Significance of palaeoclimate indicators of geochemical indexes of palaeoflood profiles in Luoyang Basin,China
LI Songhan1, ZHANG Junna1, ZHANG Xiaohu2, ZHAO Haitao3, ZHAO Bolun4, HAN Zinan4
1 School of History,Capital Normal University,Beijing 100048,China; 2 Henan Provincial Institute of Cultural Heritage and Archaeology,Zhengzhou 450000,China; 3 Institute of Archaeology,Chinese Academy of Social Sciences,Beijing 100101,China; 4 College of Applied Arts and Science of Beijing Union University,Beijing 100191,China
Abstract In paleoclimate studies,geochemical indexes are predominantly employed in the analysis of loess,lake and other sediment types. However,the role of chemical elements in indicating palaeoclimate conditions in river sediments has been rarely investigated,primarily due to significant variations in sedimentary dynamics. In this paper,the significance of paleoclimate indicators derived from the geochemical index of the late Longshan Paleoflood section(SQ)dating from 4 to 3.8 ka BP in the Luoyang Basin. The analysis reveals a significant correlation between the chemical elements in the SQ profile and the median particle size. After accounting for the influences of provenance,sedimentary recycling and diagenetic potassium metasomatism on the chemical elements,the chemical elements were grouped based on the correlation coefficients with median particle size. Subsequently,we established chemical element parameter indexes according to the migration strength of the elements within the same group. The results are consistent with the CIA particle size effect correction findings,both indicating low values in the paleoflood layer,which suggests a dry and cool climate. Based on the results of palynology in this profile,it is concluded that the relatively mild,warm and cool climate in the Luoyang Basin serves as a significant environmental background for the occurrence of paleoflood events around 4 000 years ago. However,the complexity of the river deposition process presents limitations for this study. The method of grouping parameters offers a valuable approach to exploring the palaeoclimatic significance of chemical element indicators found in river sediments.
Fund:Co-funded by the National Natural Science Foundation of China(No.41971114),the major project of National Social Science Fund(Nos. 21&ZD223,18ZDA172)and the general projects of the National Social Science Fund(No.20BKG001)
Corresponding Authors:
ZHANG Junna,born in 1984,an associate professor,is mainly engaged in researches on environmental archaeology and Quaternary palaeoenvironmental evolution. E-mail: junnazhang84@163.com.
About author: About the first author LI Songhan,born in 2001,a postgraduate student,is mainly engaged in research on environmental archaeology. E-mail: 2220202014@cnu.edu.cn.
Cite this article:
LI Songhan,ZHANG Junna,ZHANG Xiaohu et al. Significance of palaeoclimate indicators of geochemical indexes of palaeoflood profiles in Luoyang Basin,China[J]. JOPC, 2024, 26(6): 1516-1530.
LI Songhan,ZHANG Junna,ZHANG Xiaohu et al. Significance of palaeoclimate indicators of geochemical indexes of palaeoflood profiles in Luoyang Basin,China[J]. JOPC, 2024, 26(6): 1516-1530.
[1] 陈骏,仇纲,季峻峰,鹿化煜. 1996. 最近130 ka黄土高原夏季风变迁的Rb和Sr地球化学证据. 科学通报,41(21): 1963-1966. [Chen J,Qiu G,Ji J F,Lu H Y.1996. Rb and Sr geochemical evidence for the recent 130 ka summer monsoon change in the Loess Plateau. Chinese Science Bulletin,41(21): 1963-1966] [2] 陈亮,冯兆东,冉敏,惠争闯,李开封,李洪彬,刘畅,张样洋. 2023. 洛阳盆地的4.2 ka 气候事件和人类活动. 科学通报,68(5): 546-562. [Chen L,Feng Z D,Ran M,Hui Z C,Li K F,Li H B,Liu C,Zhang Y Y.2023. The 4.2 ka climate event and human activities in Luoyang Basin of Central Plains of China. Chinese Science Bulletin,68(5): 546-562] [3] 刁桂仪,文启忠,吴明清,潘景瑜. 1996. 黄河中游马兰黄土中若干微量元素的平均含量及相关性研究. 海洋地质与第四纪地质,16(2): 85-92. [Diao G Y,Wen Q Z,Wu M Q,Pan J Y.1996. Study on the average contents and correlativity of trace elements in Malan loess from the middle reaches of the Yellow River. Marine Geology & Quaternary Geology,16(2): 85-92] [4] 董广辉,张帆宇,刘峰文,张东菊,周爱锋,杨谊时,Wang Guanghui.2018. 喇家遗址史前灾害与黄河大洪水无关,中国科学: 地球科学,48(4): 467-475. [Dong G H,Zhang F Y,Liu W F,Zhang D J,Zhou A F,Yang Y S,Wang G H.2018. Multiple evidences indicate no relationship between prehistoric disasters in Lajia site and outburst flood in upper Yellow River valley,China. Science China Earth Sciences,48(4): 467-475] [5] 段克勤,姚檀栋,王宁练,徐柏青,L. G. Thompson.2012. 青藏高原中部全新世气候不稳定性的高分辨率冰芯记录. 中国科学(D辑: 地球科学),42(9): 1441~1449 [Duan K Q,Yao T D,Wang N L,Xu B Q,Thompson L G.2012. The high resolution ice core record of the Holocene climate instability in the central Tibetan plateau. Scientia Sinica Terrae,42(9): 1441-1449] [6] 冯连君,储雪蕾,张启锐,张同钢. 2003. 化学蚀变指数(CIA)及其在新元古代碎屑岩中的应用. 地学前缘,10(4): 539-544. [Feng L J,Chu X L,Zhang Q R,Zhang T G.2003. CIA(chemical index of alteration)and its applications in the Neoproterozoic clastic rocks. Earth Science Frontiers,10(4): 539-544] [7] 傅寒晶,简星,梁杭海. 2021. 硅酸盐化学风化强度评估的沉积物指标与方法研究进展. 古地理学报,23(6): 1192-1209. [Fu H J,Jian X,Liang H H.2021. Research progress of sediment indicators and methods for evaluation of silicate chemical weathering intensity. Journal of Palaeogeography(Chinese Edition),23(6): 1192-1209] [8] 封志兵,付佳,聂逢君,李满根,张博程,杨舒琪,盛洲宁,黄昊. 2023. 鄱阳湖赣江三角洲沉积物中铀、钍地球化学特征及影响因素. 东华理工大学学报(自然科学版),46(2): 150-156. [Feng Z B,Fu J,Nie F J,Li M G,Zhang B C,Yang S Q,Sheng Z N,Huang H.2023. Geochemical characteristics and influencing factors of uranium and thorium in the sediments of Ganjiang Delta,Poyang Lake,Jiangxi Province. Journal of East China University of Technology(Natural Science),46(2): 150-156] [9] 宫钏彰,刘勇,代彦臣,邢力,王祥东,李广雪. 2014. 现代黄河口晚更新世以来沉积地球化学特征. 海洋地质前沿,30(11): 22-31. [Gong C Z,Liu Y,Dai Y C,Xing L,Wang X D,Li G X.2014. Geochemical features of the modern Yellow River mouth since late Pleistocene. Marine Geology Frontiers,30(11): 22-31] [10] 郜学敏,屈欣,王萌,张思悦,张姚姚,李继彦. 2021. 柴达木盆地西北部长垄状雅丹沉积物地球化学元素组成及指示意义. 中国沙漠,41(3): 127-136. [Gao X M,Qu X,Wang M,Zhang S Y,Zhang Y Y,Li J Y.2021. Composition of geochemical elements and its implications for long-ridge yardang in the northwestern Qaidam Basin,China. Journal of Desert Research,41(3): 127-136] [11] 顾洪亮,黄春长,周亚利,庞奖励,查小春,张玉柱. 2012. 关中盆地杨官寨遗址古洪水事件释光测年. 地理研究,31(10): 1837-1848. [Gu H L,Huang C C,Zhou Y L,Pang J L,Zha X C,Zhang Y Z.2012. OSL dating study the palaeoflood events recorded in the Yangguanzhai Neolithic Ruins in the Guanzhong Basin. Geographical Research,31(10): 1837-1848] [12] 郭志永,翟秋敏,沈娟. 2011. 黄河中游渑池盆地湖泊沉积记录的古气候变化及其意义. 第四纪研究,31(1): 150-162. [Guo Z Y,Zhai Q M,Shen J.2011. Palaeoclimatic changes since the deglaciation revealed by lacustrine sediments in Mianchi basin of western Henan Province,Central China and the implication for Chinese culture development. Quaternary Sciences,31(1): 150-162] [13] 韩宗珠,艾丽娜,陈筱林,王传,刘涵,孙宇菲. 2016. 南黄海泥质区西北缘B01孔黏土粒级沉积物地球化学特征及其物质来源的识别. 中国海洋大学学报(自然科学版),46(10): 82-91. [Han Z Z,Ai L N,Chen X L,Wang C,Liu H,Sun Y F.2016. Geochemical characteristics of sediments and provenance of B01 core in northwest margin of South Yellow Sea mud area. Periodical of Ocean University of China,46(10): 82-91] [14] 黄春长,庞奖励,查小春,周亚利. 2011. 黄河流域关中盆地史前大洪水研究: 以周原漆水河谷地为例. 中国科学: 地球科学,41(11): 1658-1669. [Huang C C,Pang J L,Zha X C,Zhou Y L.2011. Study on prehistoric flood in Guanzhong Basin of Yellow River Basin: taking Qishui River Valley in Zhouyuan as an example. Scientia Sinica Terrae,41(11): 1658-1669] [15] 靳桂云,刘东生. 2001. 华北北部中全新世降温气候事件与古文化变迁. 科学通报,46(20): 1725-1730. [Jin G Y,Liu D S.2001. Middle Holocene cooling climate events and ancient cultural changes in northern North China. Chinese Science Bulletin,46(20): 1725-1730] [16] 靳鹤龄,李明启,苏志珠,董光荣,赵晖. 2005.220 ka BP来萨拉乌苏河流域地质剖面地球化学特征及其对全球气候变化的响应. 冰川冻土,27(6): 861-868. [Jin H L,Li M Q,Su Z Z,Dong G R,Zhao H.2005. Geochemical features of a profile in Salawusu river valley and their response to global climate changes since 220 ka BP. Journal of Glaciology and Geocryology,27(6): 861-868] [17] 蓝先洪,马道修,徐明广,周清伟,张光威. 1987. 珠江三角洲若干地球化学标志及指相意义. 海洋地质与第四纪地质,7(1): 39-49. [Lan X H,Ma D X,Xu M G,Zhou Q W,Zhang G W.1987. Some geochemical indicators of the Pearl River Delta and their facies significance. Marine Geology & Quaternary Geology,7(1): 39-49] [18] 李兰,白九江,代玉彪. 2020. 重庆永川汉东城遗址地层记录的长江上游唐代洪水事件. 第四纪研究,40(2): 556-567. [Li L,Bai J J,Dai Y B.2020. Flood event recorded by the layer of Handongcheng Site and its significance to the upper reaches of Yangtze River. Quaternary Sciences,40(2): 556-567] [19] 李拓宇,莫多闻,朱高儒,王海斌,张翼飞,郭媛媛. 2013. 晋南全新世黄土剖面常量元素地球化学特征及其古环境意义. 地理研究,32(8): 1411-1420. [Li T Y,Mo D W,Zhu G R,Wang H B,Zhang Y F,Guo Y Y.2013. Geochemical characteristics of major elements and its paleoenvironmental significance of Holocene loess profile in southern Shanxi,China. Geographical Research,32(8): 1411-1420] [20] 刘东生. 1985. 黄土与环境. 北京: 科学出版社, 238-264. [Liu D S.1985. Loess and Environment. Beijing: Science Press,238-264] [21] 毛礼米,王伟铭,舒军武,杨小丽. 2011. 长江三角洲地区全新世蕨类孢子与藻类: 以奉贤DY03钻孔的产出类型为例. 古生物学报,50(2): 154-165. [Mao L M,Wang W M,Shu J W,Yang X L.2011. Holocene spores and microscopic algae from the Yangtze Delta,East China. Acta Palaeontologica Sinica,50(2): 154-165] [22] 孙雄伟,夏正楷. 2005. 河南洛阳寺河南剖面中全新世以来的孢粉分析及环境变化. 北京大学学报(自然科学版),41(2): 289-294. [Sun X W,Xia Z K.2005. Paleoenvironment changes since mid-Holocene revealed by a palynological sequence from Sihenan profile in Luoyang Henan Province. Acta Scientiarum Naturalium Universitatis Pekinensis,41(2): 289-294] [23] 宋德卓,薛积彬,孙升升,钟巍. 2022. 海南小海潟湖沉积物地球化学揭示的近千年气候环境变化. 地球化学,51(2): 202-212. [Song D Z,Xue J B,Sun S S,Zhong W.2022. Climate and environmental changes revealed by sedimentary geochemical elements of the Xiaohai Lagoon(Hainan)during the last millennium. Geochimica,51(2): 202-212] [24] 王浩宇,张玉柱,黄春长,谭志海,邱海军,王宁练,贾雅娜,邹明博,于艺堃,阿依迪那·赛勒别克. 2021. 洛阳盆地龙山文化晚期大洪水地球化学特征及其社会影响研究. 地层学杂志,45(2): 168-179 [Wang H Y,Zhang Y Z,Huang C C,Tan Z H,Qiu H J,Wang N L,Jia Y N,Zou M B,Yu Y K,A Yi-dina S.2021. Geochemical characteristics and sociall influence of paleoflood events in the late Longshan culture within the Luoyang Basin. Journal of Stratigraphy,45(2): 168-179] [25] 夏正楷,杨晓燕. 2003. 我国北方4 ka B.P. 前后异常洪水事件的初步研究. 第四纪研究,23(6): 667-674. [Xia Z K,Yang X Y.2003. Preliminary study on the flood events about 4 ka B.P. in north China. Quaternary Sciences,23(6): 667-674] [26] 熊尚发,朱园健,周茹,卢海建,丁仲礼. 2008. 白水黄土—红黏土化学风化强度的剖面特征与粒度效应. 第四纪研究,28(5): 812-821. [Xiong S F,Zhu Y J,Zhou R,Lu H J,Ding Z L.2008. Chemical weathering intensity and its Grain-size dependence for the loess-red clay deposit of the Baishui section,Chinese loess plateau. Quaternary Science,28(5): 812-821] [27] 徐佳佳. 2017. 成都平原中晚全新世典型遗址环境考古研究. 南京大学博士学位论文. [Xu J J.2017. Mid to Late Holocene environmental archaeology in Chengdu Plain,China. Doctoral dissertation of Nanjing University] [28] 许俊杰,莫多闻,王辉,周昆叔. 2013. 河南新密溱水流域全新世人类文化演化的环境背景研究. 第四纪研究,33(5): 954-964. [Xu J J,Mo D W,Wang H,Zhou K S.2013. Preliminary research of environment archaeology in Zhenshui River,Xinmi city,Henan. Quaternary Sciences,33(5): 954-964] [29] 许清海,李润兰,朱峰,阳小兰,梁文栋. 2001. 华北平原冲积物孢粉沉积相研究. 古地理学报,3(2): 55-63. [Xu Q H,Li R L,Zhu F,Yang X L,Liang W D.2001. Pollen sedimentary facies of fluvial sediments on North China Plain. Journal of Palaeogeography(Chinese Edition),3(2): 55-63] [30] 徐小涛,邵龙义. 2018. 利用泥质岩化学蚀变指数分析物源区风化程度时的限制因素. 古地理学报,20(3): 515-522. [Xu X T,Shao L Y.2018. Limiting factors in utilization of chemical index of alteration of mudstones to quantify the degree of weathering in provenance. Journal of Palaeogeography(Chinese Edition),20(3): 515-522] [31] 徐新文,赵庆,邱海军. 2020. 黄土磁化率对千年—百年尺度气候事件的记录及其古气候意义. 西北大学学报(自然科学版),50(3): 411-419 [Xu X W,Zhao Q,Qiu H J.2020. Millennial and centennial time scale climate change recorded by Chinese loess magnetic susceptibility and its paleoclimatic implications. Journal of Northwest University(Natural Science Edition),50(3): 411-419] [32] 杨坤美,向芳,台梓含,王运生,由文智,喻显涛. 2022. 巧家盆地第四纪孢粉特征及其古气候意义. 成都理工大学学报(自然科学版),49(3): 324-337. [Yang K M,Xiang F,Tai Z H,Wang Y S,You W Z,Yu X T.2022. Quaternary sporopollen characteristics and paleoclimate significance in Qiaojia Basin,Yunnan Province,China. Journal of Chengdu University of Technology(Science & Technology Edition),49(3): 324-337] [33] 杨守业,蒋少涌,凌洪飞,夏小平,孙敏,王德杰. 2007. 长江河流沉积物Sr-Nd同位素组成与物源示踪. 中国科学(D辑: 地球科学),37(5): 682-690. [Yang S Y,Jiang S Y,Ling H F,Xia X P,Sun M,Wang D J.2007. Sr-Nd isotopic composition and provenance tracing of sediments in the Yangtze River. Science China: Earth Sciences,37(5): 682-690] [34] 杨晓燕,夏正楷,崔之久. 2005. 黄河上游全新世特大洪水及其沉积特征. 第四纪研究,25(1): 80-85. [Yang X Y,Xia Z K,Cui Z J.2005. Holocene extreme floods and its sedimentary characteristic in the upper reaches of the Yellow River. Quaternary Sciences,25(1): 80-85] [35] 杨宇哲,岳大鹏,赵景波,王晓宁,刘怡婷,刘蓉. 2023. 陕西横山地区L3黄土与S3古土壤元素地球化学特征与环境变化. 地理科学进展,42(2): 364-379. [Yang Y Z,Yue D P,Zhao J B,Wang X N,Liu Y T,Liu R.2023. Characteristics of geochemical weathering of L3 and S3 loess-paleosol section in the Hengshan area,Shaanxi Province. Progress in Geography,42(2): 364-379] [36] 殷志强,秦小光. 2010. 末次冰期以来松嫩盆地东部榆树黄土堆积及其环境意义. 中国地质,37(1): 212-222. [Yin Z Q,Qin X G.2010. The Yushu loess deposition in eastern Songnen Basin since the last glacial period and its environmental significance. Geology in China,37(1): 212-222] [37] 张虎才,张文翔,常凤琴,杨伦庆,雷国良,杨明生,蒲阳,类延斌. 2009. 稀土元素在湖相沉积中的地球化学分异: 以柴达木盆地贝壳堤剖面为例. 中国科学(D辑: 地球科学),39(8): 1160-1169. [Zhang H C,Zhang W X,Chang F Q,Yang L Q,Lei G L,Yang M S,Pu Y,Lei Y B.2009. Geochemical differentiation of rare earth elements in lacustrine sediments: taking the shell dyke section of Qaidam Basin as an example. Science China(Series D: Earth Sciences),39(8): 1160-1169] [38] 张俊娜,夏正楷. 2011. 中原地区4 ka BP前后异常洪水事件的沉积证据. 地理学报,66(5): 685-697. [Zhang J N,Xia Z K.2011. Deposition evidences of the 4 ka BP flood events in Central China Plains. Acta Geographica Sinica,66(5): 685-697] [39] 张俊娜,夏正楷. 2012. 洛阳二里头遗址南沉积剖面的粒度和磁化率分析. 北京大学学报(自然科学版),48(5): 737-743. [Zhang J N,Xia Z K.2012. Analysis on grain size and magnetic susceptibility of the sediment section in the south of Erlitou site,Luoyang. Acta Scientiarum Naturalium Universitatis Pekinensis,48(5): 737-743] [40] 张玉柱,黄春长,庞奖励,查小春,周亚利,周自翔,王娟,顾洪亮. 2012. 泾河下游古洪水滞流沉积物地球化学特征研究. 沉积学报,30(5): 900-908. [Zhang Y Z,Huang C C,Pang J L,Zha X C,Zhou Y L,Zhou Z X,Wang J,Gu H L.2012. Geochemical characteristics of the Holocene flood slack water Deposits in the Lower Reaches of the Jinghe River. Acta Sedimentologica Sinica,30(5): 900-908] [41] 张振球,张伟宏,刘树双,翟秀敏,邵庆丰. 2023. 贵州石笋记录的中晚全新世东亚夏季风变化. 沉积学报,41(1): 196-205. [Zhang Z Q,Zhang W H,Liu S S,Zhai Q M,Shao Q F.2023. Variation in the East Asian Summer Monsoon during the Middle and Late Holocene inferred from a stalagmite record in Guizhou,China. Acta Sedimentologica Sinica,41(1): 196-205] [42] 赵辰辰,王永波,胥勤勉. 2019.2.5 Ma以来中国陆地孢粉记录反映的古气候变化. 海洋地质与第四纪地质,40(4): 175-191. [Zhao C C,Wang Y B,Xu Q M.2019. Climate changes on Chinese continent since 2.5 Ma: evidence from fossil pollen records. Marine Geology & Quaternary Geology,40(4): 175-191] [43] 赵宏飞. 2018. 近1万年以来特征时期黄土高原土壤侵蚀及其对黄河下游沉积的影响. 西北农林科技大学硕士学位论文. [Zhao H F.2018. Soil erosion in the Loess Plateau and its impact on sedimentation in the Lower Yellow River in the past10,000 years. Masteral dissertation of Northwest A & F University] [44] 赵一阳,喻德科. 1983. 黄海沉积物的地球化学分析. 海洋与湖沼,14(5): 432-446. [Zhao Y Y,Yu D K.1983. Geochemical analysis of the Yellow Sea sediments. Oceanologia et Limnologia Sinica,14(5): 432-446] [45] 赵占仑,温小浩,汤连生,李保生,牛东风,孟洁,杨庆江. 2018. 化学蚀变指数指示古气候变化的适用性探讨. 沉积学报,36(2): 333-353. [Zhao Z L,Wen X H,Tang L S,Li B S,Niu D F,Meng J,Yang Q J.2018. Applicability of chemical alteration index to indication of paleoclimate change by different sedimentary facies. Acta Sedimentologica Sinica,36(2): 333-353] [46] 中国社会科学院考古研究所. 2014. 二里头: 1999~2006. 北京: 文物出版社,1239-1263. [Institute of Archaeology,Chinese Academy of SoCIAl Sciences. 2014. Erlitou: 1999-2006. Beijing: Cultural Relics Publishing House,1239-1263] [47] 朱诚,于世永,史威,戴东升,赵宁曦. 1997. 南京江北地区全新世沉积与古洪水研究. 地理研究,16(4): 24-31. [Zhu C,Yu S Y,Shi W,Dai D S,Zhao N X.1997. Holocene deposits and paleo-floods on the north bank of the Yangtze River,Nanjing area. Geographical Research,16(4): 24-31] [48] 朱诚,郑朝贵,马春梅,孙智彬,朱光耀,王慧麟,高华中,王朋岭,黄润. 2005. 长江三峡库区中坝遗址地层古洪水沉积判别研究. 科学通报,50(20): 58-68. [Zhu C,Zheng C G,Ma C M,Sun Z B,Zhu G Y,Wang H L,Gao H Z,Wang P L,Huang R.2005. Study on the discrimination of ancient flood deposits in the Zhongba Site of the Three Gorges Reservoir Area of the Yangtze River. Chinese Science Bulletin,50(20): 58-68] [49] 邹春辉,赵强,毛龙江. 2020. 鲁北平原东部巨淀湖岩心沉积物记录的全新世环境演变. 古地理学报,22(6): 1209-1220. [Zou C H,Zhao Q,Mao L J.2020. Holocene environmental evolution recorded by core sediments of Judian Lake in the east of Lubei Plain,Shandong Province. Journal of Palaeogeography(Chinese Edition),22(6): 1209-1220] [50] 邹晓君,马运强,李志忠,靳建辉,刘瑞,谭典佳,陶通炼. 2023. 古尔班通古特沙漠南缘风沙沉积记录的中晚全新世气候变化. 中国沙漠,43(6): 98-110. [Zou X J,Ma Y Q,Li Z Z,Jin J H,Liu R,Tan D J,Tao T L.2023. Mid-Late Holocene climate change recorded by eolian sand deposition in the southern margin of Gurbantunggut Desert. Journal of Desert Research,43(6): 98-110] [51] An C B,Tang L Y,Barton L,Chen F H.2005. Climate change and cultural response around 4000 cal yr B.P. in the western part of Chinese Loess Plateau. Quaternary Research,63(3): 347-352. [52] Bond G,Showers W,Cheseby M,Lotti R,Almasi P,de Menocal P,Priore P,Cullen H,Hajdas I,Bonani G.1997. A pervasive millennial-scale cycle in north Atlantic Holocene and glacial climates. Science,278(5341): 1257-1266. [53] Borges J B,Huh Y,Moon S,Noh H.2008. Provenance and weathering control on river bed sediments of the eastern Tibetan Plateau and the Russian Far East. Chemical Geology,254(1-2): 52-72. [54] Cai Y J,Tan L C,Cheng H,An Z S,Edwards R L,Kelly M J,Kong X G,Wang X F.2010. The variation of summer monsoon precipitation in Central China since the last deglaciation. Earth and Planetary Science Letters,291: 21-31. [55] de Menocal P B.2001. Cultural responses to climate change during the Late Holocene. Science,292(5517): 667-673. [56] Gu Z D,Jian X,Liu G X.2023a. A new age,provenance and tectono-sedimentary setting of the middle Dengying Formation of the terminal Ediacaran in the western Yangtze Block,South China. Marine and Petroleum Geology,157: 106509. [57] Gu Z D,Jian X,Liu G X,Shen X T,Fu H J,Zhai X F,Jiang H.2023b. Age,provenance and tectonic setting of the Tonian-Cryogenian clastic successions in the northwest Bikou terrane,NW Yangtze Block,Central China. Precambrian Research,397: 107197. [58] Guo Y Q,Huang C C,Pang J L,Zha X C,Zhou Y L,Wang L S,Zhang Y Z,Hu G M.2015. Investigating extreme flood response to Holocene palaeoclimate in the Chinese monsoonal zone: a palaeoflood case study from the Hanjiang River. Geomorphology,238: 187-197. [59] Hu C Y,Henderson G M,Huang J H,Xie S C,Sun Y,Johnson K R.2008. Quantification of Holocene Asian monsoon rainfall from spatially separated cave records. Earth and Planetary Science Letters,266: 221-232. [60] Huang C C,Pang J L,Zha X C,Zhou Y L,Su H X,Li Y Q.2010. Extraordinary Floods of 4100-4000 a BP recorded at the Late Neolithic Ruins in the Jinghe River Gorges,Middle Reach of the Yellow River,China. Palaeogeography,Palaeoclimatology,Palaeoecology,289: 1-9. [61] Hutton J.1977. Titanium and zirconium minerals. Dixon J B,Wed S B,Minerals in soil environments. Madison: Soil Science Society of America,673. [62] Jian X,Guan P,Zhang W,Feng F.2013. Geochemistry of Mesozoic and Cenozoic sediments in the northern Qaidam Basin,northeastern Tibetan Plateau: implications for provenance and weathering. Chemical Geology,360: 74-88. [63] Laceby J P,Evrard O,Smith H G,Blake W H,Olley J M,Minella J P G,Owens P N.2017. The challenges and opportunities of addressing particle size effects in sediment source fingerprinting: a review. Earth-Science Reviews,169: 85-103. [64] Li F,Yang S,Breecker D O,Ramos E J,Huang X,Duan Z,Guo Y L,Li C,Mei X.2022b. Responses of silicate weathering intensity to the Pliocene-Quaternary cooling in East and Southeast Asia. Earth and Planetary Science Letters,578: 117301. [65] Li P,Zhang C X,Wu H B,Gao Z W.2022a. Geochemical characteristics of Holocene loess-paleosol sequences in central Chinese Loess Plateau and their implications for East Asian monsoon evolution. Quaternary International,616: 99-108. [66] McLennan S M.1993. Weathering and global denudation. Journal of Geology,101(2): 295-303. [67] Nesbitt H W,Young G M.1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature,229: 715-717. [68] Ren X L,Xu J J,Wang H,Storozum M,Lu P,Mo D W,Li T Y,Xiong J G,Kidder T R.2021. Holocene fluctuations in vegetation and human population demonstrate social resilience in the prehistory of the Central Plains of China. Environmental Research Letters,16: 055030. [69] Staubwasser M,Sirocko F,Grootes P M,Segl M.2003. Climate change at the 4.2 ka termination of the Indus valley civilization and Holocene south Asian monsoon variability. Geophysical Research Letters,30: 1425-1429 [70] Storozum M J,Mo D W,Wang H,Ren X L,Zhang Y F,Kidder T. R.2017. Anthropogenic origins of a late Holocene,basin-wide unconformity in the middle reaches of the Yellow River,the Luoyang Basin,Henan Province,China. Quaternary Research,87(3): 423-441. [71] Sun W W,Ni Z Y,Meng X Q,Jiang Q F,Zhang E L.2021. Environmental change recorded by radionuclides and organic geochemical signatures in a sediment core from Lake Daihai,North China. Catena,206: 105564. [72] Sun Q L,Liu Y,Wünnemann B,Peng Y J,Jiang X Z,Deng L J,Chen J,Li M T,Chen Z Y.2019. Climate as a factor for Neolithic cultural collapses approximately 4000 years BP in China. Earth-Science Reviews,197: 102915. [73] Tan L C,Shen C C,Cai Y J,Cheng H,Edwards R L.2018. Great flood in the middle-lower Yellow River reaches at 4000 a BP inferred from accurately-dated stalagmite records. Science Bulletin,63(4): 206-208. [74] Tan L C,Li Y Z,Wang X Q,Cai Y J,Lin F Y,Cheng H,Ma L,Sinha A,Edwards R L.2020. Holocene monsoon change and abrupt events on the western Chinese Loess Plateau as revealed by accurately-dated stalagmites. Geophysical Research Letters,47(20): e2020GL090273. [75] Wang D D,Li M Y,Zhang S R,Xu Q H,Wu L W.2022. Spatial and temporal characteristics of the precipitation response to the 4.2 ka event in the Asian summer monsoon region. Global and Planetary Change,214: 103854. [76] Wang Y J,Cheng H,Edwards R L,He Y Q,Kong X G,An Z S,Wu J Y,Kelly M J,Dykoski C A,Li X D.2005. The Holocene Asian monsoon: links to solar changes and North Atlantic climate. Science,308(5728): 854-857. [77] Wu Q L,Zhao Z J,Liu L,Granger D E,Wang H,Cohen D J,Wu X H,Ye M L,Yosef O B,Lu B,Zhang J,Zhang P Z,Yuan D Y,Qi W Y,Cai L H,Bai S B.2016. Outburst flood at 1920 BCE supports historicity of China's Great Flood and the Xia dynasty. Science,353(6299): 579-582. [78] Wu W X,Liu T S.2004. Possible role of the “Holocene Event 3” on the collapse of Neolithic Cultures around the Central Plain of China. Quaternary International,117(1): 153-166. [79] You H F,Li Y C,Zhang S R,Ge Y W,Zhang Z,Zhang W S,Wang Y,Fan B S,Wang R R,Cao Y H,Li C G.2024. Climate and sea-level fluctuations on the western coast of Bohai Bay during the 4.2 ka event: multi-proxy evidence from the Nandagang area of Cangzhou,China. Quaternary Science Reviews,324: 108467. [80] Zhang J N,Zhang X H,Xia Z K,Xu H,Zhao H T.2019. Geomorphic changes along the Yiluo River influenced the emergence of the first urban center at the Erlitou Site,Central Plains of China. Quaternary International,521: 90-103. [81] Zhao X H,Wang J P,Wei M J,Lai Z P,Fan M J,Zhao J X,Pan B L,Zhao Y H,Li X P,Zhao Q Y.2017. Optically stimulated luminescence dating of Holocene palaeoflood deposits in the middle reach of the Yongding River,China. Quaternary International,453: 37-47.