Pore formation and preservation mechanisms of ancient deep tight sandstone reservoirs: a case study of the Mesoproterozoic Changcheng System in Ordos Basin
LIU Hengyu1,2, LIU Mingjie1,2, HAO Zhilei3, REN Yin4, WU Enyu1,2, XU Han1,2, ZHONG Shoukang1,2, TAN Xiucheng1,2, ZENG Wei1,2, LIAN Chengbo1,2, DAI Hongming1,2
1 Sichuan Natural Gas Geology Key Laboratory,Southwest Petroleum University,Chengdu 610500,China; 2 School of Geoscience and Technology,Southwest Petroleum University,Chengdu 610500,China; 3 Exploration Department,PetroChina Changqing Oilfield Company,Xi'an 710018,China; 4 Geology Research Institute,Greatwall Drilling of CNPC,Liaoning Panjin 124010,China
Abstract To investigate the pore formation and preservation mechanisms of ancient deep tight sandstone reservoirs,a combination of core,thin section,scanning electron microscopy,X-ray diffraction and fluid inclusion analysis techniques was used to systematically analyze the sedimentary environment,petrology,reservoir space,porosity and diagenesis of the deep sandstone reservoirs of the Changcheng System in the central and eastern Ordos Basin. On this basis,the mechanisms of pore formation and preservation was clarified. The results show that the Changcheng System mainly develops quartz sandstone and lithic quartz sandstone in tidal channel sedimentary environment,with medium textural maturity and high compositional maturity. The reservoir space is dominated by residual intergranular pores and intragranular dissolution pores of rock fragments,with an average porosity of 6.6%. The compaction of the Changcheng System sandstone is generally strong,and it is mainly composed of quartz and illite cementation. The acidic dissolution of rock fragment is the most developed,followed by alkaline dissolution of quartz. The results indicate that the coarse grain size,good sorting and low matrix content are the main reasons for the primary pore development in the Changcheng System tidal channel sandstones,which formed under strong hydrodynamic conditions. The Changcheng System sandstone reservoirs have experienced leaching dissolution of meteoric fresh water during the early stage,organic acids dissolution during the middle stage and alkaline dissolution of quartz during the late stage,which provides favorable conditions to the formation of secondary pores. The pore preservation of the Changcheng System sandstone reservoirs is mainly attributed to the rich in rigid compressive quartz grains,coarse grain size and good sorting,the quartz cementation inhibited by early authigenic clay coating and the burial process of early long-term shallow burial and rapid deep burial in the later stage.
Fund:Financially supported by the National Natural Science Foundation of China(No.41872154)
Corresponding Authors:
LIU Mingjie,born in 1985,associate professor,is mainly engaged in oil and gas reservoir geology. E-mail: mjliu@swpu.edu.cn.
About author: About the first author LIU Hengyu,born in 1996,master degree candidate,is mainly engaged in oil and gas reservoir geology. E-mail: 202121000111@stu.swpu.edu.cn.
Cite this article:
LIU Hengyu,LIU Mingjie,HAO Zhilei et al. Pore formation and preservation mechanisms of ancient deep tight sandstone reservoirs: a case study of the Mesoproterozoic Changcheng System in Ordos Basin[J]. JOPC, 2024, 26(6): 1435-1451.
LIU Hengyu,LIU Mingjie,HAO Zhilei et al. Pore formation and preservation mechanisms of ancient deep tight sandstone reservoirs: a case study of the Mesoproterozoic Changcheng System in Ordos Basin[J]. JOPC, 2024, 26(6): 1435-1451.
[1] 白海峰,包洪平,李泽敏,郝松立,武春英,井向辉. 2020. 鄂尔多斯盆地元古界长城系沉积特征及天然气成藏潜力. 地质科学, 55(3): 672-691. [Bai H F,Bao H P,Li Z M,Hao S L,Wu C Y,Jing X H.2020. Sedimentary characteristics and gas accumulation potential of Changcheng System in Ordos Basin in Proterozoic. Chinese Journal of Geology(Scientia Geologica Sinica), 55(3): 672-691] [2] 曹天宇,钟大康,牛胜利,孙海涛,曹轩,王菲. 2020. 惠州凹陷东部珠海组储层碱性成岩作用及孔隙演化. 沉积学报, 38(6): 1327-1337. [Cao T Y,Zhong D K,Niu S L,Sun H T,Cao X,Wang F.2020. Alkaline diagenesis and porosity evolution of Zhuhai formation reservoirs in eastern Huizhou sag. Acta Sedimentologica Sinica, 38(6): 1327-1337] [3] 操应长,远光辉,杨海军,王艳忠,刘可禹,昝念民,葸克来,王健. 2022a. 含油气盆地深层—超深层碎屑岩油气勘探现状与优质储层成因研究进展. 石油学报, 43(1): 112-140. [Cao Y C,Yuan G H,Yang H J,Wang Y Z,Liu K Y,Zan N M,Xi K L,Wang J.2022a. Current situation of oil and gas exploration and research progress of the origin of high-quality reservoirs in deep-ultra-deep clastic reservoirs of petroliferous basins. Acta Petrolei Sinica, 43(1): 112-140] [4] 操应长,远光辉,王艳忠,昝念民,靳子濠,刘可禹,葸克来,魏亦晗,孙沛沛. 2022b. 典型含油气盆地深层富长石碎屑岩储层长石溶蚀接力成孔认识及其油气地质意义. 中国科学: 地球科学, 52(9): 1694-1725. [Cao Y C,Yuan G H,Wang Y Z,Zan N M,Jin Z H,Liu K Y,Xi K L,Wei Y H,Sun P P.2022b. Understanding of relay pore-forming of feldspar dissolution in deep feldspar-rich clastic reservoirs in typical oil-gas-bearing basins and its petroleum geological significance. Scientia Sinica(Terrae), 52(9): 1694-1725] [5] 常丽华,陈曼云,金巍,李世超,于介江. 2006. 透明矿物薄片鉴定手册. 北京: 地质出版社,111-112. [Chang L H,Chen M Y,Jin W,Li S C,Yu J J.2006. Handbook of Transparent Mineral Flake Identification. Beijing: Geological Publishing House,111-112] [6] 丁晓琪,韩玫梅,张哨楠,伏美燕,万友利. 2014. 大气淡水在碎屑岩次生孔隙中的作用. 地质论评, 60(1): 145-158. [Ding X Q,Han M M,Zhang S N,Fu M Y,Wan Y L.2014. Roles of meteoric water on secondary porosity of siliciclastic reservoirs. Geological Review, 60(1): 145-158] [7] 杜金虎,李相博,包洪平,徐旺林,王雅婷,黄军平,王宏波,完颜容,王菁. 2019. 鄂尔多斯盆地中新元古界—下古生界天然气成藏地质条件及勘探新领域. 石油勘探与开发, 46(5): 820-835. [Du J H,Li X B,Bao H P,Xu W L,Wang Y T,Huang J P,Wang H B,Wanyan R,Wang J.2019. Geological conditions of natural gas accumulation and new exploration areas in the Mesoproterozoic to Lower Paleozoic of Ordos Basin,NW China. Petroleum Exploration and Development, 46(5): 820-835] [8] 冯娟萍,丁雪峰,欧阳征健. 2015. 鄂尔多斯盆地南缘中元古界长城系烃源岩地球化学特征. 西安科技大学学报, 35(6): 749-754. [Feng J P,Ding X F,Ouyang Z J.2015. Geochemical characteristics of Mesoproterozoic Erathem Changchengian system source rocks in the south margins of Ordos Basin. Journal of Xi'an University of Science and Technology, 35(6): 749-754] [9] 付金华,赵会涛,董国栋,韩天佑,任军峰,黄正良,卢子兴,朱保定,朱静,殷亮亮,李士祥. 2023. 鄂尔多斯盆地新领域油气勘探发现与前景展望. 天然气地球科学, 34(8): 1289-1304. [Fu J H,Zhao H T,Dong G D,Han T Y,Ren J F,Huang Z L,Lu Z X,Zhu B D,Zhu J,Yin L L,Li S X.2023. Discovery and prospect of oil and gas exploration in new areas of Ordos Basin. Natural Gas Geoscience, 34(8): 1289-1304] [10] 高志勇,崔京钢,冯佳睿,罗忠,黄贤营,李小陪,赵雪松,郭美丽. 2013. 埋藏压实作用对前陆盆地深部储层的作用过程与改造机制. 石油学报, 34(5): 867-876. [Gao Z Y,Cui J G,Feng J R,Luo Z,Huang X Y,Li X P,Zhao X S,Guo M L.2013. An effect of burial compaction on deep reservoirs of foreland basins and its reworking mechanism. Acta Petrolei Sinica, 34(5): 867-876] [11] 高崇龙,纪友亮,高志勇,王剑,任影,刘大卫,段小兵,桓芝俊,程同冉. 2017. 准噶尔盆地腹部深层储层物性保存过程多因素耦合分析. 沉积学报, 35(3): 577-591. [Gao C L,Ji Y L,Gao Z Y,Wang J,Ren Y,Liu D W,Duan X B,Huan Z J,Cheng T R.2017. Multi-factor coupling analysis on property preservation process of deep buried favorable reservoir in hinterland of Junggar Basin. Acta Sedimentologica Sinica, 35(3): 577-591] [12] 管树巍,吴林,任荣,朱光有,彭朝全,赵文韬,李杰. 2017. 中国主要克拉通前寒武纪裂谷分布与油气勘探前景. 石油学报, 38(1): 9-22. [Guan S W,Wu L,Ren R,Zhu G Y,Peng Z Q,Zhao W T,Li J.2017. Distribution and petroleum prospect of Precambrian rifts in the main cratons,China. Acta Petrolei Sinica, 38(1): 9-22] [13] 郝松立,孙六一,包洪平,刘刚,章贵松. 2016. 鄂尔多斯盆地中—新元古界勘探方向及潜力. 天然气地球科学, 27(12): 2127-2135. [Hao S L,Sun L Y,Bao H P,Liu G,Zhang G S.2016. Exploration direction and potential of the Middle-Upper Proterozoic in Ordos Basin. Natural Gas Geoscience, 27(12): 2127-2135] [14] 黄思静,武文慧,刘洁,沈立成,黄成刚. 2003. 大气水在碎屑岩次生孔隙形成中的作用: 以鄂尔多斯盆地三叠系延长组为例. 地球科学, 28(4): 419-424. [Huang S J,Wu W H,Liu J,Shen L C,Huang C G.2003. Generation of secondary porosity by meteoric water during time of subaerial exposure: an example from Yanchang formation sandstone of Triassic of Ordos Basin. Earth Science, 28(4): 419-424] [15] 黄思静,黄可可,冯文立,佟宏鹏,刘丽红,张雪花. 2009. 成岩过程中长石、高岭石、伊利石之间的物质交换与次生孔隙的形成: 来自鄂尔多斯盆地上古生界和川西凹陷三叠系须家河组的研究. 地球化学, 38(5): 498-506. [Huang S J,Huang K K,Feng W L,Tong H P,Liu L H,Zhang X H.2009. Mass exchanges among feldspar,kaolinite and illite and their influences on secondary porosity formation in clastic diagenesis: a case study on the Upper Paleozoic,Ordos Basin and Xujiahe Formation,Western Sichuan Depression. Geochimica, 38(5): 498-506] [16] 胡作维,李云,黄思静,成欣怡,黄阳. 2012. 颗粒包膜在深埋藏砂岩储层原生孔隙保存中的意义. 矿物岩石地球化学通报, 31(6): 640-648. [Hu Z W,Li Y,Huang S J,Cheng X Y,Huang Y.2012. The significance of the grain coating in preserving the primary porosity in deeply buried sandstone reservoirs. Bulletin of Mineralogy,Petrology and Geochemistry, 31(6): 640-648] [17] 金凤鸣,张凯逊,王权,牛新杰,于作刚,白国平,赵璇. 2018. 断陷盆地深层优质碎屑岩储集层发育机理: 以渤海湾盆地饶阳凹陷为例. 石油勘探与开发, 45(2): 247-256. [Jin F M,Zhang K X,Wang Q,Niu X J,Yu Z G,Bai G P,Zhao X.2018. Formation mechanisms of good-quality clastic reservoirs in deep formations in rifted basins: a case study of Raoyang sag in Bohai Bay Basin,East China. Petroleum Exploration and Development, 45(2): 247-256] [18] 雷德文,唐勇,常秋生. 2008. 准噶尔盆地南缘深部优质储集层及有利勘探领域. 新疆石油地质, 29(4): 435-438. [Lei D W,Tang Y,Chang Q S.2008. The deep and relatively high-quality clastic reservoir bodies and favorable exploration areas in southern margin of Junggar Basin. Xinjiang Petroleum Geology, 29(4): 435-438] [19] 李云,胡作维. 2014. 深层砂岩储层中微晶石英包膜的形成及其对原生粒间孔隙的保存意义. 地质科技情报, 33(3): 87-92. [Li Y,Hu Z W.2014. Formation of the microcrystalline quartz coatings and its protection of the primary intergranular porosity in the deeply-buried sandstone reservoirs. Geological Science and Technology Information, 33(3): 87-92] [20] 刘金库,彭军,石岩,鲍作帆,孙永亮,刘学敏,张泽. 2015. 致密砂岩储层石英溶蚀成因及对孔隙发育的影响: 以川中—川南过渡带须家河组为例. 石油学报, 36(9): 1090-1097. [Liu J K,Peng J,Shi Y,Bao Z F,Sun Y L,Liu X M,Zhang Z.2015. The genesis of quartz dissolution in tight sand reservoirs and its impact on pore development: a case study of Xujiahe Formation in the transitional zone of Central-Southern Sichuan Basin. Acta Petrolei Sinica, 36(9): 1090-1097] [21] 路媛媛. 2021. 临兴气田上古生界致密砂岩储层发育特征及主控因素. 非常规油气, 8(1): 43-50. [Lu Y Y.2021. Characteristics and main controlling factors of tight sandstone reservoir of upper Paleozoic in Linxing gas field. Unconventional Oil & Gas, 8(1): 43-50] [22] 孟万斌,吕正祥,冯明石,张世华,李敏,麦发海. 2011. 致密砂岩自生伊利石的成因及其对相对优质储层发育的影响: 以川西地区须四段储层为例. 石油学报, 32(5): 783-790. [Meng W B,Lü Z X,Feng M S,Zhang S H,Li M,Mai F H.2011. The origin of authigenic illite in tight sandstones and its effect on the formation of relatively high-quality reservoirs: a case study on sandstones in the 4th member of Xujiahe Formation,western Sichuan Basin. Acta Petrolei Sinica, 32(5): 783-790] [23] 欧阳征健,冯娟萍,马海勇,李文厚. 2020. 鄂尔多斯地区中元古界长城系沉积特征研究. 西北大学学报(自然科学版), 50(1): 105-112. [Ouyang Z J,Feng J P,Ma H Y,Li W H.2020. The sedimentary characteristics of the Middle Proterozoic Changchengian system in Ordos area. Journal of Northwest University(Natural Science Edition), 50(1): 105-112] [24] 邱隆伟,姜在兴,陈文学,李晓红,熊志东. 2002. 一种新的储层孔隙成因类型: 石英溶解型次生孔隙. 沉积学报, 20(4): 621-627. [Qiu L W,Jiang Z X,Chen W X,Li X H,Xiong Z D.2002. A new type of secondary porosity: quartz dissolution porosity. Acta Sedimentologica Sinica, 20(4): 621-627] [25] 田建锋,高永利,张蓬勃,王秀娟,杨友运. 2013. 鄂尔多斯盆地合水地区长7致密油储层伊利石成因. 石油与天然气地质, 34(5): 700-707. [Tian J F,Gao Y L,Zhang P B,Wang X J,Yang Y Y.2013. Genesis of illite in Chang 7 tight oil reservoir in Heshui area,Ordos Basin. Oil & Gas Geology, 34(5): 700-707] [26] 田刚,宋立军. 2017. 鄂尔多斯盆地中元古界烃源岩热演化史模拟. 石油实验地质, 39(4): 520-526. [Tian G,Song L J.2017. Thermal evolution modeling of Mesoproterozoic source rocks in the Ordos Basin. Petroleum Geology & Experiment, 39(4): 520-526] [27] 田兵,郑有伟,赵俊梅,朱雪峰,何滔,罗晓峰. 2022. 深层碎屑岩储层异常高孔研究进展. 科学技术与工程, 22(22): 9456-9465. [Tian B,Zheng Y W,Zhao J M,Zhu X F,He T,Luo X F.2022. Research development in anomalously high porosity of deep clastic reservoirs. Science Technology and Engineering, 22(22): 9456-9465] [28] 万友利,丁晓琪,白晓亮,黄方方,朱志良. 2014. 塔中地区志留系海相碎屑岩储层石英溶蚀成因及影响因素分析. 沉积学报, 32(1): 138-147. [Wan Y L,Ding X Q,Bai X L,Huang F F,Zhu Z L.2014. Quartz dissolution causes and influencing factors in the Silurian marine clastic reservoir rocks in central Tarim Basin. Acta Sedimentologica Sinica, 32(1): 138-147] [29] 王汇智,赵卫卫,杨水胜,王如意. 2022. 鄂尔多斯盆地下寺湾地区延长组储层特征研究. 非常规油气, 9(1): 48-56. [Wang H Z,Zhao W W,Yang S S,Wang R Y.2022. Research of reservoir characteristics of Yanchang Formation in Xiasiwan Area,Ordos Basin. Unconventional Oil & Gas, 9(1): 48-56] [30] 王铁冠,韩克猷. 2011. 论中—新元古界的原生油气资源. 石油学报, 32(1): 1-7. [Wang T G,Han K Y.2011. On Meso-Neoproterozoic primary petroleum resources. Acta Petrolei Sinica, 32(1): 1-7] [31] 王玺童,王怀厂,官玉龙,刘文香,罗顺社,吕奇奇,张严. 2021. 山西黎城中元古界长城系常州沟组岩石学特征和沉积环境. 海相油气地质, 26(1): 71-80. [Wang X T,Wang H C,Guan Y L,Liu W X,Luo S S,Lü Q Q,Zhang Y.2021. Petrological characteristics and sedimentary environment of Changzhougou Formation of the Mesoproterozoic Changcheng System in Licheng,Shanxi. Marine Origin Petroleum Geology, 26(1): 71-80] [32] 魏柳斌,赵俊兴,苏中堂,魏新善,任军峰,黄正良,武春英. 2021. 鄂尔多斯盆地奥陶系中组合微生物碳酸盐岩分布规律及沉积模式. 石油勘探与开发, 48(6): 1162-1174. [Wei L B,Zhao J X,Su Z T,Wei X S,Ren J F,Huang Z L,Wu C Y.2021. Distribution and depositional model of microbial carbonates in the Ordovician middle assemblage,Ordos Basin,NW China. Petroleum Exploration and Development, 48(6): 1162-1174] [33] 杨俊杰. 2002. 鄂尔多斯盆地构造演化与油气分布规律. 北京: 石油工业出版社,50-56. [Yang J J.2002. Tectonic Evolution and Oil-Gas Reservoirs Distribution in Ordos Basin. Beijing: Petroleum Industry Press,50-56] [34] 杨香华,叶加仁,孙永传,周士科,武文来. 1998. 歧南断阶带深层沙二段砂岩成岩演化特征与孔隙保存. 中国海上油气地质,10(4): 242-249. [Yang X H,Ye J R,Sun Y C,Zhou S K,Wu W L.1998. Diagenesis evolution and preservation of porosity in the member 2,Shahejie Formation,Qi'nan fault-step zone. China Offshore Oil and Gas,10(4): 242-249] [35] 于春勇. 2021. 富县地区长8致密砂岩储层孔隙结构特征及形成机理. 非常规油气, 8(1): 15-24. [Yu C Y.2021. Pore structure characteristics and formation mechanism of Chang 8 member tight sandstone reservoir in Fuxian area. Unconventional Oil & Gas, 8(1): 15-24] [36] 宇振昆,丁金岗,冯振伟,姜柳青,李汉林,常小斌,宗浩,梁积伟. 2021. 准噶尔盆地玛湖凹陷二叠系风城组碱性成岩作用浅析. 非常规油气, 8(2): 24-32. [Yu Z K,Ding J G,Feng Z W,Jiang L Q,Li H L,Chang X B,Zong H,Liang J W.2021. Analysis on alkaline diagenesis of the Permian Fengcheng formation in Mahu sag,Junggar Basin. Unconventional Oil & Gas, 8(2): 24-32] [37] 远光辉,操应长,贾珍臻,王艳忠,杨田. 2015. 含油气盆地中深层碎屑岩储层异常高孔带研究进展. 天然气地球科学, 26(1): 28-42. [Yuan G H,Cao Y C,Jia Z Z,Wang Y Z,Yang T.2015. Research progress on anomalously high porosity zones in deeply buried clastic reservoirs in petroliferous basin. Natural Gas Geoscience, 26(1): 28-42] [38] 钟大康,朱筱敏,周新源,王招明. 2007. 初论塔里木盆地砂岩储层中SiO2的溶蚀类型及其机理. 地质科学, 42(2): 403-414. [Zhong D K,Zhu X M,Zhou X Y,Wang Z M.2007. An approach to categories and mechanisms of SiO2 dissolution in sandstone reservoirs in the Tarim Basin. Chinese Journal of Geology(Scientia Geologica Sinica), 42(2): 403-414] [39] 钟大康,朱筱敏,王红军. 2008. 中国深层优质碎屑岩储层特征与形成机理分析. 中国科学(D辑: 地球科学),38(S1): 11-18. [Zhong D K,Zhu X M,Wang H J.2008. Characteristics and formation mechanism of deep high-quality clastic reservoir in China. Science in China(Series D: Earth Sciences),38(S1): 11-18] [40] 张鹏辉,Lee Yong Il,张金亮,梁杰,武英利,袁勇,王晋晨,刘璐晨,王正云,付俊杰. 2019. 砂岩储集层粒间孔隙保存机制. 天然气工业, 39(7): 31-40. [Zhang P H,Il L,Zhang J L,Liang J,Wu Y L,Yuan Y,Wang J C,Liu L C,Wang Z Y,Fu J J.2019. Preservation mechanisms of intergranular pores in sandstone reservoirs. Natural Gas Industry, 39(7): 31-40] [41] 张威,闫相宾,刘超英,陆永潮,安川,范玲玲,归平军. 2023. 鄂尔多斯盆地北部中元古界潜山圈闭特征与成藏模式. 地质学报, 97(1): 168-178. [Zhang W,Yan X B,Liu C Y,Lu Y C,An C,Fan L L,Gui P J.2023. Characteristics and reservoir forming model of Mesoproterozoic buried hill traps in the northern Ordos Basin. Acta Geologica Sinica, 97(1): 168-178] [42] 赵文智,胡素云,汪泽成,张水昌,王铜山. 2018. 中国元古界—寒武系油气地质条件与勘探地位. 石油勘探与开发, 45(1): 1-13. [Zhao W Z,Hu S Y,Wang Z C,Zhang S C,Wang T S.2018. Petroleum geological conditions and exploration importance of Proterozoic to Cambrian in China. Petroleum Exploration and Development, 45(1): 1-13] [43] 邹才能,杜金虎,徐春春,汪泽成,张宝民,魏国齐,王铜山,姚根顺,邓胜徽,刘静江,周慧,徐安娜,杨智,姜华,谷志东. 2014. 四川盆地震旦系—寒武系特大型气田形成分布、资源潜力及勘探发现. 石油勘探与开发, 41(3): 278-293. [Zou C N,Du J H,Xu C C,Wang Z C,Zhang B M,Wei G Q,Wang T S,Yao G S,Deng S H,Liu J J,Zhou H,Xu A N,Yang Z,Jiang H,Gu Z D.2014. Formation,distribution,resource potential and discovery of the Sinian-Cambrian giant gas field,Sichuan Basin,SW China. Petroleum Exploration and Development, 41(3): 278-293] [44] Dove P M.1994. The dissolution kinetics of quartz in sodium chloride solutions at 25 degrees to 300 degrees C. American Journal of Science, 294: 665-712.