelly traction carpets: possible deposits in the Trabeg Conglomerate Formation,SW Ireland and some theoretical considerations of their origin. Sedimentology, 36(4): 513-530. [106] Tucker M E,Jones S J.2023. Sedimentary Petrology. Chichester: John Wiley & Sons. [107] Vos K,Vandenberghe N,Elsen J.2014. Surface textural analysis of quartz grains by scanning electron microscopy(SEM): from sample preparation to environmental interpretation. Earth-Science Reviews, 128: 93-104. [108] Walker T R,Mckee E D.1979. Red color in dune sand. United States Geological Survey Professional Papers, 1052: 61-81. [109] Wang C S,Feng Z Q,Zhang L M,Huang Y J,Cao K,Wang P J,Zhao B.2013. Cretaceous paleogeography and paleoclimate and the setting of SKI borehole sites in Songliao Basin,northeast China. Palaeogeography,Palaeoclimatology,Palaeoecology, 385(1): 17-30. [110] Wang C,Ding L,Zhang L Y,Kapp P,Pullen A,Yue Y H.2016. Petrogenesis of Middle-Late Triassic volcanic rocks from the Gangdese belt,southern Lhasa terrane: implications for early subduction of Neo-Tethyan oceanic lithosphere. Lithos, 262: 320-333. [111] Wang Y D,Huang C M,Sun B N,Quan C,Wu J Y,Lin Z C.2014. Paleo-CO2 variation trends and the Cretaceous greenhouse climate. Earth-Science Reviews, 129: 136-147. [112] Waugh B.1970. Formation of quartz overgrowths in the Penrith Sandstone(Lower Permian)of northwest England as revealed by scanning electron microscopy. Sedimentology, 14(3-4): 309-320. [113] Wilf P,Johnson K R,Huber B T.2003. Correlated terrestrial and marine evidence for global climate changes before mass extinction at the Cretaceous-Paleogene boundary. Proceedings of the National Academy of Sciences of the United States of America, 100(2): 599-604. [114] Wu C H,Liu C L,Yi H S,Xia G Q,Zhang H,Wang L C,Li G J,Wagreich M.2017. Mid-Cretaceous desert system in the Simao Basin,southwestern China,and its implications for sea-level change during a greenhouse climate. Palaeogeography,Palaeoclimatology,Palaeoecology, 468: 529-544. [115] Wu C H,Rodríguez-López J P,Santosh M.2022. Plateau archives of lithosphere dynamics,cryosphere and paleoclimate: the formation of Cretaceous desert basins in East Asia. Geoscience Frontiers, 13(6): 101454. [116] Wu C H,Sun X M,Li G W,Huang L Q,Jiao H J,Li Z W,Jian X,Mason C C,Rodríguez-López J P.2023. Cretaceous mountain building processes triggered the aridification and drainage evolution in East Asia. GSA Bulletin, 11: 20-43. [117] Wu G X,Liu Y M,He B,Bao Q,Duan A M,Jin F F.2012. Thermal controls on the Asian summer monsoon. Scientific Reports, 2(1): 404-415. [118] Xiao R Y,Zheng Y,Liu X C,Yang Q,Liu G,Xia L,Bian Z,Guan J,Feng P,Xu H,Clift P D,Qiang X,Zhang Y,Zheng H.2021. Synchronous sedimentation in Gonjo Basin,southeast Tibet in response to India-Asia collision constrained by magnetostratigraphy. Geochemistry,Geophysics,Geosystems, 22(3): e2020GC-009411. [119] Xiong Z Y,Ding L,Spicer R A,Farnsworth A,Wang X,Valdes P J,Su T,Zhang Q H,Zhang L Y,Cai F L,Wang H Q,Li Z Y,Song P P,Guo X D,Yue Y H.2020. The early Eocene rise of the Gonjo Basin,SE Tibet: from low desert to high forest. Earth and Planetary Science Letters, 54(3): 116312. [120] Xu H,Liu Y Q,Kuang H W,Peng N.2019. Late Jurassic fluvial-eolian deposits from the Tianchihe Formation,Ningwu-Jingle Basin,Shanxi Province,China. Journal of Asian Earth Sciences, 174: 245-262. [121] Yin A,Harrison T M.2000. Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences, 28(1): 211-280. [122] Yu X C,Liu C L,Wang C L,Wang J Y.2021. Late Cretaceous aeolian desert system within the Mesozoic fold belt of South China: palaeoclimatic changes and tectonic forcing of East Asian erg development and preservation. Palaeogeography,Palaeoclimatology,Palaeoecology, 567: 110299. [123] Zhang J,Liu Y G,Fang X,Zhang T,Zhu C G,Wang C S.2021a. Elevation of the Gangdese Mountains and their impacts on Asian climate during the Late Cretaceous: a modeling study. Frontiers in Earth Science, 9(1): 12-70. [124] Zhang J,Liu Y G,Flögel S,Zhang T,Wang C S,Fang X M.2021b. Altitude of the East Asian coastal mountains and their influence on Asian climate during Early Late Cretaceous. Journal of Geophysical Research: Atmospheres, 126(22): e2020JD034413. [125] Zhang Y,Huang W T,Huang B C,Hinsbergen D V,Yang T,Dupont-Nivet G,Guo Z J.2018.53-43 Ma deformation of eastern Tibet revealed by three stages of tectonic rotation in the Gonjo Basin. Journal of Geophysical Research: Solid Earth, 123(5): 3320-3338. [126] Zhu D C,Wang Q,Cawood P A,Zhao Z D,Mo X X.2017. Raising the Gangdese Mountains in southern Tibet. Journal of Geophysical Research: Solid Earth, 122(1): 214-223.