A Study on mineralogical and in-situ geochemical characteristics of pyrite under different sedimentary environments in the South China Sea
ZHANG Yaru1, ZHANG Guanglu1, YANG Jun1, ZHAO Yanyan1,2, GUAN Hongxiang1,2, LIU Sheng1
1 Frontiers Science Center for Deep Ocean Multispheres and Earth System,Key Lab of Submarine Geosciences and Prospecting Techniques,MOE and College of Marine Geosciences,Ocean University of China,Shandong Qingdao 266100,China; 2 Laboratory for Marine Geology,National Laboratory for Marine Science and Technology(Qingdao), Shandong Qingdao 266237,China
Abstract Pyrite is a common mineral in sediments and sedimentary rocks,and its geochemical characteristics can clearly indicate the surrounding sedimentary environment. However,the differences in geochemical characteristics of pyrite and the controlling factors of its formation are still unclear. This study uses scanning electron microscope and laser ablation inductively coupled plasma mass spectrometry to study the morphology and in-situ geochemical characteristics of pyrite in different sedimentary environments in the South China Sea. The results show that the contents of pyrite and δ34S values at site SH-CL38 exhibit a mirror-image relationship,representing the pyrite formed in a normal marine sedimentary environment,which is controlled by organoclastic sulfate reduction;The extremely low δ13C value(-45.55‰)of authigenic carbonate particles at site F indicates methane seepage,and the formation of pyrite is related to sulfate-driven anaerobic oxidation of methane process. There are significant differences in the geochemical distribution of pyrite micro-areas between the two sites: the contents of Mn,Co,Ni,Mo,and Sb in pyrite at site SH-CL38 are higher than those at site F,which may be caused by the reducing dissolution of iron and manganese(hydrogen)oxide. In contrast,the content of Cu,V,As,and Cd in pyrite at site F is higher than that at site SH-CL38,which may be influenced by organic matter mineralization. The Ca and Mg content of pyrite particles indicate that,under methane seepage condition at the site F,authigenic calcite with low Mg and high Ca was preferentially precipitated,resulting in the later precipitated pyrite having high Mg and low Ca characteristics. The differences in morphology and trace element content of pyrite in two different sedimentary environments indicate that the mineralogical and geochemical characteristics of pyrite can be used to identify methane seepage.
Fund:Co-funded by the National Natural Science Foundation of China(No.42121005),the Fundamental Research Funds for the Central Universities(Nos. 202172002,202172003)and the Young Taishan Scholars Program(No. tsqn202211069)
Corresponding Authors:
ZHAO Yanyan,born in 1978,a professor and director of Ph.D. candidate,is mainly engaged in research on marine sedimentary chemistry. E-mail: zhaoyanyan@ouc.edu.cn.
About author: About the first author ZHANG Yaru,born in 1998,master degree candidate,is mainly engaged in research on sedimentology. E-mail: yaruzhang0929@163.com.
Cite this article:
ZHANG Yaru,ZHANG Guanglu,YANG Jun et al. A Study on mineralogical and in-situ geochemical characteristics of pyrite under different sedimentary environments in the South China Sea[J]. JOPC, 2024, 26(6): 1498-1515.
ZHANG Yaru,ZHANG Guanglu,YANG Jun et al. A Study on mineralogical and in-situ geochemical characteristics of pyrite under different sedimentary environments in the South China Sea[J]. JOPC, 2024, 26(6): 1498-1515.
[1] 常鑫,张明宇,谷玉,王厚杰,刘喜停. 2020. 黄、东海陆架泥质区自生黄铁矿成因及其控制因素. 地球科学进展, 35(12): 1306-1320. [Chang X,Zhang M Y,Gu Y,Wang H J,Liu X T.2020. Formation mechanism and controlling factors of authigenic pyrite in mud sediments on the shelf of the Yellow Sea and the East China Sea. Advances in Earth Science, 35(12): 1306-1320] [2] 陈唯,赵彦彦,李三忠,唐智能,杨俊,魏浩天,吴佳庆,朱俊江,刘盛,董涛,张广璐,杨丹丹,孙国静. 2021. 南海北部陆坡神狐海域SH-CL38站位的粒度特征及沉积记录. 海洋地质与第四纪地质, 41(5): 90-100. [Chen W,Zhao Y Y,Li S Z,Tang Z N,Yang J,Wei H T,Wu J Q,Zhu J J,Liu S,Dong T,Zhang G L,Yang D D,Sun G J.2021. Sediment grain size characteristics of the Core SH-CL38 in the Shenhu area on the northern continental slope of the South China Sea. Marine Geology & Quaternary Geology, 41(5): 90-100] [3] 陈忠,颜文,陈木宏,陆钧,古森昌. 2007. 南沙海槽表层沉积自生石膏—黄铁矿组合的成因及其对天然气渗漏的指示意义. 海洋地质与第四纪地质, 27(2): 91-100. [Chen Z,Yan W,Chen M H,Lu J,Gu S C.2007. Formation of authigenic gypsum and pyrite assemblage and its significance to gas ventings in NanSha Trough,South China Sea. Marine Geology & Quaternary Geology, 27(2): 91-100] [4] 初凤友,陈丽蓉,申顺喜,石学法. 1994. 南黄海沉积物中自生黄铁矿的形态标型研究. 海洋与湖沼, 25(5): 461-467, 573-574. [Chu F Y,Chen L R,Shen S X,Shi X F.1994. Morphological typology of autogenic pyrite in sediments of the South Yellow Sea. Oceanologia et Limnologia Sinica, 25(5): 461-467, 573-574] [5] 林杞. 2016. 南海北部天然气水合物赋存区沉积物中自生矿物特征及其硫酸盐—甲烷转换带指示意义. 中国地质大学(武汉)博士学位论文: 1-98. [Lin Q.2016. Authigenic minerals in the sediments from gas hydrate-bearing regions in the northern South China Sea and its implication for sulfate-methane transition zone. Doctoral dissertation of China University of Geosciences(Wuhan): 1-98] [6] 刘晨辉. 2016. 海洋天然气水合物区硫酸盐—甲烷过渡带铁、硫组分和硫同位素地球化学研究. 南京大学博士学位论文: 1-245. [Liu C H.2016. A study of iron and sulfur species and sulfur isotope geochemistry in marine sediments from gas hydrate-bearing regions: implications for sulfate-methane transition zone. Doctoral dissertation of Nanjing University: 1-245] [7] 刘升发,石学法,刘焱光,朱爱美,宋晓红. 2010. 东海内陆架泥质区表层沉积物常量元素地球化学及其地质意义. 海洋科学进展, 28(1): 80-86. [Liu S F,Shi X F,Liu Y G,Zhu A M,Song X H.2010. Geochemical characteristics and geological significance of major elements in the surface sediments from the inner shelf mud area of the East China Sea. Advances in Marine Science, 28(1): 80-86] [8] 蒲晓强,钟少军,李艳,于雯泉,刘刚,姜在兴. 2009. 南海北部陆坡NH-1孔沉积物中碳酸盐碳同位素特征及其地球化学意义. 中国石油大学学报(自然科学版), 33(2): 40-48. [Pu X Q,Zhong S J,Li Y,Yu W Q,Liu G,Jiang Z X.2009. Carbon isotope characteristics of carbonate minerals in sediments of Core NH-1 on the northern continental slope of the South China Sea and their geochemical implications. Journal of China University of Petroleum(Science & Technology Edition), 33(2): 40-48] [9] 童铄云,潘诗洋,胡伟康,刘爽,董学林,鲁力. 2023. 激光剥蚀—电感耦合等离子体质谱(LA-ICP-MS)法测定底栖有孔虫中的元素/钙比值. 中国无机分析化学, 13(9): 967-974. [Tong S Y,Pan S Y,Hu W K,Liu S,Dong X L,Lu L.2023. Determination of element/calcium ratio in benthic foraminifera by laser ablation-inductively coupled plasma mass spectrometry(LA-ICP-MS). Chinese Journal of Inorganic Analytical Chemistry, 13(9): 967-974] [10] 王冰,栾振东,张鑫,席世川,李连福,连超,阎军,陈长安. 2019. 台湾岛西南海域福尔摩沙海脊冷泉区地形地貌特征分析. 海洋科学, 43(2): 51-59. [Wang B,Luan Z D,Zhang X,Xi S C,Li L F,Lian C,Yan J,Chen C A.2019. Analysis of topographic and geomorphological characteristics in the cold seep area of the Formosa Ridge in the southwestern waters of Taiwan Island. Marine Sciences, 43(2): 51-59] [11] 王珺. 2007. 海南岛周边浅海沉积物中黄铁矿与碳酸盐矿物特征及成因研究. 中国地质大学(北京)硕士学位论文: 1-56. [Wang J.2007. Study on the mineral characteristics and geneses of pyrite and carbonate in the shallow water sediments around Hainan Island. Master's dissertation of China University of Geosciences(Beijing): 1-56] [12] 王蒙,蔡峰,李清,梁杰,闫桂京,董刚,王丰,邵和宾,胡高伟. 2015. 冲绳海槽79站位A孔甲烷渗漏影响下的自生黄铁矿及其硫同位素特征. 中国科学: 地球科学, 45(12): 1819-1828. [Wang M,Cai F,Li Q,Liang J,Yan G J,Dong G,Wang F,Shao H B,Hu G W.2015. Characteristics of authigenic pyrite and its sulfur isotopes influenced by methane seep at Core A,Site 79 of the middle Okinawa Trough. Scientia Sinica(Terrae), 45(12): 1819-1828] [13] 尉建功,苗晓明,李景瑞,李文静,张云山,但孝鹏. 2022. 南海北部冷泉碳酸盐岩研究进展及其对大洋钻探选址的指导意义. 地质学报, 96(8): 2800-2808. [Wei J G,Miao X M,Li J R,Li W J,Zhang Y S,Dan X P.2022. Research progress on cold seep carbonates in the northern South China Sea and its guiding significance for scientific drilling site selection. Acta Geologica Sinica, 96(8): 2800-2808] [14] 邬黛黛,吴能友,张美,管红香,付少英,杨睿. 2013. 东沙海域SMI与甲烷通量的关系及对水合物的指示. 地球科学, 38(6): 1309-1320. [Wu D D,Wu N Y,Zhang M,Guan H X,Fu S Y,Yang R.2013. Relationship of sulfate-methane interface(SMI),methane flux and the underlying gas hydrate in Dongsha area,northern South China Sea. Earth Science, 38(6): 1309-1320] [15] 吴庐山,杨胜雄,梁金强,苏新,付少英,沙志彬,杨涛. 2013. 南海北部神狐海域沉积物中孔隙水硫酸盐梯度变化特征及其对天然气水合物的指示意义. 中国科学: 地球科学, 43(3): 339-350. [Wu L S,Yang S X,Liang J Q,Su X,Fu S Y,Sha Z B,Yang T.2013. Characteristics of sulfate gradient changes in pore water in sediments of the Shenhu area in the northern South China Sea and its indicative significance for natural gas hydrates. Scientia Sinica(Terrae), 43(3): 339-350] [16] 吴能友,张海啟,杨胜雄,梁金强,王宏斌. 2007. 南海神狐海域天然气水合物成藏系统初探. 天然气工业, 27(9): 1-6, 125. [Wu N Y,Zhang H Q,Yang S X,Liang J Q,Wang H B.2007. Preliminary discussion on natural gas hydrate(NGH)reservoir system of Shenhu area, north slope of South China Sea. Natural Gas Industry, 27(9): 1-6, 125] [17] 肖倩文,冯秀丽,苗晓明. 2021. 南海北部神狐海域SH37岩心浊流沉积及其物源分析. 海洋地质与第四纪地质, 41(5): 101-111. [Xiao Q W,Feng X L,Miao X M.2021. Turbidity deposits and their provenance: evidence from Core SH37 in Shenhu area of the South China Sea. Marine Geology & Quaternary Geology, 41(5): 101-111] [18] 杨丹丹,刘盛,张志顺,赵彦彦,杨俊,魏浩天,张广璐,孙国静,郭晓强. 2022. 南海北部神狐海域不同粒级沉积物的地球化学特征及其物源指示意义. 中国海洋大学学报(自然科学版), 52(10): 109-126. [Yang D D,Liu S,Zhang Z S,Zhao Y Y,Yang J,Wei H T,Zhang G L,Sun G J,Guo X Q.2022. Geochemical characteristics and provenance implications of different grain size sediments in Shenhu area,northern South China Sea. Periodical of Ocean University of China(Science & Technology Edition), 52(10): 109-126] [19] 张美,陆红锋,邬黛黛,刘丽华,吴能友. 2017. 南海神狐海域自生黄铁矿分布、形貌特征及其对甲烷渗漏的指示. 海洋地质与第四纪地质, 37(6): 178-188. [Zhang M,Lu H F,Wu D D,Liu L H,Wu N Y.2017. Cross-section distribution and morphology of authigenic pyrite and their indication to methane seeps in Shenhu areas,South China Sea. Marine Geology & Quaternary Geology, 37(6): 178-188] [20] Aloisi G,Pierre C,Rouchy J M,Foucher J P,Woodside J.2000. Methane-related authigenic carbonates of eastern Mediterranean Sea mud volcanoes and their possible relation to gas hydrate destabilisation. Earth and Planetary Science Letters, 184(1): 321-338. [21] Andersson S S,Sahlström F,Jonsson E,Luth S,Lynch E P,Högdahl K,Zack T,Gies N,Sadbom S,Hansson K S A,Bergqvist M.2022. Mineral paragenesis and sulphide trace element distribution in the metamorphosed Lovisa Zn-Pb deposit,Bergslagen(Sweden),as revealed by 3D X-ray tomography,ore petrography and LA-ICP-MS analysis. Ore Geology Reviews, 140: 104611. [22] Andreae M O.1979. Arsenic speciation in seawater and interstitial waters: the influence of biological-chemical interactions on the chemistry of a trace element. Limnology and Oceanography, 24(3): 440-452. [23] Banks J,Ross D J,Keough M J.2012. Short-term(24 h)effects of mild and severe hypoxia(20% and 5% dissolved oxygen)on metal partitioning in highly contaminated estuarine sediments. Estuarine,Coastal and Shelf Science, 99: 121-131. [24] Belzile N,Chen Y W,Wang Z J.2001. Oxidation of antimony(Ⅲ)by amorphous iron and manganese oxyhydroxides. Chemical Geology, 174(4): 379-387. [25] Berner Z A,Puchelt H,Noeltner T,Kramar U T Z.2013. Pyrite geochemistry in the Toarcian Posidonia Shale of south-west Germany: evidence for contrasting trace-element patterns of diagenetic and syngenetic pyrites. Sedimentology, 60(2): 548-573. [26] Borowski W S,Rodriguez N M,Paull C K,Ussler Ⅲ W.2013. Are 34S-enriched authigenic sulfide minerals a proxy for elevated methane flux and gas hydrates in the geologic record?Marine and Petroleum Geology, 43: 381-395. [27] Breit G N,Wanty R B.1991. Vanadium accumulation in carbonaceous rocks: a review of geochemical controls during deposition and diagenesis. Chemical Geology, 91(2): 83-97. [28] Cabri L J,Campbell J L,Laflamme J G,Leigh R G,Maxwell J A,Scott J D.1985. Proton-microprobe analysis of trace elements in sulfides from some massive-sulfide deposits. The Canadian Mineralogist, 23(2): 133-148. [29] Canfield D E,Raiswell R,Westrich J T,Reaves C M,Berner R A.1986. The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales. Chemical Geology, 54(1-2): 149-155. [30] Chen C,Wang J S,Algeo T J,Zhu J M,Wang Z,Ma X C,Cen Y.2023. Sulfate-driven anaerobic oxidation of methane inferred from trace-element chemistry and nickel isotopes of pyrite. Geochimica et Cosmochimica Acta, 349: 81-95. [31] Chen D F,Feng D,Su Z,Song Z G,Chen G Q,Cathles Ⅲ L M.2006. Pyrite crystallization in seep carbonates at gas vent and hydrate site. Materials Science and Engineering C, 26(4): 602-605. [32] Chen F,Hu Y,Feng D,Zhang X,Cheng S H,Cao J,Lu H F,Chen D F.2016. Evidence of intense methane seepages from molybdenum enrichments in gas hydrate-bearing sediments of the northern South China Sea. Chemical Geology, 443: 173-181. [33] Deditius A P,Utsunomiya S,Renock D,Ewing R C,Ramana C V,Becker U,Kesler S E.2008. A proposed new type of arsenian pyrite: composition,nanostructure and geological significance. Geochimica et Cosmochimica Acta, 72(12): 2919-2933. [34] Di P F,Feng D,Tao J,Chen D F.2020. Using time-series videos to quantify methane bubbles flux from natural cold seeps in the South China Sea. Minerals, 10(3): 216. [35] Donat J R,Lao K A,Bruland K W.1994. Speciation of dissolved copper and nickel in South San Francisco Bay: a multi-method approach. Analytica Chimica Acta, 284(3): 547-571. [36] Fan L F,Lin S,Hsu C W,Tseng Y T,Yang T F,Huang K M.2018. Formation and preservation of authigenic pyrite in the methane dominated environment. Deep Sea Research Part I: Oceanographic Research Papers, 138: 60-71. [37] Feng D,Chen D F.2015. Authigenic carbonates from an active cold seep of the northern South China Sea: new insights into fluid sources and past seepage activity. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 122: 74-83. [38] Gong S G,Izon G,Peng Y B,Cao Y C,Liang Q Y,Peckmann J,Chen D F,Feng D.2022. Multiple sulfur isotope systematics of pyrite for tracing sulfate-driven anaerobic oxidation of methane. Earth and Planetary Science Letters, 597: 117827. [39] Gong H T,Qi Y Q,Gao J F,Lü C,Min K,Lan T.2023. The origin and ore-forming processes of the Qixiashan Pb-Zn-Ag deposit,South China: constraints from LA-ICP-MS analysis of pyrite and sphalerite. Journal of Geochemical Exploration, 253: 107281. [40] Gregory D D,Lyons T W,Large R R,Jiang G Q,Stepanov A S,Diamond C W,Figueroa M C,Olin P.2017. Whole rock and discrete pyrite geochemistry as complementary tracers of ancient ocean chemistry: an example from the Neoproterozoic Doushantuo Formation,China. Geochimica et Cosmochimica Acta, 216: 201-220. [41] Huerta-Diaz M A,Morse J W.1990. A quantitative method for determination of trace metal concentrations in sedimentary pyrite. Marine Chemistry, 29: 119-144. [42] Jørgensen B B,Böttcher M E,Lüschen H,Neretin L N,Volkov I I.2004. Anaerobic methane oxidation and a deep H2S sink generate isotopically heavy sulfides in Black Sea sediments. Geochimica et Cosmochimica Acta, 68(9): 2095-2118. [43] Knauer G A,Martin J H,Gordon R M.1982. Cobalt in north-east Pacific waters. Nature, 297(5861): 49-51. [44] Large R,Mukherjee I,Danyushevsky L,Gregory D,Steadman J,Corkrey R.2022. Sedimentary pyrite proxy for atmospheric oxygen: evaluation of strengths and limitations. Earth-Science Reviews, 227: 103941. [45] Lash G G.2015. Pyritization induced by anaerobic oxidation of methane(AOM): an example from the upper devonian shale succession,western New York,USA. Marine and Petroleum Geology, 68: 520-535. [46] Lee F Y,Kittrick J A.1984. Electron microprobe analysis of elements associated with zinc and copper in an oxidizing and an anaerobic soil environment. Soil Science Society of America Journal, 48(3): 548-554. [47] Lin Q,Wang J S,Taladay K,Lu H F,Hu G W,Sun F,Lin R X.2016. Coupled pyrite concentration and sulfur isotopic insight into the paleo sulfate-methane transition zone(SMTZ)in the northern South China Sea. Journal of Asian Earth Sciences, 115: 547-556. [48] Lin Z Y,Sun X M,Strauss H,Lu Y,Gong J L,Xu L,Lu H F,Teichert B M A,Peckmann J.2017. Multiple sulfur isotope constraints on sulfate-driven anaerobic oxidation of methane: evidence from authigenic pyrite in seepage areas of the South China Sea. Geochimica et Cosmochimica Acta, 211: 153-173. [49] Lin Z Y,Sun X M,Chen K Y,Strauss H,Klemd R,Smrzka D,Chen T T,Lu Y,Peckmann J.2022. Effects of sulfate reduction processes on the trace element geochemistry of sedimentary pyrite in modern seep environments. Geochimica et Cosmochimica Acta, 333: 75-94. [50] Liu X T,Li A C,Fike D A,Dong J,Xu F J,Zhuang G C,Fan D D,Yang Z S,Wang H J.2020. Environmental evolution of the East China Sea inner shelf and its constraints on pyrite sulfur contents and isotopes since the last deglaciation. Marine Geology, 429: 106307. [51] Miao X M,Feng X L,Liu X T,Li J R,Wei J G.2021. Effects of methane seepage activity on the morphology and geochemistry of authigenic pyrite. Marine and Petroleum Geology, 133: 105231. [52] Miao X,Feng X,Li J,Liu X,Liang J,Feng J,Xiao Q,Dan X,Wei J.2022. Enrichment mechanism of trace elements in pyrite under methane seepage. Geochemical Perspectives Letters, 21: 18-22. [53] Michel D,Giuliani G,Olivo G R,Marini O J.1994. As growth banding and the presence of Au in pyrites from the Santa Rita gold vein deposit hosted in Proterozoic metasediments,Goias State,Brazil. Economic Geology, 89(1): 193-200. [54] Morse J W,Luther G W.1999. Chemical influences on trace metal-sulfide interactions in anoxic sediments. Geochimica et Cosmochimica Acta, 63(19-20): 3373-3378. [55] Mucci A,Canuel R,Zhong S J.1989. The solubility of calcite and aragonite in sulfate-free seawater and the seeded growth kinetics and composition of the precipitates at 25℃. Chemical Geology, 74(3-4): 309-320. [56] Mukherjee I,Large R R.2020. Co-evolution of trace elements and life in Precambrian oceans: the pyrite edition. Geology, 48(10): 1018-1022. [57] Naehr T H,Eichhubl P,Orphan V J,Hovland M,Paull C K,Ussler Ⅲ W,Lorenson T D,Greene H G.2007. Authigenic carbonate formation at hydrocarbon seeps in continental margin sediments: a comparative study. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 54(11-13): 1268-1291. [58] Naehr T H,Birgel D,Bohrmann G,MacDonald I R,Kasten S.2009. Biogeochemical controls on authigenic carbonate formation at the Chapopote “asphalt volcano”,Bay of Campeche. Chemical Geology, 266(3-4): 390-402. [59] Nameroff T J,Balistrieri L S,Murray J W.2002. Suboxic trace metal geochemistry in the eastern tropical North Pacific. Geochimica et Cosmochimica Acta, 66(7): 1139-1158. [60] Peacock C L,Sherman D M.2007. Crystal-chemistry of Ni in marine ferromanganese crusts and nodules. American Mineralogist, 92(7): 1087-1092. [61] Peckmann J,Thiel V.2004. Carbon cycling at ancient methane-seeps. Chemical Geology, 205(3-4): 443-467. [62] Peckmann J,Reimer A,Luth U,Luth C,Hansen B T,Heinicke C,Hoefs J,Reitner J.2001. Methane-derived carbonates and authigenic pyrite from the northwestern Black Sea. Marine Geology, 177(1-2): 129-150. [63] Raiswell R,Plant J.1980. The incorporation of trace elements into pyrite during diagenesis of black shales,Yorkshire,England. Economic Geology, 75(5): 684-699. [64] Reich M,Becker U.2006. First-principles calculations of the thermodynamic mixing properties of arsenic incorporation into pyrite and marcasite. Chemical Geology, 225(3-4): 278-290. [65] Sassen R,Roberts H H,Carney R,Milkov A V,Deferitas D A,Lanoil B,Zhang C.2004. Free hydrocarbon gas,gas hydrate,and authigenic minerals in chemosynthetic communities of the northern Gulf of Mexico continental slope: relation to microbial processes. Chemical Geology, 205(3-4): 195-217. [66] Smrzka D,Zwicker J,Bach W,Feng D,Himmler T,Chen D,Peckmann J.2019. The behavior of trace elements in seawater,sedimentary pore water,and their incorporation into carbonate minerals: a review. Facies, 65: 1-47. [67] Smrzka D,Feng D,Himmler T,Zwicker J,Hu Y,Monien P,Tribovillard N,Chen D,Peckmann J.2020. Trace elements in methane-seep carbonates: potentials,limitations,and perspectives. Earth-Science Reviews, 208: 103263. [68] Tribovillard N,Algeo T J,Lyons T,Riboulleau A.2006. Trace metals as paleoredox and paleoproductivity proxies: an update. Chemical geology, 232(1-2): 12-32. [69] Wang B,Du Z F,Luan Z D,Zhang X,Wang M X,Wang X J,Lian C,Yan J.2021a. Seabed features associated with cold seep activity at the Formosa Ridge,South China Sea: integrated application of high-resolution acoustic data and photomosaic images. Deep Sea Research Part I: Oceanographic Research Papers, 177: 103622. [70] Wang K X,Zhai D G,Liu J J,Wu H.2021b. LA-ICP-MS trace element analysis of pyrite from the Dafang gold deposit,South China: implications for ore genesis. Ore Geology Reviews, 139: 104507. [71] You Y Z,Chern C S,Yang Y,Liu C T,Liu K K,Pai S C.2005. The South China Sea,a cul-de-sac of North Pacific intermediate water. Journal of Oceanography, 61: 509-527. [72] Zan B,Mou C L,Lash G G,Yan J X,Hou Q.2022. Diagenetic barite-calcite-pyrite nodules in the Silurian Longmaxi Formation of the Yangtze Block,South China: a plausible record of sulfate-methane transition zone movements in ancient marine sediments. Chemical Geology, 595: 120789. [73] Zhang M,Konishi H,Xu H,Sun X M,Lu H F,Wu D D,Wu N Y.2014. Morphology and formation mechanism of pyrite induced by the anaerobic oxidation of methane from the continental slope of the NE South China Sea. Journal of Asian Earth Sciences, 92: 293-301. [74] Zheng Y,Anderson R F,Van Geen A,Kuwabara J.2000. Authigenic molybdenum formation in marine sediments: a link to pore water sulfide in the Santa Barbara Basin. Geochimica et Cosmochimica Acta, 64(24): 4165-4178.